第4讲 线性规划 (2)
线性规划PPT课件

线性规划的基本定理
线性规划的解存在性
对于任何线性规划问题,都存在至少一个最优解。
最优解的唯一性
在某些情况下,线性规划问题的最优解是唯一的,这取决于目标函 数和约束条件的形状和位置。
解的稳定性
线性规划问题的最优解是稳定的,即使目标函数或约束条件略有变 化,最优解也不会发生大的变化。
03
线性规划的求解方法
优缺点:内点法具有全局收敛性和对初始点不敏 感的优点,但计算量较大,需要较高的计算资源 。
椭球法
01
总结词:几何方法
02
03
04
详细描述:椭球法是一种基 于几何方法的线性规划算法。 它将可行解的边界表示为椭 球,通过迭代移动椭球中心
来逼近最优解。
算法步骤:椭球法的基本步 骤包括初始化、构建椭球和 迭代更新。在每次迭代中, 根据当前椭球的位置和方向 来更新中心和半径,直到满
运输问题
总结词
运输问题是线性规划在物流和供应链管理中的重要应用,旨在优化运输成本、 运输时间和运输量等目标。
详细描述
运输问题通常需要考虑多个出发地、目的地、运输方式和运输成本等因素。通 过线性规划方法,可以找到最优的运输方案,使得总运输成本最低、运输时间 最短,同时满足运输量和运输路线的限制。
投资组合优化问题
03
单纯形法
单纯形法是线性规划的标 准算法,通过迭代和优化, 找到满足约束条件的最大 或最小目标函数值。
初始解
在应用单纯形法之前,需 要先找到一个初始解,这 可以通过手动计算或使用 软件工具来实现。
迭代过程
单纯形法通过不断迭代和 优化,逐步逼近最优解, 每次迭代都需要重新计算 目标函数值和最优解。
线性规划的几何意义
4.2线性规划ppt课件

目录
• 线性规划简介 • 线性规划的求解方法 • 线性规划的软件实现 • 线性规划案例分析 • 线性规划的优化策略
01
线性规划简介
线性规划的定义
线性规划是数学优化技术的一种 ,它通过将问题转化为线性方程 组,并寻找满足一定约束条件的 解,以实现目标函数的最优解。
线性规划问题通常由决策变量、 约束条件和目标函数三部分组成
运输问题
总结词
运输问题是在物流和供应链管理中常见的线性规划应用,旨在优化运输成本和时 间。
详细描述
运输问题通常涉及多个起点、终点和运输方式,需要考虑运输成本、时间、容量 和路线等约束条件。通过线性规划方法,可以找到最优的运输方案,使得总运输 成本最低或运输时间最短。
投资组合优化问题
总结词
投资组合优化问题是在金融领域中常见的线性规划应用,旨 在实现风险和收益之间的平衡。
对偶问题在理论研究和实际应用中都 具有重要的意义,可以用于求解一些 特殊类型的问题,如运输问题、分配 问题等。
对偶问题具有一些特殊的性质,如对 偶变量的非负性、对偶问题的最优解 与原问题的最优解之间的关系等。
初始解的确定
初始解的确定是线性规划求解过程中的 一个重要步骤,一个好的初始解可以大
大减少迭代次数,提高求解效率。
。
决策变量是问题中需要求解的未 知数,约束条件是限制决策变量 取值的条件,目标函数是要求最
大或最小的函数。
线性规划的数学模型
线性规划的数学模型通常由一 组线性不等式和等式约束以及 一个线性目标函数组成。
线性不等式和等式约束条件可 以用来表示各种资源和限制条 件。
目标函数是决策变量的线性函 数,表示要优化的目标。
线性规划2(用)

y
故生产甲种、乙种肥料各 2车皮,能够产生最大利润, 最大利润为3万元。
M x
o
例题分析
例2 要将两种大小不同规格的钢板截成A、B、C三种规格, 每张钢板可同时截得三种规格的小钢板的块数如下表所示 :
3
(x,y)叫做可行解。 由所有可行解组成 可行解 的集合叫做可行域。
o
4
8
使目标函数取得最大值或最小值的可行解叫 做这个问题的最优解。
x
例1、一个化肥厂生产甲、乙两种混合肥料,生产1车 皮(火车的货用车厢称为车皮)甲种肥料的主要原料是 磷酸盐4t、硝酸盐18t;生产1车皮乙种肥料需要的主 要原料是磷酸盐1t、硝酸盐15t。现库存磷酸盐10t、 硝酸盐66t,在此基础上生产这两种混合肥料。列出满 足生产条件的数学关系式,并画出相应的平面区域。 并计算生产甲、乙两种肥料各多少车皮,能够产生最 大的利润? 解:设x、y分别为计划生产甲、乙两种混合 肥料的车皮数,于是满足以下条件: y
1.若区域“顶点”处恰好为整点,那么它就是最优解;
(在包括边界的情况下) 2.若区域“顶点”不是整点或不包括边界时,应先求出 该点坐标,并计算目标函数值Z,然后在可行域内适当 放缩目标函数值,使它为整数,且与Z最接近,在这条 对应的直线中,取可行域内整点,如果没有整点,继续 放缩,直至取到整点为止。 3.在可行域内找整数解,一般采用平移找解法,即打网 格法、找整点、平移直线、找出整数最优解
解线性规划应用问题的一般步骤:
1)理清题意,列出表格: 2)设好变元并列出不等式组和目标函数 3)由二元一次不等式表示的平面区域作出可行域; 4)在可行域内求目标函数的最优解 5)还原成实际问题 (准确作图,准确计算)
线性规划PPT课件

基解:令所为 有 0, 非求 基出 变的 (1量 .2)的 满解 足 称为基解。
基可行解与可行 足基 (1.3): 的满 基解称为基可 对应基可行解的 为基 可, 行称 基。基 显可 然 解的数目 基解的数 C目 nm
基本最优解与最优基 满: 足(1.1) 的基可行解称为基本 优最 解,
对应m,如果 B是矩A中 阵的一 mm个 阶非奇异 (|B子 |0)矩 ,则阵 称 B是线性规 题的一个基。
基向量与非基向B量 中: 的基 列向量称为,基向 矩阵A中除B之外各列即为非,基 A中 向共 量 有nm个非基向量。
基变量与非基 基变 向P量 j量 对: 应与 的xj变 称量 为基变量;否 基则 变称 量为 。非
将文件存储并命名后,选择菜单 “Solve” 并对提示 “ DO RANGE(SENSITIVITY)ANALYSIS? ”回答“是”,即 可得到如下输出:
“资源” 剩余 为零的约束为 紧约束(有效 约束)
OBJECTIVE FUNCTION VALUE
1)
3360.000
VARIABLE VALUE REDUCED COST
可行解 基 解
基可行解
1.4 线性规划问题的图解法
下面结合例1的求解来说明图解法步骤。
例1
max Z 4 x1 3 x2
2 x1 3 x2 24
s. t 3 x1 2 x2 26
x2
x1, x2 0
Q3(6,4)
第一步:在直角坐标系中分
别作出各种约束条件,求出
3x1+2x2=26
Q2(6,4)
B
条 件
3x1 100
x1,x2 0
l3:3x1 100 l4
l4:x10,l5:x200
26-简单的线性规划问题(2)

3.3.2简单的线性规划问题(2)教材分析线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法,广泛地应用于军事作战、经济分析、经营管理和工程技术等方面.简单的线性规划指的是目标函数含两个自变量的线性规划,其最优解可以用数形结合方法求出.简单的线性规划关心的是两类问题:一是在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务;二是给定一项任务,如何合理规划,能以最少的人力、物力、资金等资源来完成. 教科书利用生产安排的具体实例,介绍了线性规划问题的图解法,引出线性规划等概念,最后举例说明了简单的二元线性规划在饮食营养搭配中的应用.本节内容蕴含了丰富的数学思想方法,突出体现了优化思想、数形结合思想和化归思想.课时分配本课时是简单的线性规划问题的第二课时,主要解决的是线性规划的应用问题.教学目标重点: 掌握约束条件、目标函数、可行解、可行域、最优解等基本概念.难点:理解实际问题的能力,渗透化归、数形结合的数学思想.知识点:图解法求线性目标函数的最大值、最小值.能力点:函数与方程、数形结合、等价转化、分类讨论的数学思想的运用.教育点:结合教学内容培养学生学习数学的兴趣和“用数学”的意识.自主探究点:培养学生观察、联想、作图和理解实际问题的能力.考试点:线性规划问题的图解法;寻求有实际背景的线性规划问题的最优解.易错易混点:线性规划问题和非线性规划问题的区分于解决.拓展点:非线性规划问题.教具准备实物投影机和粉笔课堂模式诱思探究一、复习引入简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域作出可行域;(3)在可行域内求目标函数的最优解.【设计意图】通过复习进一步熟悉解决简单线性规划问题的具体操作程序.二、探究新知请同学们通过完成练习来掌握图解法解决简单的线性规划问题.(1)求2z x y =+的最大值,使式中的x y 、满足约束条件,1,1.y x x y y ≤⎧⎪+≤⎨⎪≥-⎩(2)求35z x y =+的最大值和最小值,使式中的x y 、满足约束条件5315,1,5 3.x y y x x y +≤⎧⎪≤+⎨⎪-≥⎩解:不等式组表示的平面区域如右图所示: 当0,0x y ==时,20z x y =+=, 点(0,0)在直线020l x y +=:上.作一组与直线0l 平行的直线2,l x y t t R +=∈:.可知在经过不等式组所表示的公共区域内的点且平行于l 的直线中,以经过点(2,1)A -的直线所对应的t 最大.所以max 2213z =⨯-=.(2)求35z x y =+的最大值和最小值,使式中的x y 、满足约束条件5315,1,5 3.x y y x x y +≤⎧⎪≤+⎨⎪-≥⎩解:不等式组所表示的平面区域如右图所示.从图示可知直线35x y t +=在经过不等式组所表示的公共区域内的点时,以经过点(2,1)--的直线所对应的t 最小,以经过点917(,)88的直线所对应的t 最大.所以min 3(2)5(1)11z =⨯-+⨯-=-, max 917351488z =⨯+⨯=. 【设计意图】通过反思总结,加强对“数形结合”数学思想的认识,形成学生良好的认知结构.三、运用新知【例1】某工厂生产甲、乙两种产品.已知生产甲种产品1t ,需耗A 种矿石10t 、B 种矿石5t 、煤4t ;生产乙种产品需耗A 种矿石4t 、B 种矿石4t 、煤9t.每1t 甲种产品的利润是600元,每1t 乙种产品的利润是1000元.工厂在生产这两种产品的计划中要求消耗A 种矿石不超过360t 、B 种矿石不超过200t 、煤不超过300t ,甲、乙两种产品应各生产多少(精确到0.1t ),能使利润总额达到最大?解:设生产甲、乙两种产品分别为xt yt 、,利润总额为z 元,那么104300,54200,49360,0,0;x y x y x y x y +≤⎧⎪+≤⎪⎪+≤⎨⎪≥⎪≥⎪⎩目标函数为6001000z x y =+.作出以上不等式组所表示的平面区域,即可行域. 作直线6001000=0l x y +:, 即直线5=0l x y +:3,把直线l 向右上方平移至1l 的位置时,直线经过可行域上的点M ,且与原点距离最大,此时6001000z x y =+取最大值.解方程组54200,49360,x y x y +=⎧⎨+=⎩得M 的坐标为3601000(,)2929. 答:应生产甲产品约12.4t ,乙产品34.4t ,能使利润总额达到最大.【设计意图】通过此题检测学生对已学知识的掌握情况,进一步培养学生的运算能力和准确作图的能力.【例2】在上一节例4中(课本85页例4),若生产1车皮甲种肥料,产生的利润为10000元,若生产1车皮乙种肥料,产生的利润为5000元,那么分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?生:若设生产x 车皮甲种肥料,y 车皮乙种肥料,能够产生的利润z 万元.目标函数0.5z x y =+,可行域如右图:把0.5z x y =+变形为22y x z =-+,得到斜率为2-,在y 轴上截距为2z ,随z 变化的一组平行直线.由图可以看出,当直线22y x z =-+经过可行域上的点M 时,截距2z 最大,即z 最大. 解方程组⎩⎨⎧=+=+104,661518y x y x 得点(2,2)M ,因此当2,2x y ==时,0.5z x y =+取最大值,最大值为3.由此可见,生产甲、乙两种肥料各2车皮,能够产生最大的利润,最大利润为3万元.【设计意图】利用学生感兴趣的例子激发学习动机,通过一道完整的简单线性规划问题,让学生掌握解决简单线性规划问题的基本步骤,培养学生的数学建模意识.同时进一步加深对图解法的认识.四、课堂小结用图解法解决简单的线性规划问题的基本步骤:(1)首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域). (2)设0t ,画出直线0l .(3)观察、分析,平移直线0l ,从而找到最优解.(4)最后求得目标函数的最大值及最小值.以实际问题为背景的线性规划问题其求解的格式与步骤: (1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域作出可行域; (3)在可行域内求目标函数的最优解. 当然也要注意问题的实际意义【设计意图】通过总结,培养学生数学交流和表达的能力,养成及时总结的良好习惯,并将所学知识纳入已有的认知结构.五、布置作业课本第93页习题3.3 B 组1、2、3.拓展作业:某工厂用A 、B 两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A 配件耗时1h ,每生产一件乙产品使用4个B 配件耗时2h ,该厂每天最多可从配件厂获得16个A 配件和12个B 配件,按每天工作8h 计算,该厂所有可能的日生产安排是多少?【设计意图】检测题主要考查学生对本节课重点知识的掌握情况,检查学生能否运用所学知识解决问题的能力;拓展作业的设置是为了教会学生怎样利用资料进行数学学习,同时让学生了解网络是自主学习和拓展知识面的一个重要平台,这是本节内容的一个提高与拓展.六、反思提升1. 让学生参与教学的全过程,成为课堂教学的主体和学习的主人,而教师时刻关注学生的活动过程,不时给予引导,及时纠偏的做法是明显的亮点.2.本节课的不足之处是由于整堂课课堂运算量较大,画图用时较多,后续的内容未能完成.七、板书设计。
线性规划讲义

线性规划讲义一、引言线性规划是一种优化问题的数学建模方法,它可以用来解决一类特定的最优化问题。
本讲义将介绍线性规划的基本概念、问题形式化、求解方法以及应用领域。
二、线性规划的基本概念1. 线性规划定义线性规划是一种在给定的约束条件下,求解线性目标函数的最优解的数学问题。
线性规划的目标函数和约束条件都是线性的。
2. 线性规划的数学模型线性规划可以用数学模型来表示,一般形式为:最大化(或最小化)目标函数约束条件:线性规划的目标函数和约束条件可以包含多个变量和多个约束条件。
3. 线性规划的基本假设线性规划的求解过程基于以下假设:- 可行解存在:问题存在满足约束条件的解。
- 目标函数有界:问题存在有限的最优解。
- 线性关系:目标函数和约束条件都是线性的。
三、线性规划的问题形式化1. 目标函数的确定线性规划的目标函数可以是最大化或最小化某个特定的指标,如利润最大化、成本最小化等。
2. 约束条件的确定约束条件是限制问题解的条件,可以包括等式约束和不等式约束。
约束条件可以来自于问题的实际限制,如资源的有限性、技术要求等。
3. 决策变量的确定决策变量是问题中需要决策的变量,它们的取值将影响目标函数的值。
决策变量的选择应该与问题的实际需求相匹配。
四、线性规划的求解方法1. 图解法图解法是线性规划求解的一种直观方法,通过绘制约束条件的图形和目标函数的等高线,找到目标函数取得最大(或最小)值的点。
2. 单纯形法单纯形法是一种常用的线性规划求解算法,它通过迭代计算,逐步接近最优解。
单纯形法的基本思想是通过不断地移动到更优的解,直到找到最优解。
3. 整数规划的分支定界法整数规划是线性规划的一种扩展形式,它要求决策变量的取值为整数。
分支定界法是一种用于求解整数规划的方法,它通过将问题分解为多个子问题,并逐步缩小解空间,最终找到最优解。
五、线性规划的应用领域线性规划在实际问题中有广泛的应用,包括但不限于以下领域:- 生产计划与调度- 运输与物流管理- 金融投资组合优化- 能源调度与优化- 供应链管理等六、总结线性规划是一种重要的数学建模方法,它可以用来解决一类特定的最优化问题。
线性规划讲义
线性规划讲义一、引言线性规划是一种数学优化方法,用于解决线性约束条件下的最优化问题。
它广泛应用于工程、经济学、运筹学等领域。
本讲义将介绍线性规划的基本概念、模型建立和求解方法。
二、线性规划的基本概念1. 线性规划的定义线性规划是在一组线性约束条件下,寻找目标函数的最大值或最小值的数学优化问题。
2. 基本术语- 决策变量:用来表示问题中需要决策的量,通常用x1, x2, ..., xn表示。
- 目标函数:表示需要最大化或最小化的量,通常用z表示。
- 线性约束条件:表示问题中的限制条件,通常以不等式或等式的形式给出。
- 可行解:满足所有线性约束条件的决策变量取值。
- 最优解:使目标函数达到最大值或最小值的可行解。
三、线性规划模型的建立1. 确定决策变量根据问题的特点,确定需要决策的变量及其表示方式。
2. 建立目标函数根据问题的要求,构建目标函数,它通常是决策变量的线性组合。
3. 确定约束条件根据问题的限制条件,建立线性约束条件,通常以不等式或等式的形式给出。
4. 求解最优解利用线性规划的求解方法,求解出使目标函数达到最大值或最小值的可行解。
四、线性规划的求解方法1. 图形法对于二维或三维问题,可以使用图形法来求解线性规划问题。
首先将约束条件绘制成图形,然后通过图形的分析找到最优解。
2. 单纯形法单纯形法是一种常用的求解线性规划问题的方法。
它通过迭代计算,不断改进可行解,直到找到最优解。
3. 整数规划当决策变量需要取整数值时,可以使用整数规划方法来求解线性规划问题。
整数规划通常比线性规划更复杂,需要使用特定的求解算法。
五、线性规划的应用案例1. 生产计划问题假设一家工厂有多种产品需要生产,每种产品有不同的生产成本和利润。
通过线性规划,可以确定每种产品的生产数量,使得总利润最大化。
2. 运输问题假设有多个供应地和多个需求地,每个供应地和需求地之间有不同的运输成本。
通过线性规划,可以确定各个供应地和需求地之间的运输量,使得总运输成本最小化。
线性规划讲义
线性规划讲义标题:线性规划讲义引言概述:线性规划是一种数学优化技术,用于在给定约束条件下最大化或者最小化线性目标函数。
它在各种领域中都有广泛的应用,如生产计划、资源分配、运输问题等。
本文将详细介绍线性规划的基本概念、解题方法以及实际应用。
一、线性规划的基本概念1.1 线性规划的定义:线性规划是一种数学方法,用于寻觅一个线性函数的最大值或者最小值,同时满足一组线性等式或者不等式的约束条件。
1.2 线性规划的基本要素:线性规划包括目标函数、约束条件和决策变量三个基本要素。
目标函数用于描述要最大化或者最小化的目标,约束条件描述了问题的限制条件,决策变量是需要确定的未知数。
1.3 线性规划的标准形式:线性规划问题通常被转化为标准形式,即最小化目标函数,同时满足一组线性等式和不等式约束条件。
二、线性规划的解题方法2.1 图形法:图形法是线性规划的基本解法之一,通过在坐标系中画出约束条件和目标函数的等高线图,找到最优解的方法。
2.2 单纯形法:单纯形法是一种高效的线性规划求解算法,通过逐步挪移顶点,找到最优解的方法。
2.3 对偶理论:对偶理论是线性规划的重要理论基础,通过对原问题的对偶问题进行求解,可以得到原问题的最优解。
三、线性规划的应用3.1 生产计划:线性规划可以用于制定最优的生产计划,以最大化利润或者最小化成本。
3.2 资源分配:线性规划可以匡助企业合理分配资源,以达到最优的效益。
3.3 运输问题:线性规划可以解决运输问题,如货物运输路线的最优规划和运输成本的最小化。
四、线性规划的工具4.1 MATLAB:MATLAB是一种常用的数学建模工具,可以用于解决线性规划问题。
4.2 Excel:Excel也可以用于线性规划问题的建模和求解,通过插件或者函数实现。
4.3 Gurobi:Gurobi是一种专业的线性规划求解器,可以高效地解决大规模线性规划问题。
五、线性规划的发展趋势5.1 混合整数线性规划:混合整数线性规划是线性规划的扩展,将决策变量限制为整数,适合于更多实际问题。
第01-03章线性规划(2)
三、建立线性规划模型的步骤:
确定决策变量; 确定决策变量; 明确约束条件并用决策变量的线性等式或不等 式表示; 式表示; 用决策变量的线性函数表示目标, 用决策变量的线性函数表示目标,并确定是求 极大(Max)还是极小(Min) 极大(Max)还是极小(Min); 根据决策变量的物理性质研究变量是否有非负 性
方 案1 方 案2 方 案3 方 案4 方 案5 方 案6 方 案7 方 案8 2.9 m 1 2 0 1 0 1 0 0 2.1 m 0 0 2 2 1 1 3 0 1.5 m 3 1 2 0 3 1 0 4 7.4 7.3 7.2 7.1 6.6 6.5 6.3 6.0 合 计 0 0.1 0.2 0.3 0.8 0.9 1.1 1.4 剩 料 余 头
2.LP问题的典式 2.LP问题的典式 Z=CX → Z= CBXB+CNXN AX=b → BXB+NXN=b X≥0 XB=B-1b - B-1NXN Z= CB(B-1b- B-1NXN)+CNXN = CB B-1b+ (CN- CB B-1N)XN IXB + B-1NXN = B-1b
cj→ cB XB x2 x5 x6 cj - zj
。。。。
3 b 8/3 x1 2/3 -4/3 5/3 -1/3
5 x2 1 0 0 0
4 x3 0 5 4 4 ……….
0 x4 1/3 -2/3 -2/3 -5/3
0 x5 0 1 0 0
0 x6 0 0 1 0
14/3 20/3
x2 x3 x1 cj - zj
1 0 0 0
0 1 0 0
15/41 -6/41 -2/41 -45/41
8/41 5/41 -12/41 -24/41
线性规划的概念 课件
求线性目标函数的最值问题
设 z = 2x + y , 式 中 变 量 x 、 y 满 足 条 件
x-4y≤-3 3x+5y≤25 x≥1
,求 z 的最大值和最小值.
[分析] 由于所给约束条件及目标函数均为关于 x、y 的一 次式,所以此问题是简单线性规划问题,使用图解法求解.
[解析] 作出不等式组表示的平面区域(即可行域),如图所 示.
把 z=2x+y 变形为 y=-2x+z,得到斜率为-2,在 y 轴 上的截距为 z,随 z 变化的一族平行直线.
由图可看出,当直线 z=2x+y 经过可行域上的点 A 时,截 距 z 最大,经过点 B 时,截距 z 最小.
解方程组3x-x+45y+y-32=5=0 0 ,得 A 点坐标为(5,2), 解方程组xx-=41y+3=0 ,得 B 点坐标为(1,1), 所以 zmax=2×5+2=12,zmin=2×1+1=3.
[解析] 设 A、B 两种金属板分别取 x 张、y 张,用料面积 为 z,则约束条件为
3x+6y≥45
5x+6y≥55
x≥0
.
y≥0
目标函数 z=2x+3y.
作出以上不等式组所表示的平面区域(即可行域),如图所 示.
z=2x+3y 变为 y=-23x+3z,得斜率为-23,在 y 轴上截距 为3z且随 z 变化的一族平行直线.
线性规划在实际问题中的应用
某工厂生产甲、乙两种产品,其产量分别为 45 个与 55 个,所用原料为 A、B 两种规格金属板,每张面积分 别为 2 m2 与 3 m2.用 A 种规格金属板可造甲种产品 3 个,乙种 产品 5 个;用 B 种规格金属板可造甲、乙两种产品各 6 个.问 A、B 两种规格金属板各取多少张,才能完成计划,并使总的 用料面积最省?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
min z=cX
s.t. AX b
命令:x=linprog(c, A, b)
2. 模型:min z=cX s.t. AX b Aeq X beq 命令:x=linprog(c,A,b,Aeq,beq)
AX b 存在,则令A=[ ],b=[ ]. 注意:若没有不等式:
3. 模型:min z=cX s.t. AX b Aeq X beq
钙.kg
售价.元
0.2% 0.4
0.1% 0.2
≥0.06
问饲料怎么混合才能使成本最低?
1、
max Z 2 x1 3x2
x1 2 x2 ≤ 8 4 x1 ≤16 4 x2 ≤12 x1 , x2 ≥ 0
2、设0.2 x 2 0.5x 1 0.1x2 0.22 s .t . 0.002x 1 0.001x 2 0.06 x j 0 , j 1, 2 x 1 x2 = 1
结合存量限制和需量限制得数学模型:
min f 12 x1 24 x2 8 x3 30 x4 12 x5 24 x6
x1 x 2 x 3 4 x x x 8 4 5 6 x1 x4 2 s .t . x 2 x5 4 x 3 x6 5 x1 , x 2 , x 3 , x4 , x5 , x6 0
在很多实际问题中,解题思想和运输问题同出一辙, 也就是说我们可以用运输模型解决其他问题.
分派问题
设有n件工作B1, B2, … Bn,分派给n人A1, A2, … An去 做,每人只做一件工作且每件工作只派一个人去做,设Ai 变量xi只取0和 完成Bj的工时为cij,问应如何分派才能完成全部工作的 1,故建立 总工时最少. 的模型也称0-1 1 工作B j 分派给Ai 去做 规划.
练习:
1、某工厂在计划期内要安排生产Ⅰ、Ⅱ两 种产品,已知生产单位产品所需的设备台数 及A、B两种原材料的消耗量,见表1-1。该 工厂每生产一件产品Ⅰ可获利润2元,每生 产一件产品Ⅱ可获利润3元,问应如何安排 生产计划使该工厂获得的利润最大?
生产计划问题
产品
资源
设备(台时) 原材料A(g)
Ⅰ
1 4
剩余料头 0.1 0.3 0.9
1.1 0.2 0.8 1.4
设xi 表示按第i种办法下料的原材料的 根数, 则问题的线性规划模型 为:
线性规划模型
min f 0.1 x1 0.3 x2 0.9 x3 0 x4 1.1 x5 0.2 x6 0.8 x7 1.4 x8
线性规划
目的
1. 了解线性规划的基本内容.
2. 掌握用数学软件包求解线性规划问题.
内容
1. 引例. 2. 用数学软件包MATLAB求解线性规划问题. 3. 用数学软件包LINDO、LINGO求解线性规划问题.
生产计划问题
引例:某工厂计划用三种原材料A1,A2和A3生产, 两种产品,已知生产,每吨所需原材料及现有 原材料(单位:吨)如下表, 且, 的利润分别为5, 2万元 / 吨问如何安排计划 . , 可使利润最大 ?
单位
原材
消耗 产品
料
A1 A2 A3
Ⅰ 2 1 0
Ⅱ 1 0 1
现有原 材料 8 3 4
解 : 设生产 , 两种产品分别为 x1 , x2吨,
max f= 5x1 +2x2
求最大利润 三种材料量的限制
2x1 + x2 8
s.t . x1 3
x2 4
x1,x2 0
P38例2
生产量非负
2 x1 x 2 x 3 x4 100 2 x 3 x 3 x 2 x x 100 2 3 5 6 7 s .t . x1 x 3 3 x4 2 x6 3 x7 4 x8 100 不同方 法截得 x j 0, j 1,2,3,4,5,6,7,8; x j 取整 每种根 长的总 此例的变量xi只取正整数, 数至少 故建立的模型也称整数规划. 100 0-1规划是整数规划的特殊情形.
应 用
• 市场营销(广告预算和媒介选择,竞争性定价,新产 品开发,制定销售计划) • 生产计划制定(合理下料,配料,“生产计划、库存、 劳力综合”) • 库存管理(合理物资库存量,停车场大小,设备容量 ) • 运输问题 • 财政、会计(预算,贷款,成本分析,投资,证券管 理) • 人事(人员分配,人才评价,工资和奖金的确定) • 设备管理(维修计划,设备更新) • 城市管理(供水,污水管理,服务系统设计、运用)
选址问题
某公司拟定在在武昌, 汉口, 汉阳建立专卖店, 拟议中 有7个地址 : 武昌 : 中商( A1 ), 亚贸( A2 ), 司门口( A3 ), 汉口: 武 广( A4 ), 步行街( A5 ), 汉阳 : 二十一世纪( A6 ), 汉商( A7 ), 并规 定 : 武昌至多2个, 汉口汉阳至少1个, 若选Ai , 投资bi 元, 每年 可获利ci 元, 总投资不超过b元,问如何选择地址使公司的 年利润最大 ?
线性规划模型三要素
• 决策变量:向量(x1… xn)T ,决策人要考虑和 控制的因素非负; • 约束条件:线性等式或不等式; • 目标函数:Z=ƒ(x1 … xn) 线性式,求Z极大 或极小;
线性规划模型
一般形式
max min f c1 x1 c2 x 2 cn x n a11 x1 a12 x 2 a1n x n b1 a x a x a x b 21 1 22 2 2n n 2 s .t . a x a x a x b m2 2 mn n m m1 1 x1 , x 2 , x n 0
产量限制
需量限制
运量非负
假设产销平衡:
m n i 1 j 1
a b
i 1 i j 1
m
n
j
min f cij x ij n i 1,..., m x ij a i , 1 j m s .t . x ij b j j 1,..., n i 1 i 1,..., m; j 1,..., n x ij 0
一般运输问题 m个产地A1,…,Am联合供应n个销地B1,…,Bn,各产 地至各销地单位运价(单位:元/吨)为cij,问如何调运使 总运费最少? 解 : 设从产地Ai 到销地B j的运输量为xij . m n 总运价 min f cij x ij
i 1 j 1
n i 1,..., m x ij a i , 1 j m s .t . x ij b j j 1,..., n i 1 i 1,..., m; j 1,..., n x ij 0
设:养鸡场每天需要大豆x1公斤,谷物x2公斤
MinZ 0.4 x 1 0.2 x 2
x 1 x2
= 10000
s .t .
0.002x 1 0.001x 2 0.06×10000 x 0 , j 1, 2
j
0.5x 1 0.1x2 0.22×10000
用MATLAB优化工具箱解线性规划
目标函数
约 束 条 件
6
矩阵形式
记c (c1 , c2 , cn ), A aij
T
b b1 , b2 , bn , 矩阵形式为:
m n
, x x1 , x2 , xn ,
T
min f cx Ax b s.t. x0
x 0指x的每一分量x j 0, A称为约束矩阵。
Ⅱ
2 0
资源限量
8 16000
原材料B(g)
0
4
12000
如何制定生产计划,使两种产品总利润最大?
2、某鸡厂共饲养1万只鸡,用大豆和谷物混合喂养, 已知每只鸡消耗饲料1kg /天,鸡至少需要蛋白质、 钙分别为0.22、0.06 kg/天,每公斤大豆含蛋白质、 钙为50%、0.2%,每公斤谷物含蛋白质、钙为10 %、0.1%,大豆和谷物售价0.4、0.2元/kg。 饲料 成分 蛋白质.kg 大豆 50% 谷物 10% 营养/天.鸡 ≥0.22
下料问题 现要做100套钢架,用长为2.9m、2.1m和1.5m的元 钢各一根,已知原料长7.4m,问如何下料,使用的原材料 最省? 分析: 下料方式:
最省:
1.所用刚架根数最少;
2.余料最少
线性规划模型
原料截成 所需长度 Ⅰ 的根数 所 2.9m 2 需 2.1m 0 根 长 1.5m 1 下料方法 Ⅱ 1 2 0 Ⅲ 1 1 1 Ⅳ 1 0 3 0 Ⅴ 0 3 0 Ⅵ 0 2 2 Ⅶ 0 1 3 Ⅷ 0 0 4
线性规划模型相关概念
1、满足约束条件的变量的值称为可行解。
2、可行解的集合称为可行域。 3、使目标函数达到最大(小)值的可 行解称为最优解。 4、相应的目标函数的值称为最优值。
运输问题
有两个粮库A1 , A2向三个粮站B1 , B2 , B3调运大米, 两个粮库现存大米分别为4吨,8吨, 三个粮站至少需要 大米分别为2, 4,5吨, 两个粮库到三个粮站的单位运价 如下,问如何调运使运费最低。
距离
粮库
A1 A2
粮站
B1
12 30
B2
24 12
B3
8 24
解:设A1,A2调运到三个粮站的大米分别为x1, x2, x3, x4, x5, x6吨。 题设量可总到下表:
距离
粮库
及运 粮站 量
12
B1 x1
30
B2
24 8
B3 x3
24
库 存 量
A1 A2