2020年九年级数学下册 课题 1.1反比例函数教案(2) 湘教版
湘教版九年级数学下册:反比例函数的图象与性质1教案

课题:反比例函数y =kx(k >0)的图象与性质【学习目标】1.能用描点法画出反比例函数y =kx(k>0)的图象.2.通过观察、分析,理解和掌握反比例函数y =kx (k>0)的图象与性质.3.体会数形结合的思想方法,学会从函数图象中获取信息.【学习重点】掌握画反比例函数图象的方法,理解反比例函数y =kx (k>0)的性质.【学习难点】运用反比例函数的性质解题.一、情景导入 生成问题回顾:(1)一次函数y =kx +b (k ≠0)的图象是一条直线.(2)当k >0,b >0时,一次函数y =kx +b 经过第一、二、三象限,y 随x 的增大而增大.(3)画一次函数的图象最少需要确定两个点,我们能用类似的方法画反比例函数y =kx(k >0)的图象吗?二、自学互研 生成能力知识模块一 画反比例函数y =kx (k >0)的图象阅读教材P5~P6,完成下面的内容:1.画反比例函数y =6x 的图象时先要列表,列表时自变量x 可取哪些值?(提示:x 是不为零的任何实数,所以可以以零为基准,左右均匀、对称地取值) 2.取值以后再描点.3.描点之后再连线:怎样连线?可在各个象限内按照自变量从小到大的顺序用两条光滑的曲线把所描的点连接起来.师生合作探究并归纳出y =kx的图象特征.归纳:反比例函数y =kx (k >0)的图象是两支分别分布在一、三象限的光滑曲线.【例1】 作反比例函数y =2x的图象.解:(1)列表:由于函数中x≠0,使得函数图象分成了两个部分.(2)描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点.(3)连线:用光滑的曲线顺次连接各点,即可得到函数y=2x的图象.(如图)教师点拨:画反比例函数图象时应注意:①列表时,自变量x的值可以选取绝对值相等而符号相反的一对一对的数值.这样既可以简化计算,又便于描点;②列表、描点时,要尽量多取一些数值,多描出一些点,这样方便连线.【变例】 作出反比例函数y =12x的图象,并根据图象解答下列问题: (1)当x =4时,求y 的值;(2)当y =-2时,求x 的值;(3)当y>2时,求x 的范围. 解:列表:由图知:(1)y =3;(2)x =-6;(3)0<x<6. 知识模块二 反比例函数y =kx (k >0)的图象与性质阅读教材P7,完成下面的内容: 反比例函数y =6x ,y =3x 的共同点有哪些?(1)它们的解析式中比例系数k >0;(2)它们的图象的两个分支都分别位于第一、三象限; (3)在每一象限内,y 随x 的增大而减小; (4)它们的图象的两个分支都与x 轴、y 轴不相交. 师生合作探究并归纳出反比例函数y =kx(k >0)的性质.归纳:当k >0时,反比例函数y =kx 的图象中两支曲线都与x 轴、y 轴不相交,图象在第一、三象限,在每一象限内,函数值随自变量取值的增大而减小.【例2】 已知反比例函数y =2m +1x的图象如图所示,求m 的取值范围.解:∵由图象可知,反比例函数y=2m+1x的图象位于第一、三象限,∴2m+1>0,解得m>-12.三、交流展示生成新知1.将阅读教材时“生成的问题”和通过“自学互研”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一反比例函数y=kx(k>0)的图象知识模块二反比例函数y=kx(k>0)的图象与性质四、检测反馈达成目标见《名师测控》学生用书.五、课后反思查漏补缺1.收获:________________________________________________________________________ 2.存在困惑:________________________________________________________________________。
九年级数学下册 第1章反比例函数 1.2 反比例函数的图象与性质第2课时课件 湘教版

则
解得k=3.
3.(2013·六盘水中考)下列图形中,阴影部分面积最大的 是( )
【解析】选C.A,B中阴影部分的面积均为 3 3 C3中; 延长MN
22
交x轴于点P,直线MN的解析式y=-x+4,直线MN与x轴的交点P的
坐标(4,0),则C中阴影部分的面积为S△MOP-S△NOP=12 ×4×3-
A.1
B.2
C.3
D.4
【解析】选B.∵点B的横坐标为1,
∴纵坐标为y= 2 =2,
1
∴AB=2,BC=1,∴S矩形OABC=2×1=2.
2.(2013·内江中考)如图,反比例函数
y= k (x>0)的图象经过矩形OABC对角
x
线的交点M,分别与AB,BC相交于点D,
E,若四边形ODBE的面积为9,则k的值为( )
1 ×4×1=4;D中的阴影部分的面积为 ×1 1×6=3;可见,C中阴
2
2
影部分的面积最大.故选C.
4.(2013·永州中考)如图,两个反比例函数 y 4和y 2 在
x
x
第一象限内的图象分别是C1和C2,设点P在C1上,PA⊥x轴于点A,
交C2于点B,则△POB的面积为_____.
【解析】根据反比例函数中k的几何意义,得△POA和△BOA的 面积分别为2和1,所以阴影部分的面积为1. 答案:1
【总结提升】反比例函数的性质总结
对于反比例函数 y (kk≠0),k的符号、图象所经过的象限、
x
函数的增减性这三者,知其一则可知其二,即:
知识点 2 反比例函数中k的几何意义
【例2】(2013·孝感中考)如图,函数y=-x与函数 y 4 的图
x
湘教版九年级数学下册全期教案(全册)

第一章二次函数1.1 建立二次函数模型一、学生知识状况分析学生的知识技能基础:学生在之前已经学习过变量、自变量、因变量、函数等概念,对一次函数、反比例函数的相关知识如:各种变量、函数的一般形式、图像、增减性等知识有一定基础,相关应用也较常见,学生在学二次函数前具备了一定函数方面的基础知识、基本技能。
学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些解决实际问题活动,感受到了函数反映的是变化过程,并可通过列表、解析式、图像了解变化过程,对各种函数的表达方法的特点有所了解,获得了探究学习新函数知识的基础。
二、教学任务分析教学目标(一)知识与技能1.探索并归纳二次函数的定义.2.能够表示简单变量之间的二次函数关系.(二)过程与方法1.经历探索,分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系.2.让学生学习了二次函数的定义后,能够表示简单变量之间的二次函数关系.3. 能够利用尝试求值的方法解决实际问题.(三)情感态度与价值观1.从学生感兴趣的问题入手,能使学生积极参与数学学习活动,对数学有好奇心和求知欲.2.把数学问题和实际问题相联系,使学生初步体会数学与人类生活的密切联系及对人类历史发展的作用.3.通过学生之间互相交流合作,让学生学会与人合作,并能与他人交流思维的过程,培养大家的合作意识.教学重点:二次函数的概念教学难点:经历探索,分析和建立两个变量之间的二次函数关系的过程三、教学过程分析第一环节课前准备活动内容:引导学生复习函数的概念及已经学习过的几种函数:1.对“函数”这个词我们并不陌生,大家还记得我们学过哪些函数吗?我们学过那些关于函数的生活实际问题呢?2.函数的定义是怎样下的?3.让我们一起来回忆一下这些函数的一般形式。
活动目的:函数是对初中生来说是较抽象的概念,而且学生距离之前学习函数相关内容有较长时间间隔,这里有必要从学生已有的知识经验出发,学习新的内容,注重知识之间的联系,调动学生学习的积极性与主动性,也为接下来的学习作好铺垫。
新湘教版九年级数学教案第一章 反比例函数

九年级上学期数学教学计根据学校工作安排,我担任九年级班数学教学工作,本学期教学计划如下:一、教学思想:教育学生掌握基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算,逐步学会观察分析、综合、抽象、概括。
会用归纳演绎、类比进行简单的推理。
使学生懂得数学来源于实践又反过来作用于实践。
提高学习数学的兴趣,逐步培养学生具有良好的学习习惯,实事求是的态度。
顽强的学习毅力和独立思考、探索的新思想。
培养学生应用数学知识解决问题的能力。
二、学生基本情况分析:总体来看,成绩只能算一般。
整个年级已经开始出现两极分化了,对优生来说,能够透彻理解知识,知识间的内在联系也较为清楚,对后进生来说,简单的基础知识还不能有效的掌握,成绩较差,学生仍然缺少大量的推理题训练,推理的思考方法与写法上均存在着一定的困难,对几何有畏难情绪,相关知识学得不很透彻。
在学习能力上,学生课外主动获取知识的能力较差,为减轻学生的经济负担与课业负担,不提倡学生买教辅参考书,学生自主拓展知识面,向深处学习知识的能力没有得到培养。
在以后的教学中,对有条件的孩子应鼓励他们买一本课外参考书,不一定是教辅参考书,有趣的课外数学读物更好,培养学生课外主动获取知识的能力。
学生的逻辑推理、逻辑思维能力,计算能力需要得到加强,以提升学生的整体成绩,应在合适的时候补充课外知识,拓展学生的知识面,提升学生素质;在学习态度上,绝大部分学生上课能全神贯注,积极的投入到学习中去,少数几个学生对数学处于一种放弃的心态,课堂作业,大部分学生能认真完成,少数学生需要教师督促,这一少数学生也成为老师的重点牵挂对象,课堂家庭作业,学生完成的质量要打折扣;学生的学习习惯养成还不理想,预习的习惯,进行总结的习惯,自习课专心致至学习的习惯,主动纠正(考试、作业后)错误的习惯,比较多的学生不具有,需要教师的督促才能做,陶行知说:教育就是培养习惯,这是本期教学中重点予以关注的。
第一章 反比例函数 复习教案(湘教版九年级下)

探讨内容:第1章 反比例函数(复习课)目标设计:巩固本章知识点,牢记反比例函数的图象与性质,并能利用性质解决实际问题。
重点难点:1、理解反比例函数的图象与性质;2、利用反比例函数的性质解决实际问题。
探讨准备:投影片、作图工具等。
探究过程:一、基本知识:1、反比例函数的定义:一般地,如果两个变量x 与y 的关系可以表示成k y x =(k 是常数,0k ≠)的形式,那么称y 是x 的反比例函数。
⑴反比例函数解析式的几种表示法: ①()k y k x =≠为常数,k 0 ②()1y kx k -=≠为常数,k 0 ③()xy k k =≠为常数,k 0 ⑵自变量的取值范围:≠x 0的一切实数。
2、反比例函数的图象和性质:⑴图象:是双曲线,分两支是断开的,关于原点成中心对称,延伸部分有逐渐靠近坐标轴的趋势,但永不与坐标轴相交。
⑵性质: 在反比例函数k y x =(0k ≠)中①当0k >时,函数图象分两支在一、三象限,在每个象限内,y 随x 的增大而减小;②当0k <时,(与上类似) ⑶由反比例函数图象上任一点向两坐标轴作垂线,所以矩形面积等于k 。
3、反比例函数在生活中的应用:读懂题意,特别注意自变量的取值范围。
二、典型题例:1、已知2131a a a y x --+=,若y 是x 的反比例函数,求a 的值。
分析:由题意,得211310a a a ⎧--=⎨+≠⎩ 解得2113a a a ==-⎧⎪⎨≠-⎪⎩或 ∴21a =-或即当21a =-或时,2131a a a y x --+=是反比例函数。
2、如图,正比例函数1y k x =的图象与反比例函数2k y x =的图象相交于A 、B 两点,其中点A的坐标为。
⑴分别求出这两个函数解析式;⑵求出B 点坐标。
分析:⑴∵点A 在俩函数图象上∴1,∴12k =,26k =∴正比例函数的解析式是2y x =, ∴反比例函数的解析式是6y x =。
新湘教版九年级数学教案第一章 反比例函数

九年级上学期数学教学计根据学校工作安排,我担任九年级班数学教学工作,本学期教学计划如下:一、教学思想:教育学生掌握基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算,逐步学会观察分析、综合、抽象、概括。
会用归纳演绎、类比进行简单的推理。
使学生懂得数学来源于实践又反过来作用于实践。
提高学习数学的兴趣,逐步培养学生具有良好的学习习惯,实事求是的态度。
顽强的学习毅力和独立思考、探索的新思想。
培养学生应用数学知识解决问题的能力。
二、学生基本情况分析:总体来看,成绩只能算一般。
整个年级已经开始出现两极分化了,对优生来说,能够透彻理解知识,知识间的内在联系也较为清楚,对后进生来说,简单的基础知识还不能有效的掌握,成绩较差,学生仍然缺少大量的推理题训练,推理的思考方法与写法上均存在着一定的困难,对几何有畏难情绪,相关知识学得不很透彻。
在学习能力上,学生课外主动获取知识的能力较差,为减轻学生的经济负担与课业负担,不提倡学生买教辅参考书,学生自主拓展知识面,向深处学习知识的能力没有得到培养。
在以后的教学中,对有条件的孩子应鼓励他们买一本课外参考书,不一定是教辅参考书,有趣的课外数学读物更好,培养学生课外主动获取知识的能力。
学生的逻辑推理、逻辑思维能力,计算能力需要得到加强,以提升学生的整体成绩,应在合适的时候补充课外知识,拓展学生的知识面,提升学生素质;在学习态度上,绝大部分学生上课能全神贯注,积极的投入到学习中去,少数几个学生对数学处于一种放弃的心态,课堂作业,大部分学生能认真完成,少数学生需要教师督促,这一少数学生也成为老师的重点牵挂对象,课堂家庭作业,学生完成的质量要打折扣;学生的学习习惯养成还不理想,预习的习惯,进行总结的习惯,自习课专心致至学习的习惯,主动纠正(考试、作业后)错误的习惯,比较多的学生不具有,需要教师的督促才能做,陶行知说:教育就是培养习惯,这是本期教学中重点予以关注的。
湘教版初中数学九年级下册全册教案

反比例函数教案课题:1.1 反比例函数教学目标:1.理解反比例函数的概念,能判断两个变量之间的关系是否是函数关系,进而识别其中的反比例函数.2. 能根据实际问题中的条件确定反比例函数的关系式.3. 能判断一个给定函数是否为反比例函数.通过探索现实生活中数量间的反比例关系,体会和认识反比例函数是刻画现实世界中特定数量关系的一种数学模型;进一步理解常量与变量的辩证关系和反映在函数概念中的运动变化观点.教学重点:反比例函数的概念教学难点:反比例函数的概念,学生理解时有一定的难度。
教学过程:知识回顾:什么是函数?一次函数?正比例函数?一、创设情景探究问题情境1:当路程一定时,速度与时间成什么关系?(vt=s)当一个长方形面积一定时,长与宽成什么关系?[说明]这个情境是学生熟悉的例子,当中的关系式学生都列得出来,鼓励学生积极思考、讨论、合作、交流,最终让学生讨论出:当两个量的积是一个定值时,这两个量成反比例关系,如xy=m(m为一个定值),则x与y成反比例。
(小学知识)这一情境为后面学习反比例函数概念作铺垫。
情境2:汽车从南京出发开往上海(全程约300km),全程所用时间t(h)随速度v(km/h)的变化而变化.问题:(1)你能用含有v的代数式表示t吗?(2)利用(1)的关系式完成下表:随着速度的变化,全程所用时间发生怎样的变化?v(km/h) 60 80 90 100 120t(h)(3)速度v是时间t的函数吗?为什么?[说明](1)引导学生观察、讨论路程、速度、时间这三个量之间的关系,得出关系式s=vt,指导学生用这个关系式的变式来完成问题(1).(2)引导学生观察、讨论,并运用(1)中的关系式填表,并观察变化的趋势,引导学生用语言描述.3)结合函数的概念,特别强调唯一性,引导讨论问题(3).情境3:用函数关系式表示下列问题中两个变量之间的关系:(1)一个面积为6400m2的长方形的长a(m)随宽b(m)的变化而变化;(2)某银行为资助某社会福利厂,提供了20万元的无息贷款,该厂的平均年还款额y(万元)随还款年限x(年)的变化而变化;(3)游泳池的容积为5000m3,向池内注水,注满水所需时间t(h)随注水速度v(m3/h)的变化而变化;(4)实数m 与n 的积为-200,m 随n 的变化而变化.问题:(1)这些函数关系式与我们以前学习的一次函数、正比例函数关系式有什么不同? (2)它们有一些什么特征?(3)你能归纳出反比例函数的概念吗?一般地,如果两个变量y 与x 的关系可以表示成y =kx(k 为常数,k ≠0)的形式,那么称y 是x 的反比例函数,其中x 是自变量,y 是因变量,y 是x 的函数,k 是比例系数. (有的书上写成y =kx -1的形式.)反比例函数的自变量x 的取值范围是所有非零实数(不等于0的一切实数)(为什么?),但在实际问题中,还要根据具体情况来进一步确定该反比例函数的自变量的取值范围。
湘教版数学九下反比例函数的图像与性质1

九年级数学下册反比例函数的图象和性质教案一湘教版一、教学目标1.使学生进一步明白得和把握反比例函数及其图象与性质2.能灵活运用函数图象和性质解决一些较综合的问题3.深刻领会函数解析式与函数图象之间的联系,体会数形结合及转化的思想方式二、重点、难点1.重点:明白得并把握反比例函数的图象和性质,并能利用它们解决一些综合问题2.难点:学会从图象上分析、解决问题3.难点的冲破方式:在前一节的基础上,可适当增加一些较综合的题目,帮忙学生熟练把握反比例函数的图象和性质,要让学生学会如何通过函数图象分析解析式,或由函数解析式分析图象的方式,以便更好的明白得数形结合的思想,最终能达到从“数”和“形”两方面去分析问题、解决问题。
三、例题的用意分析教材第51页的例3一是让学生明白得点在图象上的含义,把握如何用待定系数法去求解析式,温习巩固反比例函数的意义;二是通过函数解析式去分析图象及性质,由“数”到“形”,体会数形结合思想,加深学生对反比例函数图象和性质的明白得。
教材第52页的例4是已知函数图象求解析式中的未知系数,并由双曲线的转变趋势分析函数值y随x的转变情形,此进程是由“形”到“数”,目的是为了提高学生从函数图象中获取信息的能力,加深对函数图象及性质的明白得。
补充例1目的是引导学生在解有关函数问题时,要数形结合,另外,在分析反比例函数的增减性时,必然要注意强调在哪个象限内。
补充例2是一道有关一次函数和反比例函数的综合题,目的是提高学生的识图能力,并能灵活运用所学知识解决一些较综合的问题。
四、课堂引入温习上节课所学的内容1.什么是反比例函数?2.反比例函数的图象是什么?有什么性质?五、例习题分析例3.见教材P51 分析:反比例函数x k y =的图象位置及y 随x 的转变情形取决于常数k 的符号,因此要先求常数k ,而题中已知图象通过点A (2,6),即表明把A 点坐标代入解析式成立,因此用待定系数法能求出k ,如此解析式也就确信了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:1.1反比例函数(2)
教学目标:
1.会用待定系数法求反比例函数的解析式.
2.通过实例进一步加深对反比例函数的认识,能结合具体情境,体会反比例函数的意义,理解比例系数的具体的意义.
3.会通过已知自变量的值求相应的反比例函数的值.运用已知反比例函数的值求相应自变量
的值解决一些简单的问题.
重点: 用待定系数法求反比例函数的解析式.
难点:例3要用科学知识,又要用不等式的知识,学生不易理解.
教学过程:
一. 复习
1、反比例函数的定义:
判断下列说法是否正确(对”√”,错”×”)
2、思考:如何确定反比例函数的解析式?
(1)已知y 是x 的反比例函数,比例系数是3,则函数解析式是_______
(2)当m 为何值时,函数 是反比例函数,并求出其函数解析式. 关键是确定比例系数! 二.新课
1. 例2:已知变量y 与x 成反比例,且当x=2时y=9,写出y 与x 之间的函数解析式和自变
量的取值范围。
小结:要确定一个反比例函数x k y =的解析式,只需求出比例系数k 。
如果已知一对自变量与函数的对应值,就可以先求出比例系数,然后写出所要求的反比例函数。
2.练习:已知y 是关于x 的反比例函数,当x=43-
时,y=2,求这个函数的解析式和自变量的取值范围。
3.说一说它们的求法:
(1)已知变量y 与x-5成反比例,且当x=2时 y=9,写出y 与x 之间的函数解析式.
(2)已知变量y-1与x 成反比例,且当x=2时 y=9,写出y 与x 之间的函数解析式.
4. 例3、设汽车前灯电路上的电压保持不变,选用灯泡的电阻为R(Ω),通过电流的强度为
I(A)。
(1)已知一个汽车前灯的电阻为30 Ω,通过的电流为0.40A ,求I 关于R 的函数解析式,
并说明比例系数的实际意义。
(2)如果接上新灯泡的电阻大于30 Ω,那么与原来的相比,汽车前灯的亮度将发生什么
变化?
.
)/()(,1200)6(.)5(.)4(.)3(.)2(.)()(,20)1(22的反比例函数是每日铺轨量则铺轨天数计划修建铁路例定时,商和除数成反比当被除数(不为零)一的反比例函数是为常量时,,当其体积,高为方形的边长为一个正四棱柱的底面正的反比例函数是为常量时,,当,周长为,宽为矩形的长为成正比例与中,圆的面积公式的反比例函数是变量,变量和相邻的两条边长分别为一矩形的面积为d km x d y km x y V y x b a C C b a r s r s x y cm y cm x cm π=224-=m x
y
在例3的教学中可作如下启发:
(1)电流、电阻、电压之间有何关系?
(2)在电压U 保持不变的前提下,电流强度I 与电阻R 成哪种函数关系?
(3)前灯的亮度取决于哪个变量的大小?如何决定?
先让学生尝试练习,后师生一起点评。
三.巩固练习:
1.当质量一定时,二氧化碳的体积V 与密度p 成反比例。
且V=5m3时,p=1.98kg /m3
(1)求p 与V 的函数关系式,并指出自变量的取值范围。
(2)求V=9m3时,二氧化碳的密度。
四.拓展:
1.已知y 与z 成正比例,z 与x 成反比例,当x=-4时,z=3,y=-4.求:
(1)Y 关于x 的函数解析式;
(2)当z=-1时,x,y 的值.
2.
五.交流反思
求反比例函数的解析式一般有两种情形:一种是在已知条件中明确告知变量之间成反比例函数关系,如例2;另一种是变量之间的关系由已学的数量关系直接给出,如例3中的R U I =由欧姆定律得到。
六、布置作业:P4 B 组
教学后记: 之间的函数关系。
与,求值都等于的时,与成反比例,并且与成正例,与,已知x y y x x x y x y y y y 10322121==+=。