材料学 平面应力状态分析
合集下载
材料力学8-3-平面应力状态分析-课件

02
平面应力状态分析的基本概念
应力状态
1 2
定义
应力状态是指物体在某一点处的应力分布情况。
表示方法
通常采用主应力、应力张量和应力矩阵来表示。
3
分类
根据应力分量的变化规律,可分为平面应力状态、 空间应力状态和轴对称应力状态。
平面应力状态
定义
平面应力状态是指物体在某一平面内 的应力分布情况,其应力分量只有三 个,即σx、σy和τxy。
材料力学8-3-平面应力状 态分析-课件
• 引言 • 平面应力状态分析的基本概念 • 平面应力状态的分类与表示 • 平面应力状态的平衡方程与几何方程 • 平面应力状态分析的实例 • 总结与展望
01
引言
平面应力状态分析的定义
平面应力状态分析是材料力学中一个重要的概念,它主要研究物体在受力时,其内 部应力的分布情况。
特点
在平面应力状态下,物体内的剪切力分 量τxy与正应力分量σx、σy成比例关系, 即剪切力分量与正应力分量成正比。
应力分量与主应力
定义
主应力与材料性质的关系
应力分量是指物体在某一点处各个方 向的应力值,而主应力则是应力分量 中的最大和最小值。
主应力的大小反映了材料在该点所受 的应力和应变状态,与材料的弹性模 量、泊松比等性质有关。
应力集中系数
为了描述应力集中的程度,引入了应力集中系数,该系数反映了孔 边应力和平均应力的比值。
弯曲梁的平面应力状态分析
弯曲梁
当梁受到垂直于轴线的力矩作用时,梁发生 弯曲变形。
平面应力状态
在弯曲梁的横截面上,剪应力和正应力的分布情况 。
弯矩和剪力的关系
通过分析剪应力和正应力的分布和大小,可 以确定梁的弯矩和剪力之间的关系,从而进 行受力分析和设计。
材料力学第8章应力状态分析

点。设想以A点为中心,用相互垂直的6个截面截取一个边长无限小的立方
体,我们将这样的立方体称为单元体。取决于截取平面的倾角变化,围绕同 一个点,可以截取出无数个不同的单元体,
图8.1(b)为依附着杆件横截面所截取单元体(图8.1(c)为其平面图形式),而 图8.1(d)为依附着45°斜截面所截取的单元体。由于杆件轴向拉伸时,横 截面上只有正应力,且与杆件轴向平行的截面没有应力,因此,图8.1(b) 中的单元体只在左右两个面上有正应力作用。对于图8.1(d)中的单元体, 根据拉压杆斜截面应力分析(2.3节)可知,其4个面上既有正应力又有切应 力。
又有切应力。围绕A,B,C三点截取单元体如图8.2(d)所示,单元体的前后
两面为平行于轴线的纵向截面,在这些面上没有应力,左右两面为横截面的 一部分,根据切应力互等定理,单元体B和C的上下两面有与横截面数值相等
的切应力。至此,单元体各面上的应力均已确定。注意到图8.2(d)各单元
体前后面上均无应力,因此也可用其平面视图表示(见图8.2(e))。
图8.2
从受力构件中截取各面应力已知的单元体后,运用截面法和静力平衡条件, 可求出单元体任一斜截面上的应力,从而可以确定出极值应力。
围绕构件内一点若从不同方向取单元体,则各个截面的应力也各不相同。其
中切应力为零的截面具有特殊的意义,称为主平面;主平面上的正应力称为 主应力。一般情况下,过构件内任一点总能找到3个互相垂直的主平面,因
图8.3
运用截面法可以求出与 z 截面垂直的任意斜截面 ac 上的应力(见图 8.3
( a ))。设斜截面 ac 的外法线 n 与 x 轴的夹角为 α (斜截面 ac 称 为 α 截面),并规定从 x 轴正向逆时针转到斜截面外法线 n 时 α 角为正
材料力学 第07章 应力状态分析与强度理论

2
sin2a t xy cos2a
18/95
7.2 平面应力状态分析 主应力 7.2.3 主平面的方位及极值正应力 s x s y s x s y sa cos2a t xy sin2a 2 2 s x s y ds a 上式对a 求导 2 sin2a t xy cos2a da 2 s x s y 若a a0时,导数为 0 sin2a 0 t xy cos2a 0 0 2 2t xy tan2a 0 s x s y
7.2.5 应力圆
t
sx
tyx
sy
sx txy sy
D(sx,txy) 1. 确定点 D (s ,t ) x xy
O
D'(sy,tyx)
C
s
2. 确定点D' (sy,tyx) tyx= -txy 3. 连接DD'与s 轴交于点C 4. 以 C 为圆心,CD(CD') 为半径画圆。
26/95
7.2 平面应力状态分析 主应力 7.2.5 应力圆
sx sy sz
sxs1 100 MPas 2
0 MPas 3 120 MPa
11/95
7.1 一点的应力状态的概念 单向、二向(平面)、三向(空间)应力状态 三个主应力中仅有一个主应力不为零 单向应力状态
s1
s1
F
A
F
12/95
7.1 一点的应力状态的概念 单向、二向(平面)、三向(空间)应力状态
O
D'(sy,tyx)
C sx- sx sy/2
s
27/95
7.2 平面应力状态分析 主应力 7.2.5 应力圆 利用应力圆确定角a 斜截面上的正应力和切应力
sin2a t xy cos2a
18/95
7.2 平面应力状态分析 主应力 7.2.3 主平面的方位及极值正应力 s x s y s x s y sa cos2a t xy sin2a 2 2 s x s y ds a 上式对a 求导 2 sin2a t xy cos2a da 2 s x s y 若a a0时,导数为 0 sin2a 0 t xy cos2a 0 0 2 2t xy tan2a 0 s x s y
7.2.5 应力圆
t
sx
tyx
sy
sx txy sy
D(sx,txy) 1. 确定点 D (s ,t ) x xy
O
D'(sy,tyx)
C
s
2. 确定点D' (sy,tyx) tyx= -txy 3. 连接DD'与s 轴交于点C 4. 以 C 为圆心,CD(CD') 为半径画圆。
26/95
7.2 平面应力状态分析 主应力 7.2.5 应力圆
sx sy sz
sxs1 100 MPas 2
0 MPas 3 120 MPa
11/95
7.1 一点的应力状态的概念 单向、二向(平面)、三向(空间)应力状态 三个主应力中仅有一个主应力不为零 单向应力状态
s1
s1
F
A
F
12/95
7.1 一点的应力状态的概念 单向、二向(平面)、三向(空间)应力状态
O
D'(sy,tyx)
C sx- sx sy/2
s
27/95
7.2 平面应力状态分析 主应力 7.2.5 应力圆 利用应力圆确定角a 斜截面上的正应力和切应力
材料力学:第八章-应力应变状态分析

斜截面: // z 轴; 方位用 a 表示;应力为 sa , ta
正负符号规定:
切应力 t - 使微体沿顺时针 旋转为正 方位角 a - 以 x 轴为始边、逆时针旋转 为正
斜截面应力公式推导 设α斜截面面积为dA, 则eb侧面和bf 底面面积分别为dAcosα, dAsinα
由于tx 与 ty 数值相等,同时
sa+90 ,ta+90
E
sa+90 ,ta+90
结论: 所画圆确为所求应力圆
应力圆的绘制与应用3
应力圆的绘制
已知 sx , tx , sy ,
画相应应力圆
t
先确定D, E两点位置, 过此二点画圆即为应力圆
Ds x ,t x , E s y ,t y
t
C OE
s 2 , 0
s 1 , 0
应力圆绘制 作D, E连线中垂线,与x轴相交即为应力圆圆心
tb sb
t
sa
O
C
ta
D
sa ,ta
t
s
E
sb ,tb
O
D
sa ,ta
C
s
E
sb ,tb
由|DC|=|CE|,可得sC值:
sC
s
2 β
+
t
2 β
s
2 α
+
t
2 α
2 sα sβ
点、面对应关系
转向相同, 转角加倍 互垂截面, 对应同一直径两端
应变状态
构件内一点处沿所有方位的应变总况或集合, 称为该点处的 应变状态
研究方法
环绕研究点切取微体, 因微体边长趋于零, 微体趋于所研究 的点, 故通常通过微体, 研究一点处的应力与应变状态
正负符号规定:
切应力 t - 使微体沿顺时针 旋转为正 方位角 a - 以 x 轴为始边、逆时针旋转 为正
斜截面应力公式推导 设α斜截面面积为dA, 则eb侧面和bf 底面面积分别为dAcosα, dAsinα
由于tx 与 ty 数值相等,同时
sa+90 ,ta+90
E
sa+90 ,ta+90
结论: 所画圆确为所求应力圆
应力圆的绘制与应用3
应力圆的绘制
已知 sx , tx , sy ,
画相应应力圆
t
先确定D, E两点位置, 过此二点画圆即为应力圆
Ds x ,t x , E s y ,t y
t
C OE
s 2 , 0
s 1 , 0
应力圆绘制 作D, E连线中垂线,与x轴相交即为应力圆圆心
tb sb
t
sa
O
C
ta
D
sa ,ta
t
s
E
sb ,tb
O
D
sa ,ta
C
s
E
sb ,tb
由|DC|=|CE|,可得sC值:
sC
s
2 β
+
t
2 β
s
2 α
+
t
2 α
2 sα sβ
点、面对应关系
转向相同, 转角加倍 互垂截面, 对应同一直径两端
应变状态
构件内一点处沿所有方位的应变总况或集合, 称为该点处的 应变状态
研究方法
环绕研究点切取微体, 因微体边长趋于零, 微体趋于所研究 的点, 故通常通过微体, 研究一点处的应力与应变状态
材料力学应力状态分析

的就是主应力;但除此之外,
图a所示单元体上平行于xy平面 的面上也是没有切应力的,所 以该截面也是主平面,只是其 上的主应力为零。
24
材 料 力 学 Ⅰ 电 子 教 案
第七章 应力状态和强度理论
在弹性力学中可以证明, 受力物体内一点处无论是什么 应力状态必定存在三个相互垂 直的主平面和相应的三个主应 力。对于一点处三个相互垂直
垂直面上的应力来确定,故受力物体内一点处的应力状
态(state of stress)可用一个单元体(element)及其上的应力 来表示。
2
材 料 力 学 Ⅰ 电 子 教 案
第七章 应力状态和强度理论
p cos 0 cos2 0 p sin sin 2
1
材 料 力 学 Ⅰ 电 子 教 案
第七章 应力状态和强度理论
§7-1 概述
在第二章和第三章中曾讲述过杆受拉压时和圆截面
杆受扭时杆件内一点处不同方位截面上的应力,并指出: 一点处不同方位截面上应力的集合(总体)称之为一点处 的应力状态。由于一点处任何方位截面上的应力均可根 据从该点处取出的微小正六面体── 单元体的三对相互
的主应力,根据惯例按它们的
代数值由大到小的次序记作1,
2,3。图b所示应力圆中标
出了1和2,而3=0。
25
材 料 力 学 Ⅰ 电 子 教 案
第七章 应力状态和强度理论
当三个主应力中有二个主应力不等于零时为平面应力状态; 平面应力状态下等于零的那个主应力如下图所示,可能是
1,也可能是2或3,这需要确定不等于零的两个主应力
状态的一些特征,可使上述计算公式以图形即所称的应力
圆(莫尔圆)(Mohr’s circle for stresses)来表示。 先将上述两个计算公式中的第一式内等号右边第一项 移至等号左边,再将两式各自平方然后相加即得:
材料力学 第八章:应力状态分析

2 )2
材料力学
整理可得:
(
x
2
y
)2
2
(
x
2
y
)2
x2
(3)
(3)式为以 、为变量的圆方程。
圆心坐标
(
x
y
,0)
横坐标为平均应力
2
半径
(
x
2
y
)2
2 x
为最大剪应力
材料力学
x x
y
x y
2
(
x
2
y
)2
2 x
材料力学
方法一:
27.5
x
2
y
x
y
2
cos(2 27.5) x
sin(2 27.5)
70 70 cos55 50sin 55 22
96MPa
96MPa
27.5
70MPa
62.5 50MPa 26MPa
117.5
x
上的应力对应-坐标系中的Dy点。Dy
点的横坐标
OF
、纵坐标
y
FDy
y
;连接
Dx、Dy与轴的交点C为圆心 , CDx 或
CDy 为半径画一圆,这个圆是该单元
体所对应的应力圆。
材料力学
n
y
x
y
x
x
y
F o
Dy
(y,y)
Dx(x,x) CK
材料力学
证明:
DxCK DyCF (对顶角) Dy FC DxKC (直角)
材料力学第七章 应力状态

主平面的方位:
tan
2a0
2 xy x
y
主应力与主平面的对应关系: max 与切应力的交点同象限
例题:一点处的平面应力状态如图所示。
已知 x 60MPa, xy 30MPa, y 40MPa, a 30。
试求(1)a 斜面上的应力; (2)主应力、主平面; (3)绘出主应力单元体。
x y cos 2a
2
x sin 2a
x
a
x y sin 2a
2
x cos 2a
300
10 30 2
10 30 cos 60020sin 600
2
2.32 MPa
300
10 30 sin 600 2
20cos 600
1.33 MPa
a
20 MPa
c
30 MPa
b
n1
y xy
a x
解:(1)a 斜面上的应力
y xy
a
x
2
y
x
2
y
cos 2a
xy
sin 2a
60 40 60 40 cos(60 ) 30sin(60 )
2
2
a x 9.02MPa
a
x
y
2
sin
2a
xy
cos
2a
60 40 sin(60 ) 30cos(60 ) 2
58.3MPa
2
1.33 MPa
300 600 x y 40 MPa
在二向应力状态下,任意两个垂直面上,其σ的和为一常数。
在二向应力状态下,任意两个垂直面上,其σ 的和为
一常数。
证明: a
x y
材料力学——第6章(应力状态分析及强度理论)

t min
2t x tan 2 0 = s x s y
t max s max s min = R半 径 = 2 t min
s x s y 2 2 ( ) t x 2
25
[例6-4]求 ⑴图示单元体α =300 斜截面上的应力 ⑵主应力、主平面(单位:MPa)。
40
§6–1 应力状态概述
§6-2 平面应力状态分析
§6-3 三向应力状态分析 §6-4 广义胡克定律 §6-5 工程中常用的四种强度理论
1
拉压
扭转
弯曲
y
y
y
C
s max 压 s max 拉 s max
截面 应力 危险点
应力状态
C
o
FN
s=smax smax
MT
t max
M
t max
2
S平面
n
F
1
sx 面上的应力(s ,t )
tx
y x t n D( s , t C O B(sy ,ty) 2 O
面的法线
两面夹角 两半径夹角2 ; 且转向一致。 x
A(sx ,tx)
s
23
ty
sy s t
n
t D = DC sin[ 180 ( 2 0 2 )]
O
sx sy
图2
ty
px t
同理: t = p x sin p y cos
= s x cos t y sin sin t y cos s y sin cos
经简化 得
s x s y t = sin 2 t x cos 2 2
s
sx sy
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
α
ayx
f
y
t
e
dA
dAcos α
a dAsinf
3.任意斜截面上的应力(The stress acting on any inclined plane)
设斜截面的面积为dA , a-e的面积为dAcos, a-f 的面积为 dAsin
对研究对象列 n和 t 方向的平衡方程得
化简以上两个平衡方程最后得
的方位.
m
m a
l
A
解: 把从A点处截取的单元体放大如图
A
1 3
因为 x < y ,所以 0= 27.5°与min对应
3
0
A
x
1
例题5 图示单元体,已知 x =-40MPa,y =60MPa,xy=-50MPa.试求e-f截面上的应力情
况及主应力和主单元体的方位.
解:(1)求 e-f 截面上的应力
不难看出 即两相互垂直面上的正应力之和保持一个常数
二、最大正应力及方位 (Maximum normal stress and it’s direction)
1.最大正应力的方位(The direction of maximum normal stress ) 令
0 和 0+90°确定两个互相垂直的平面,一个是最大正应力
y n
e
x
a
yx
x xy
f
e
x
x
xy
α
α n
α
α
ayx
f
y
e
x
a
y
yx x
xy
f
n
x
2.符号的确定(Sign convention)
e
x
xy
α
n
α
α
α
ayx
f
y
t
(1)由x轴转到外法线n,逆时针转向时为正
(2)正应力仍规定拉应力为正 (3)切应力对单元体内任一点取矩,顺时针转为正
e
x
xy
α
n
α
α
1 = ,2 = 0 , 3 = -
所在的平面,另一个是最小正应力所在的平面.
2.最大正应力(Maximum normal stress)
将 0和 0+90°代入公式
得到max和min (主应力)
下面还必须进一步判断0是x与哪一个主应力间的夹角
若约定 | 0 | < 45°即0 取值在±45°范围内
则确定主应力方向的具体规则如下
(1)当x> y 时,0 是x与max之间的夹角
平面应力状态分析
y
y yx xy
x
x
z
y yx
x xy
平面应力状态的普遍形式如图所示 .单元体上有x ,xy 和 y , yx
一、斜截面上的应力(Stresses on an oblique section)
1.截面法(Section method)
假想地沿斜截面 e-f 将单元体截开,留下左边部分的单体元 eaf 作为研究对象
1 和 1+90°确定两个互相垂直的平面,一个是最大切应力
所在的平面,另一个是最小切应力所在的平面.
2.最大切应力(Maximum shearing stress )
将1和 1+90°代入公式
得到max和min
Hale Waihona Puke 比较和可见
例题4 简支梁如图所示.已知 m-m 截面上A点的弯曲正应力和
切应力分别为 =-70MPa, =50MPa.确定A点的主应力及主平面
(2)当x<y 时,0 是x与min之间的夹角
(3)当x=y 时,0 =45°,主应力的方向可由单元体上切应
力情况直观判断出来
二、最大切应力及方位 (Maximum shearing stress and it’s direction)
1.最大切应力的方位(The direction of maximum shearing stress ) 令
y
e xy x
f
30°
n
(2) 求主应力和主单元体的方位
y
1
3
xy
x
22.5°
因为x < y,所以0= -22.5°与min对应
例题6 求平面纯剪切应力状态的主应力及主平面方位.
解: (1)求主平面方位
3 xy
45°
1
因为 x = y,且 x > 0 所以0=-45°与max 对应
(2)求主应力
ayx
f
y
t
e
dA
dAcos α
a dAsinf
3.任意斜截面上的应力(The stress acting on any inclined plane)
设斜截面的面积为dA , a-e的面积为dAcos, a-f 的面积为 dAsin
对研究对象列 n和 t 方向的平衡方程得
化简以上两个平衡方程最后得
的方位.
m
m a
l
A
解: 把从A点处截取的单元体放大如图
A
1 3
因为 x < y ,所以 0= 27.5°与min对应
3
0
A
x
1
例题5 图示单元体,已知 x =-40MPa,y =60MPa,xy=-50MPa.试求e-f截面上的应力情
况及主应力和主单元体的方位.
解:(1)求 e-f 截面上的应力
不难看出 即两相互垂直面上的正应力之和保持一个常数
二、最大正应力及方位 (Maximum normal stress and it’s direction)
1.最大正应力的方位(The direction of maximum normal stress ) 令
0 和 0+90°确定两个互相垂直的平面,一个是最大正应力
y n
e
x
a
yx
x xy
f
e
x
x
xy
α
α n
α
α
ayx
f
y
e
x
a
y
yx x
xy
f
n
x
2.符号的确定(Sign convention)
e
x
xy
α
n
α
α
α
ayx
f
y
t
(1)由x轴转到外法线n,逆时针转向时为正
(2)正应力仍规定拉应力为正 (3)切应力对单元体内任一点取矩,顺时针转为正
e
x
xy
α
n
α
α
1 = ,2 = 0 , 3 = -
所在的平面,另一个是最小正应力所在的平面.
2.最大正应力(Maximum normal stress)
将 0和 0+90°代入公式
得到max和min (主应力)
下面还必须进一步判断0是x与哪一个主应力间的夹角
若约定 | 0 | < 45°即0 取值在±45°范围内
则确定主应力方向的具体规则如下
(1)当x> y 时,0 是x与max之间的夹角
平面应力状态分析
y
y yx xy
x
x
z
y yx
x xy
平面应力状态的普遍形式如图所示 .单元体上有x ,xy 和 y , yx
一、斜截面上的应力(Stresses on an oblique section)
1.截面法(Section method)
假想地沿斜截面 e-f 将单元体截开,留下左边部分的单体元 eaf 作为研究对象
1 和 1+90°确定两个互相垂直的平面,一个是最大切应力
所在的平面,另一个是最小切应力所在的平面.
2.最大切应力(Maximum shearing stress )
将1和 1+90°代入公式
得到max和min
Hale Waihona Puke 比较和可见
例题4 简支梁如图所示.已知 m-m 截面上A点的弯曲正应力和
切应力分别为 =-70MPa, =50MPa.确定A点的主应力及主平面
(2)当x<y 时,0 是x与min之间的夹角
(3)当x=y 时,0 =45°,主应力的方向可由单元体上切应
力情况直观判断出来
二、最大切应力及方位 (Maximum shearing stress and it’s direction)
1.最大切应力的方位(The direction of maximum shearing stress ) 令
y
e xy x
f
30°
n
(2) 求主应力和主单元体的方位
y
1
3
xy
x
22.5°
因为x < y,所以0= -22.5°与min对应
例题6 求平面纯剪切应力状态的主应力及主平面方位.
解: (1)求主平面方位
3 xy
45°
1
因为 x = y,且 x > 0 所以0=-45°与max 对应
(2)求主应力