矢量分析
矢量分析

∇ × ∇ϕ = 0
梯度
三、矢量场的通量、散度
1、通量
r 定义:若矢量场 A 分布于空间中,在空间中存在任意曲面 S
r 上。定义 A 在曲面上的积分为通量。
r r Ψ = ∫ A ⋅ dS
s
曲面 S 的方向 开表面: 作一封闭线圈,选定绕行方向后,沿绕行方向 按右手螺旋法则,拇指方向为开表面方向 闭合面:外法线方向
s l
无旋场 性质
r ∇× A = 0
r ∇ ⋅ (∇ × A) = 0
旋度
例题讲解(课本) 例题1-8 例题1-9 例题1-10
例题
五、亥姆霍兹定理
内容:位于空间有限区域内的矢量场,当它的散度,旋度 以及它在区域边界上的场分布给定之后,该矢量场就被唯 一确定;对于无限大空间,如果矢量在无限远处减少至零 则该矢量由其散度和旋度唯一确定。
基础
矢量表示式
r r r r A = er Ar + eϕ Aϕ + e z Az
微分长度
r r r r dl = er dr + eϕ rdϕ + e z dz
微分面积
r r dS r = er rdϕdz r r dS ϕ = eϕ drdz r r dS z = e z rdrdϕ
微分体积
dV = rdrd ϕdz
只改变大小,不改变方向 矢量与矢量点乘
s r r r A ⋅ B = A B cosθ AB = Ax Bx + Ay B y + Az Bz
r r r r A⋅B = B⋅A
基础
说明: 1、两个矢量的标量积或点积,是一个标量 。 2、Θ是A、B之间较小的夹角,小于Π弧度。 3、其结果表示一个矢量的模和另一个矢量在该矢量 上的投影和乘积。 矢量与矢量叉乘
矢量分析

矢 量 分 析一:定义标量:只有大小,没有方向的物理量。
如质量,时间,温度等矢量:即有大小,又有方向的物理量。
如力,位移,速度等 二:矢量表示法线段的长度表示矢量的大小箭头的指向表示矢量的方向 记为:A或x o三:矢量的模和单位矢量模: 矢量的大小,记为A单位矢量:若矢量0A的模为1,且方向与 A 相同,则称0A 为A方向上的单位矢量。
有A =A0A----大小和方向分离表示四:矢量运算相等:两个大小相等且方向相同的矢量相等。
平移:矢量平移后,大小和方向均保持不变。
负矢量:大小相等,方向相反的矢量,记为-A加法:既矢量合成,服从平行四边形法则=A+ BA可演化成三角形法则多矢量合成服从多边形法则减法:既矢量的分解,是加法的逆运算)(BABAC-+=-=大小Am数乘:AmAm=⨯方向: m>0 与A同向m<0 与A反向五:矢量的坐标表示222ZY X Z Y X A A A A kA j A i A A ++=++= 令 两矢量kB j B i B B kA j A i A A Z Y X Z Y X++=++=则有kmA j mA i mA k A j A i A m A m k B A j B A i B A B A z y x z y x z z y y x x ++=++=±+±+±=±)()()()( B A = 当且仅当 z z y y x x B A B A B A===六:标积(点积)两矢量相乘得到一个标量A B Cos B A B A C⋅==⋅=θ c由定义可知当θ=0时 C οS θ=1 BA B A=⋅ B当θ=π/2时 C οS θ=00=⋅B A七:矢积(叉积)A两矢量相乘得到一个矢量B A C⨯= 大小: ),(B A Sin B A Sin B A =θ方向: 右手系由定义可知当θ=0时 Sin θ=0 0=⨯B A当θ=π/2时 Sin θ=1 B A B A=⨯)(A B B A⨯-=⨯ 不服从交换律八:矢量的求导令存在矢量 k t A j t A i t A t A z y x )()()()(++=则有:k dtt dA j dt t dA i dt t dA dt t A d z y x)()()()(++=例: 一人字原点出发,先向东走了30米,又向南走了10米,再向西北走了18米,求合位移的大小和方向。
01 第一章 矢量分析

⑴极限:设 F (t ) 在点 t 0 的某个邻域内有定义(但在 t 0 点
则称,当 t t0
⑵连续:若矢性函数 F (t )在点 t 0 的某个邻域内有定义,且 lim F t F t0 t t0 则称F (t ) 在 t t0 处连续。
(x)
ui
2
(
2 y 2 ) ( z ) ui ui
4、拉梅系数的几何意义
u i 线上的弧微分
x 2 y 2 z 2 dli ( ) ( ) ( ) dui hi dui ui ui ui
dli hi dui
表明:拉梅系数hi是M点处曲线坐标ui的微分dui与该坐标线ui 上弧微分的比例系数。
r(M )
hi
根据全微分运算法则
r r r dl d r du1 du 2 du3 u1 u2 u3
y 矢量线元
引入拉梅系数,矢量线元表示为
图1-7
dl h1du1e1 h2 du2 e2 h3 du3e3 dl1e1 dl2 e2 dl3 e3
2、拉梅系数
空间任意一点 M (u1 , u 2 , u 3 ) ,矢径
若M点在 u1 线上,则矢径 于是,单位矢量表示为
r e1 u1 r u1
r r (u1 , u 2 , u3 )
r (u1 , u 2 c2 , u3 c3 )
M
F (t )
说明:矢径函数对其矢端曲线弧长的导数为曲线上的单位矢量。
3、积分
⑴不定积分:若 A(t ) F (t ) ,则称 A(t )为 F (t )的一个原函数, F (t ) 的原函数的集合叫做的F (t ) 不定积分,记作 )d t A(t ) C F (t ⑵定积分:若矢性函数 F (t ) 在区间 [T1 , T2 ]上的极限
第一章 矢量分析

立了面积分和线积分的关系。从物理角度可以理解为斯托克 立了面积分和线积分的关系。从物理角度可以理解为斯托克 斯定理建立了区域 S 中的场和包围区域 S 的闭合曲线 l 上的 场之间的关系。因此, 中的场, 场之间的关系。因此,如果已知区域 S 中的场,根据斯托克 上的场,反之亦然。 斯定理即可求出边界 l 上的场,反之亦然。
Ψ = ∫ A ⋅ dS
S
通量可为正、或为负、或为零 当矢量穿出某个闭合面时, 通量可为正、或为负、或为零。当矢量穿出某个闭合面时, 认为该闭合面中存在产生该矢量场的源 认为该闭合面中存在产生该矢量场的源;当矢量进入这个闭合 面时,认为该闭合面中存在汇聚该矢量场的洞 )。闭合 面时,认为该闭合面中存在汇聚该矢量场的洞(或汇)。闭合
惟 一 性 定 理 亥姆霍兹定理 正交曲面 坐标系
10
第一章 矢量分析
标 积 与 矢 积 方向导数与梯度 通 量 与 散 度 环 量 与 旋 度 环 量 与 旋 度 无散场与无旋场 格 林 定 理
2. 旋度:旋度是一个矢量。若以符号 rot A 表示矢量 A 的旋 旋度:旋度是一个矢量。 具有最大环量强度的方向, 度, 则其方向是使矢量 A 具有最大环量强度的方向, 其大小等于对该矢量方向的最大环量强度, 其大小等于对该矢量方向的最大环量强度,即
惟 一 性 定 理 亥姆霍兹定理 正交曲面 坐标系
1
0 A⋅ B = A B
A⊥B
A // B
第一章 矢量分析
标 积 与 矢 积 方向导数与梯度
2.矢量的失积 2.矢量的失积
矢量的失积:代数定义: 矢量的失积:代数定义:
ex A × B = Ax Bx ey Ay By ez Az Bz
矢量分析

二、方向导数 在实际应用中,不仅需要宏观上了解场在空间的数值,还要知道在不同 方向上场变化的情况。方向导数表征标量场空间中,某点处场沿各个方向变 化的规律。
取等位面 u 1、定义:
x, y , z
增加的方向,相互垂直且满足右手螺旋法则
v ˆ ˆ ˆ 矢量表示: A = e x Ax + e y Ay + e z Az
v 位置矢量: r = e x x + e y y + e z z ˆ ˆ ˆ
v ˆ ˆ ˆ dr = e x dx + e y dy + e z dz 微分长度元:
(2)球面坐标系下矢量运算
v ˆ ˆ ˆ A = er Ar + eθ Aθ + eϕ Aϕ v ˆ ˆ ˆ B = er Br + eθ Bθ + eϕ Bϕ
v v ˆ ˆ ˆ A ± B = er ( Ar ± Br ) + eθ ( Aθ ± Bθ ) + eϕ ( Aϕ ± Bϕ )
v v A• B = Ar Br + Aθ Bθ + Aϕ Bϕ
e 单位矢量:ˆ ρ
ρ
,φ
ˆ , eφ
,z
ˆ , ez
0 ≤ ρ < ∞ , 0 ≤ φ ≤ 2π , − ∞ < z < ∞
ˆ ˆ ˆ e z = e ρ × eφ ˆ ˆ ˆ e ρ = eφ × e z ˆ ˆ ˆ eφ = e z × e ρ
ˆ ˆ ˆ ↑ e ρ 、eφ 、e z
分别代表ρ、φ、z 增加的方向,相互垂直且满足右手螺旋法则
ˆ 由于 θ、ϕ 不是常矢量,与 er
ˆ ∂er ˆ =eθ ∂θ ˆ ∂ eθ ˆ = −er ∂θ ˆ ∂ eϕ = 0 ∂θ
矢量分析

对于矢量也存在相应的函数,称为矢性函数
例如:卫星的速度是时间 t 的矢性函数
V V t
第一章
矢量分析
场的定义:
如果在某一空间区域内的每一点,都对应着某 个物理量的一个确定的值,则称在此区域内确定了 该物理量的一个场。
若该物理量为标量,则称标量场,
可用标量函数表示f(x,y,z);
x
证明:M点的坐标为M(x0+Δx, y0+Δy, z0+Δz),由于函数φ在 M0处可微,故
( M ) ( M 0 ) x y z x y z
第一章
矢量分析
z
两边除以ρ,可得
x y z x y z cos cos cos x y z
x 2 y 2 c2 解之即得矢量方程 z c1 x
c1和c2是积分常数。
第一章
矢量分析
1.2 标量场的方向导数和梯度
1.2.1 标量场的方向导数
方向导数表征标量 场空间中,某点处场值沿
各个方向变化的规律。
方向导数的定义:
图 1-2 方向导数的定义
第一章
矢量分析
设M0是标量场φ=φ(M)中的一个已知点,从M0出发沿某一方
A B
矢量的加法运算
A B B A
A B
A B
A B A ( B)
矢量的减法运算
A B
第一章
矢量分析
两个矢量的乘积
两个矢量的乘积有两个定义: 点积
运算结果 运算结果
标量 矢量
标积 矢积
第1章-矢量分析

⎝
2⎠
⎝
2⎠
Ay
⎜⎛ x,y+Δy,z ⎟⎞ ⎝ 2⎠
=
Ay
(x,y,z)
+
∂Ay ∂y
(x,y,z)
Δy 2
+
1 2!
∂2 Ay ∂y2
( Δy )2 2
+ ...
得
ΔΨr
=
( Ay
+
∂Ay ∂y
Δy 2
+ .........) ΔxΔz
divA 直角坐标表示式的推导
11
§1.2通量、散度、散度定理
8
§1.2通量、散度、散度定理
作业:1.1-1,1.1-3,1.1-5
S为封闭面时: 若Ψ > 0, 有净通量流出,说明S内有源; 若Ψ < 0, 有净通量流入,说明S内有洞(负源); 若Ψ = 0, 则净通量为零,说明S内无源。
举例:
由《大学物理》知,电通量 Ψe = ∫sD ⋅ ds = Q(高斯定理) 水流的单位时间流量(米3/秒)= v ⋅ d s
A 矢量的模:
γ
β o
Ay
α Ax
y
A = A = Ax2 + Ay 2 + Az 2
x
A 的单位矢量:
Aˆ = A = xˆ Ax + yˆ A y + zˆ Az AA AA
= xˆ cosα + yˆ cos β + zˆ cosγ
2
§1.1矢量代数
二、标量积和矢量积
a) 标量积(点乘)
加减乘除
∂y 4π r 5
∂Dz = q r 2 − 3z 2
∂z 4π r 5
1第一章 矢量分析

∂u ∂n
∂u 可得 ∂x = grad u ⋅ e x ∂u ∂u = grad u ⋅ e l ⇒ = grad u ⋅ e y ∂l ∂y ∂u = grad u ⋅ e z ∂z
在直角坐标系中梯度的计算#43; ey + ez =∇ ϕ ∂x ∂y ∂z
d iv A = lim
计算公式
∆v→ 0
1 ∆v
∫
s
A ⋅ dS
divA=∇⋅ A=
∂A x ∂x
+
∂A y ∂y
+
∂A z ∂z
三、散度的物理意义 • 矢量的散度是一个标量,是空间坐标点的函数; 矢量的散度是一个标量,是空间坐标点的函数; • 散度代表矢量场的通量源的分布特性
∇• A = 0 (无源) 无源)
v 1 ∂ ( ρ Fρ ) 1 ∂Fϕ ∂Fz ∇⋅F = + + ρ ∂ρ ρ ∂ϕ ∂z
ˆ eρ 1 ∂ ∇× A = ρ ∂ρ Aρ ˆ ρ eϕ ˆ ez
∂ ∂ ∂ϕ ∂z ρ Aϕ Az
3、在球坐标系
ˆ ∇ = er ∂ 1 ∂ 1 ∂ ˆ ˆ + eθ + eϕ r ∂θ r sin θ ∂ϕ ∂r
2)在柱面坐标系中: )
∂u 1 ∂u ∂u ˆ ˆ ˆ gradu = eρ + eϕ + ez ∂ρ ∂z r ∂ϕ
3)在球面坐标系中: )在球面坐标系中:
∂u 1 ∂u 1 ∂u ˆ ˆ ˆ g ra d u = er + eθ + eϕ ∂r r ∂θ r sin θ ∂ ϕ
【例题】 例题】
斯托克斯定理
∫l A⋅dl = ∫
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.我们讨论的电磁场是具有确定物理意义的(),这些矢量场在一定的区域内具有一定的分布规律,除有限个点或面以外,它们都是空间坐标的连续函数。
3. 矢量场在闭合面的通量定义为,它是一个标量;矢量场的()也是一个标量,定义为。
4. 矢量场在闭合路径的环流定义为,它是一个标量;矢量场的旋度是一个(),它定义为。
5.标量场u(r)中,()的定义为,其中n为变化最快的方向上的单位矢量。
6. 矢量分析中重要的恒等式有任一标量的梯度的旋度恒为()。
任一矢量的旋度的散度恒为()。
7. 算符▽是一个矢量算符,在直角坐标内,,所以是个(),而是个(),是个()。
8. 亥姆霍兹定理总结了矢量场的基本性质,分析矢量场总要从它的散度和旋度开始着手,()方程和()方程组成了矢量场的基本微分方程。
9. ()坐标、()坐标和球坐标是电磁理论中常用的坐标10. 标量:()。
如电压U、电荷量Q、电流I、面积S 等。
11. 矢量:()。
如电场强度矢量、磁场强度矢量、作用力矢量、速度矢量等。
12. 标量场:在指定的时刻,空间每一点可以用一个标量()地描述,则该标量函数定出标量场。
例如物理系统中的温度、压力、密度等可以用标量场来表示。
13. 矢量场:在指定的时刻,空间每一点可以用一个矢量()地描述,则该矢量函数定出矢量场。
例如流体空间中的流速分布等可以用矢量场来表示。
14. 旋度为零的矢量场叫做()15. 标量函数的梯度是(),如静电场16.无旋场的()不能处处为零17. 散度为零的矢量场叫做()18. 矢量的旋度是(),如恒定磁场19.无散场的()不能处处为零20.一般场:既有(),又有()21.任一标量的梯度的旋度恒为()22.任一矢量的旋度的散度恒为()。
23.给定三个矢量和:求:(1); (2);(3); (4);(5)在上的分量:(6); (7);(8)和。
24.三角形的三个顶点为(0,1,-2)、(4,1,-3)和(6,2,5)。
(1) 判断是否为一直角三角形。
(2) 求三角形的面积。
25.求(-3,1,4)点到P(2,-2,3)点的距离矢量及的方向。
26.给定两矢量和,求在上的分量。
27.如果给定一未知矢量与已知矢量的矢量积,那么便可以确定该未知矢量。
设为一矢量,,而,和已知,试求。
28.在圆柱坐标中,一点的位置由定出,求该点在(1)直角坐标中;(2)球坐标中的坐标。
29.用球坐标表示的场,(1) 求在直角坐标系中点(-3,4,5)处的和;(2) 求与矢量构成的夹角。
30.球坐标中两个点()和()定出两个位置矢量和。
证明和间夹角的余弦为提示:,在直角坐标中计算。
31.一球面S的半径为5,球心在原点上,计算:的值。
32.在由r=5,z=0和z=4围成的圆柱形区域,对矢量验证散度定理。
33.求(1)矢量的散度;(2)求对中心在原点的一个单位立方体的积分;(3)求对此立方体表面的积分,验证散度定理。
34.计算矢量对一个球心在原点,半径为a的球表面的积分,并求对球体积的部分。
35.求矢量沿xy平面上的一个边长为2的正方形回路的线积分,此正方形的两边分别与x轴和y轴相重合。
再求对此回路所包围的表面积分,验证斯托克斯定理。
36.求矢量沿圆周的线积分,再计算对此圆面积的积分。
37.证明:(1),(2),(3),其中为一常矢量。
38.一径向矢量场用,表示,如果,那么函数会有什么特点呢39.给定矢量函数,试:(1)沿抛物线;(2)沿连接该两点的直线分别计算从点到的线积分的值,这个是保守场吗40.求标量函数的梯度及再一个指定方向的方向导数。
此方向由单位矢量定出;求(2,3,1)点的导数值。
41.试采用与推导式(1,3,8)相似的方法计算圆柱坐标下的计算式。
42.方程给出一椭球族。
求椭球表面上任意一点的单位法向矢量。
43.现有三个矢量场问:(1)哪些矢量可以由一个标量函数的梯度表示哪些矢量可以用一个矢量的旋度表示(2)求出这些矢量的源分布。
44.利用直角坐标证明:45.证明:46.利用直角坐标证明:47.利用散度定理及斯托克斯定理可以在更普遍的意义下证明及,试证明之。
48.求数量场φ =(x+y)2-z通过点M(1, 0, 1)的等值面方程。
49.求矢量场A=xy2ex+x2yey+zy2ez的矢量线方程50.求数量场22x yuz+=在点M(1, 1, 2)处沿l=ex+2ey+2ez方向的方向导数。
51.设标量函数r 是动点M(x, y, z)的矢量r=xex+yey+zez 的模, 即r =, 证明:.r gradr r r ==︒52.求r 在M(1,0,1)处沿l=ex+2ey+2ez 方向的方向导数53.已知位于原点处的点电荷q 在点M(x, y, z)处产生的电位为4qr ϕπε=,其中矢径r 为r=xex+yey+zey ,且已知电场强度与电位的关系是E=-▽φ,求电场强度E 。
54.已知矢量场r=xex+yey+zez ,求由内向外穿过圆锥面x2+y2=z2与平面z=H 所围封闭曲面的通量。
55.在坐标原点处点电荷产生电场,在此电场中任一点处的电位移矢量为 2(,,)4y z q r D r r ye ze r r r r r π=︒===︒=求穿过原点为球心、R 为半径的球面的电通量56.原点处点电荷q 产生的电位移矢量2344q q D r r r r ππ=︒=,试求电位移矢量D 的散度。
57.球面S 上任意点的位置矢量为r=xex+yey+zez ,求 S r dS ⋅⎰⎰58.求矢量A=-yex+xey+cez(c 是常数)沿曲线(x-2)2+y2=R2, z=0的环量59.求矢量场A=x(z-y) ex+y(x-z)ey+z(y-x)ez 在点M(1,0,1)处的旋度以及沿n=2ex+6ey+3ez 方向的环量面密度。
60.在坐标原点处放置一点电荷q ,在自由空间产生的电场强度为33()44x y z q q E r xe ye ze r r πεπε==++求自由空间任意点(r ≠0)电场强度的旋度▽×E 。
61.在一对相距为l 的点电荷+q 和-q 的静电场中,当距离r>>l 时,其空间电位的表达式为20(,,)cos 4ql r r ϕθφθπε=求其电场强度E(r, θ, φ)。
62.已知一矢量场F=axxy-ayzx, 试求:(1) 该矢量场的旋度;(2) 该矢量沿半径为3的四分之一圆盘的线积分,如图所示, 验证斯托克斯定理。
63.如果给定一未知矢量与一已知矢量的标量积和矢量积,那么便可以确定该未知矢量。
设A 为一已知矢量p A X =⋅P A X =⨯p 和P 已知,试求X64.点电荷q 在离其r 处产生的电通量密度为2221/23ˆˆˆ,,()4==++=++v v v q D r r xx yy zz r x y x r π求任意点处电通量密度的散度▽·D ,并求穿出r 为半径的球面的电通量65.1(())()(2)(())()(3)(())()d f r f r df dA A f r f r df dA A f r f r dfϕϕ∇=∇∇=∇∇⨯=-⨯∇v v v v v v g g v v v v 证明()66.证明:标量场在任一点的梯度垂直于过该点的等值面67.)(2))A A A A A Aϕϕϕϕϕϕ∇=∇+∇∇⨯=∇⨯+∇⨯v v v g g g v v v 求证:(1)((B68.2)()())()()A A A A A A Aϕϕϕϕϕϕϕ∇⨯∇⨯=∇⨯∇⨯-∇+∇∇+∇⨯∇⨯+∇∇-∇∇v v v v g v v v g g (( 69.ˆ()S ln AdS A dl ⨯∇⨯=-⨯⎰⎰v v v Ñ证明: 70. 证明: 其中:A 为一常矢量71. 现有三个矢量场 A, B, C问:(1)哪些矢量可以由一个标量函数的梯度表示;(2)哪些矢量可以由一个矢量的旋度表示;(3)求出这些矢量的源分布。
72. (1) 求矢量 的散度;(2)求 对中心在原点的一个单位立方体的积分;(3)求A 对此立方体表面的积分,验证散度定理。
73. 求矢量 沿平面上的一个边长为2的正方形回路的线积分,此正方形的两个边分别与x 轴和y 轴相重合。
再求 对此回路所包围的表面积分,验证斯托克斯定理。
74. 给定矢量函数 ,试计算(1) 沿抛物线x =2y2;(2)沿连接该两点的直线从点P1(2,1,1)到P2(8,2,-1)的线积分的值,这个E 是保守场吗75.已知、和为任意矢量,若,则是否意味着总等于呢试讨论之;试证明:。
76. 给定三个矢量、和如下:求(1)矢量的单位矢量;(2)矢量和的夹角;(3)和(4)和;(5)和。
77.有一个二维矢量场,求其矢量线方程,并定性画出该矢量场图形。
78.直角坐标系中的点和,直角坐标系中写出点、的位置矢量和;求点到的距离矢量的大小和方向,求矢量在的投影。
79.写出空间任一点在直角坐标系的位置矢量表达式,并将此位置矢量分别变换成在圆柱坐标系中和球坐标系中的位置矢量。
80.求数量场通过点的等值面方程。
81.用球坐标表示的场,求(1)在直角坐标系中的点处的和;(2)与矢量之间的夹角。
82.试计算的值,式中的闭合曲面是以原点为顶点的单位立方体,为立方体表面上任一点的位置矢量。
83.求标量场在点的梯度。
84.在圆柱体和平面、、及所包围的区域,设此区域的表面为,求(1)矢量场沿闭合曲面的通量,矢量场的表达式为(2)验证散度定理。
85.计算从到,其中矢量场的表达式为曲线沿下列路径:(1),;(2)沿直线从沿轴到,再沿到;(3)此矢量场为保守场吗86.(1)若矢量场,在半径为2和的半球面上计算的值;(2)若矢量场,求穿过平面上半径为2的圆面的通量。
87.求矢量沿圆周的线积分,再求对此圆周所包围的表面积分,验证斯托克斯定理。
88.在球坐标系中,已知标量函数,其中和均为常数,求矢量场。
89.求下列标量场的梯度:(1);(2);(3)。
90.求下列矢量场在给定点的散度:(1)在点;(2)在点。
91.求下列矢量场的旋度:(1)(2)92.现有三个矢量场、和,已知求(1)哪些矢量场为无旋场、哪些矢量场为无散场(2)哪些矢量场可以用一个标量函数的梯度来表示哪些矢量场可以用一个矢量函数的旋度来表示(3)求出它们的源分布。
93.已知直角坐标系中的点和点求点的位置矢量和点的位置矢量;从点到点的距离矢量;和;94.证明矢量场为有势场。
95.在直角坐标中,证明96.在直角坐标中,证明97.求函数在点处沿曲线朝增大方向的方向导数。
98.若矢量场试在由半球面和平面组成的闭合曲面上验证斯托克斯定理。
99.在直角坐标中,证明:一个矢量场的旋度的散度恒等于零,即;一个标量场的梯度的旋度恒等于零,即。