4.3.2.2角的度量与计算
2024年湘教版七年级数学上册 4.3.2 第1课时 角的度量与计算(课件)

4. 时钟 4 点 15 分时,时针和分针所成的角为_3_7_._5_°.
5. 计算下列各题: (1) 153°39′+25°40′38″; (2) 90°-37°24′38″. 解:(1) 153°39′+25°40′38″
=178°79′38″ =179°19′38″. (2) 90°-37°24′38″
③ 50°40′33″=50.43°;
④ 50°40′30″=50.675°.
A.①和②
B.①和③
C.②和③
D.②和④
2. 填空: (1)0.65°= 39 ′; (2)32.43°= 32 ° 25 ′ 48 ″; (3)120°38′54″ ≈ 120.65 °; (4)108°40′24″ =__1_0_8_.6_7__ °.
第4章 图形的认识
4.3 角
4.3.2 角的度量与计算
第1课时 角的度量与计算
教学目标
1. 掌握角的度量单位及换算,并能进行角的度数的 计算.
2. 掌握直角、平角、周角的度数,会计算钟表上的 角度问题.
重点:度、分、秒的换算及角的计算. 难点:角的度数的计算.
你知道如何衡量一个角的大小?
1 角的分类
= 37°41'40".
练一练
2. 计算:(1) 20°26′ + 35°54′; 解:(1) 20°26′ + 35°54′ = 55°80′ = 56°20′.
(2) 90° - 43°18′ = 89°60′ - 43°18′ = 46°42′.
(2) 90° - 43°18′.
例4 小红早晨 8:30 出发,中午 12:30 到家,则小 红出发时时针和分针的夹角为 75° ,到家时时针和 分针的夹角为 165° .
开鲁县第四中学七年级数学上册第4章图形的认识4.3角4.3.2.2角的度量与计算2课时作业新版湘教版

角的度量与计算(第2课时)(30分钟50分)一、选择题(每小题4分,共12分)1.(2014·南宁模拟)如果∠1和∠2互为余角,∠1与∠3互为补角,∠2与∠3的和等于120°,那么∠1,∠2,∠3的度数分别是( )A.75°,15°,105°B.30°,60°,120°C.50°,40°,130°D.70°,20°,110°【解析】选A.设∠1=x°,则∠2=(90-x)°,∠3=(180-x)°,因为∠2与∠3的和等于120°,所以90-x+180-x=120,解得x=75,所以∠1=75°,∠2=15°,∠3=105°.2.(2014·庆阳实验质检)如图所示,∠1是锐角,则∠1的余角是( )A.∠2-∠1B.∠2-∠1C.(∠2-∠1)D.(∠2+∠1)【解析】选C.由题图可知,∠1+∠2=180°,(∠1+∠2)=90°,所以∠1的余角为90°-∠1=(∠1+∠2)-∠1=(∠2-∠1).3.如果∠α和∠β互补,且∠α>∠β,则下列表示∠β的余角的式子中:①90°-∠β;②∠α-90°;③(∠α+∠β);④(∠α-∠β).正确的有( )A.4个B.3个C.2个D.1个【解题指南】把①②③④中的角分别与∠β相加,若和等于90°,则为∠β的余角,否则不是∠β的余角.【解析】选B.①因为90°-∠β+∠β=90°,故90°-∠β为∠β的余角.②因为∠α-90°+∠β=∠α+∠β-90°,又∠α和∠β互补,所以∠α+∠β=180°,所以∠α+∠β-90°=90°,即∠α-90°为∠β的余角.③(∠α+∠β)+∠β=90°+∠β≠90°,故(∠α+∠β)不是∠β的余角.④(∠α-∠β)+∠β=∠α-∠β+∠β=∠α+∠β=(∠α+∠β)=×180°=90°,故(∠α-∠β)为∠β的余角.二、填空题(每小题4分,共12分)4.如图,若∠BOC=90°,∠AOD∶∠BOD=2∶7,则∠COD的度数等于.【解析】因为∠BOC=90°,所以∠AOC=180°-∠BOC=90°.因为∠AOD+∠BOD=180°,∠AOD∶∠BOD=2∶7,所以∠AOD=×180°=40°,所以∠COD=90°-40°=50°.答案:50°5.(2014·鞍山中学质检)已知∠α与∠β互余,且∠α=40°,则∠β的补角为度.【解析】因为∠α与∠β互余,且∠α=40°,所以∠β=50°,所以∠β的补角=180°-∠β=130°.答案:1306.已知∠1=2∠2,∠1的余角的3倍等于∠2的补角,则∠1= ,∠2= .【解析】设∠2=x°,根据题意,得3(90-2x)=180-x,解得x=18,所以∠2=18°,所以∠1=36°.答案:36°18°三、解答题(共26分)7.(8分)已知一个角的余角比这个角的补角的小12°,求这个角的余角和补角的度数. 【解析】设这个角为x°,则它的余角为(90-x)°,补角为(180-x)°.根据题意,得90-x=(180-x)-12,解得x=24.所以90-x=66,180-x=156,即这个角的余角和补角的度数分别为66°,156°.8.(8分)如图,已知直线AB和CD相交于点O,OM平分∠BOD,∠NOM=90°,∠AOC=50°.(1)求∠AON的度数.(2)写出∠DON的余角.【解析】(1)因为直线AB和CD相交于点O,所以∠BOD=∠AOC=50°.因为OM平分∠BOD,所以∠BOM=∠BOD=×50°=25°.因为∠NOM=90°,所以∠BON=∠BOM+∠MON=25°+90°=115°.所以∠AON=180°-∠BON=180°-115°=65°.(2)图中与∠DON互余的角是∠DOM和∠MOB.【培优训练】9.(10分)按图所示的方法折纸,然后回答问题:(1)∠2是多少度的角?为什么?(2)∠1与∠3有何关系?(3)∠1与∠AEC,∠3和∠BEF分别有何关系?【解析】(1)∠2=90°.因为折叠,则∠1与∠3的和与∠2相等,而这三个角加起来,正好是平角∠BEC,所以∠2=×180°=90°.(2)因为∠1与∠3的和与∠2相等,且三个角加起来恰好是一个平角,所以∠1+∠3=90°,所以∠1与∠3互余.(3)因为∠1与∠AEC的和为180°,∠3与∠BEF的和为180°,所以∠1与∠AEC互补,∠3与∠BEF互补.命题、定理、证明知识要点:1.定义:判断一件事情的语句,叫做命题,如:对顶角相等.2.组成:命题由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,通常写成:“如果……那么……”的形式,这时“如果”后接的部分是题设,“那么”后接的部分是结论.3.真命题:如果题设成立,那么结论一定成立的命题.4.假命题:命题中题设成立时,不能保证结论一定成立的命题5.定理:经过推理证实的真命题叫做定理,定理也可以作为继续推理的依据.6.证明:在很多情况下,一个命题的正确性需要经过推理才能作出判断,这个推理过程叫做证明.一、单选题1.1.下列判断正确的个数是( )①锐角的补角一定是钝角;②一个角的补角一定大于这个角;③锐角和钝角互补;④如果两个角是同一个角的补角,那么它们相等.A.1个 B.2个 C.3个 D.4个2.下列命题中,正确的是()A.相等的角是对顶角B.过一点有且只有一条直线与已知直线平行C.两条不相交的线段一定互相平行D.互为邻补角的两角的角平分线互相垂直3.下列说法:①若a为有理数,则﹣a表示负有理数;②a2=(﹣a)2;③若|a|>b,则a2>b2;④若a+b=0,则a3+b3=0.其中正确的个数有()A.1个 B.2个 C.3个 D.4个4.下列四个命题是真命题的是( )A .同位角相等B .互补的两个角一定是邻补角C .在同一平面内,垂直于同一条直线的两条直线互相平行D .相等的角是对顶角5.下列命题:①同旁内角互补;②若a b =,则a b =;③对顶角相等;④三角形的外角和360°;⑤如果一个角的两边分别垂直于另一个角的两边,那么这两个角互补:其中真命题的个数有( )个A .4个B .3个C .2个D .1个6.下列语句中真命题有( )①点到直线的垂线段叫做点到直线的距离;②内错角相等;③两点之间线段最短;④过一点有且只有一条直线与已知直线平行;⑤在同一平面内,若两条直线都与第三条直线垂直,则这两条直线互相平行.A .5个B .4个C .3个D .2个7.对于命题“若22a b >,则a b >”,下列四组关于a 、b 的值中,能说明这个命题是假命题的是( )A .3a =,1b =B .3a =-,2b =C .3a =,1b =-D .1a =-,3b =8.给出下列4个命题:①对顶角相等;②等角的补角相等;③同旁内角相等,两直线平行;④同位角的平分线平行.其中真命题为 ()A .①④B .①②C .①③④D .①②④二、填空题9.把命题“等角的补角相等”改写成“如果…那么…”的形式是______.10.能说明命题“若a>b,则ac>bc”是假命题的一个c值是_____.11.命题“对顶角相等”的题设是________;结论是________.12.命题“如果a2=b2,那么a=b”是_____(填写“真命题”或“假命题”).13.破译密码:根据下面五个已知条件,推断正确密码是_________.14.下面有3个命题:①两个锐角的和还是锐角;②同位角相等;③平方后等于4的数一定是2.其中有____个假命题.三、解答题15.指出下命题的题设和结论,并判断其真假,如果是假命题,举出一个反例.(1)邻补角是互补的角;(2)同位角相等.16.指出下列命题的条件和结论.(1)同位角相等,两直线平行;(2)同角的余角相等;(3)平行于同一条直线的两直线平行;(4)同旁内角不互补,两直线不平行.17.阅读下列语句,完成后面的题目.①同类项的数字系数必相同;②若|a|=|b|,则a=b;③抗震救灾;④两直线平行,同旁内角互补;⑤两点之间的线段是这两点之间的距离;⑥今晚你去看电影吗?(1)其中属于命题的是________,不属于命题的是________(填序号);(2)其中属于真命题的是________(填序号);(3)对于每个假命题,你是怎样判断的?答案1.B2.D3.B4.C5.C6.D7.B8.B9.如果两个角是等角的补角,那么它们相等.10.0(答案不唯一).11.两个角是对顶角;这两个角相等12.假命题13.79814.315.(1)邻补角是互补的角的题设是两个角是邻补角,结论是这两个角互补,是真命题;(2)同位角相等的题设是两个角是同位角,结论是这两个角相等,为假命题,反例:如图,∠1和∠2是同位角,但∠1≠∠2..16.(1)该命题可以写成:如果同位角相等,那么两直线平行,所以命题的条件是同位角相等,结论是两直线平行;(2)该命题可以写成:如果两个角是同一个角的余角,那么这两个角相等,所以命题的条件是同角的余角,结论是相等;(3)该命题可以写成:如果两条件直线平行于同一条件直线,那么这两条直线平行,所以命题的条件是平行于同一条直线的两条直线,结论是平行;(4)该命题可以写成:如果同旁内角不互补,那么两直线不平行,所以命题的条件是同旁内角不互补,结论是两直线不平行.17.(1)①②④⑤③⑥;(2)④;(3)为说明命题是假命题,可采用举反例(举一个即可)的方法,如:①中a和-a是同类项,但它们的系数不同;②中|7|=|-7|,但7≠-7;⑤中两点之间的距离是指两点之间的线段的长度.第一章有理数1.2 有理数【知识与技能】(1)借助数轴,使学生了解相反数的概念;(2)会求一个有理数的相反数.【过程与方法】(1)从数和形两个不同的侧面来理解相反数的真正含义;(2)培养学生分析和解决问题的能力,逐步渗透数形结合思想.【情感态度与价值观】(1)逐步培养学生探索学习数学的方法;(2)培养学生归纳总结的能力.理解相反数的概念.会求一个有理数的相反数.多媒体课件1.数轴的三要素是什么?2.填空:数轴上与原点的距离是2的点有个,这些点表示的数是;与原点的距离是5的点有个,这些点表示的数是 .一、思考探究,获取新知一、向前走和向后走.教师提问:如果向前为正、向后为负,向前走5步,向后走5步分别记作什么?学生思考回答.教师:这位同学两次行走的距离都是5步,但两次行走的方向相反,这就决定了这两个数的符号不同.二、动手操作并回答问题.在数轴上,画出表示6,-6,212,-212,413,-413的点.(1)上述中6和-6,212和-212,413和-413,每对数有什么特点?(2)数轴上表示每对数的点的位置有什么特点?学生动手画图,教师引导学生对数进行归类与分析,归纳出其外在的特征:只有符号不同,进而引出相反数的概念.教师归纳总结:一般地,设a是一个正数,数轴上与原点的距离是a的点有两个,它们分别在原点左右,表示-a和a,我们说这两个点关于原点对称,如图1-2.3-1.相反数的概念:只有符号不同的两个数叫作互为相反数.一般地,a和-a互为相反数.特别地,0的相反数是0.二、典例精析,掌握新知例1分别写出下列各数的相反数:5,-7,-312,+11.2,0.【分析】在正数前面添上“-”,就得到这个正数的相反数.在任意一个数的前面添上“-”,新的数就表示原数的相反数.【解】5的相反数是-5;-7的相反数是7;-312的相反数是312;+11.2的相反数是-11.2;0的相反数是0.例2化简下列各数:(1)-(+5);(2)+(-7);(3)+(+2);(4)-[-(-2)].【分析】化简符号有两种类型:(1)前面带“+”的,等于原数;(2)前面带“-”的,等于原数的相反数.一般地,式子中含有奇数个“-”时,结果为负;式子中含有偶数个“-”时,结果为正.【解】(1)-(+5)=-5.(2)+(-7)=-7.(3)+(+2)=2.(4)-[-(-2)]=-2.1.只有符号不同的两个数叫作互为相反数.2.化简多重符号时,“+”可省略,有奇数个“-”时保留1个,有偶数个“-”时全部省略.教材P10练习第1,2,3,4题。
(白沙中学)七年级数学上册4.3.2《角的度量与计算》公开课课件

= 48°+25′+(48÷60)′ = 48°+25′+0.8′ = 48°+25.8′ = 48°+(25.8÷60)° = 48°+0.43° = 48.43°
【解析】实质是将秒、分逐级转化为度; 即秒化为分,再将分化为度。
简记:(秒÷60+分)÷60+度
7
第7页,共18页。
1.直接画出的有: 30°、45°、60°、90°;
2.通过和或差画出的有:
45°-30°=15°;
45°+30°=75°;
45°+60°=105°;
借助一副三角板,可以画出的角有15°、
30°、45°、60°、75°、90°、105°、
120°、135°、150°、165°、180°的角
60°+60°=120°; ,共12个,这些角都能被15整除。
(2)112.27°= °112′ ″ 16 12 解:(1)34.5°=34°+0.5°
=34°+0.5×60′ =34°+30′
=34°30′ (2)112.27°=112°+0.27×60′
=112°+16.2′
=112°+16′+0.2×60″
=112°16′12″
6
第6页,共18页。
例2 用度表示 48°25′48″.
2.(2013·中考)如图,O为直线AB上一点,
1
C
COB ,2则6∠310=' _______.
A
OB
【解析】 ∠1=180°-26°30´=153°30′
【答案】 153°30′
4.3.2角的度量与计算

典型例题
• 例1:从一时刻到另一时刻走过的 角度
• 从2点30分到2点45分,时针和分 针各走了多少度?
分析:时针每分钟走0.5°,分针每分钟走 6°,所走角度=每分钟走的度数×时间
解:时针所走角度 =0.5°×15=7.5° 分针所走角度 =6°×15=90°
练习:
• 1、从8点15分到8 点25分,时钟的分 针转了多少度?时 针转了多少度?
• 2、时钟的时针转 了20°角,则时间 过了多少分?
典型例题
• 例2 时针与分针的夹角 • 一钟表9点20分停了,这时表面
上时针与分针的夹角是多少度?
分析:“夹角”指的是两针所成角中小 于180°的那个角。
时针和分针中间夹着的大格数和小格所 占部分的和就是夹角。
⑴1.45°等于多少分? 等于多少秒?
解: ⑴ 60′×1.45 =87′, 60″×87 =5220″,
即 1.45°=87′=5220″.
例2计算
⑵1800″等于多少分? 等于多少度?
• 解:
⑵(
1 60
)
′×
1800=
30′,
(
1 60
) ° × 30
=
0.5°,
即 1800″=30′=0.5°.
30
分别确定四个城市相应钟表上时针与分针所成 角的度数
巴黎时间 30°
伦敦时间 0°
北京时间 120°
东京时间 90°
钟表问题
分针: 360°/h 6°/min 时针: 30°/h 0.5°/mi
n
下列关于钟表上时针与分针所成角的问题 (1)上午8时整,时针与分针成几度角? (2)下午7时55分,时针与分针所成的角是等 于120°、大于 120°,还是小于120°?
初中数学七上4.3.2 角的度量与计算 课件

自主学习
1.自主学习课本P126-P127,完成下面几个小题. (1)周角:__3_6_0_°的角. (2)平角:_1_8_0_°_的角. (3)直角:_平__角__的一半(即_9_0_°_的角). (4)锐角:小于_直__角__(即小于_9_0_°_)的角. (5)钝角:大于直角但小于_平__角__(即大于_9_0_°_但小于_1_8_0_°_)的 角.
知识抢答:
(1) 72°+ 32°=( 104 )° (2) 72 ′ - 32 ′ =(40 ) ′ (3) 52″ + 32 ″ =( 84 ) ″= 1 ′ 24 ″ (4) 12″ + 32 ° +22 ′ = 32 ° 22 ′ 12 ″ (5) 1°2′=( 62) ′ (6) 1°22′- 32 ′ =( 50 ) ′
规律总结:
把大单位化成小单位乘以进率.
类比时间转换,探究角度转换
3. 用度的形式表示72°36′36 ″
解:原式=72°+36′+36 ″
=72°+36′+(36÷60)′ =72°+36′+0.6′ =72°+36.6′ =72°+(36.6÷60)°
=72°+0.61°
=72.61°
规律总结: 把小单位化成大单位除以进率.
身体健康,学习进步!
类比时间单位,探究角度单位
知识抢答:
(1)1度= 60 分;
(2)
1分=
1 6
0
度;
(3) 1分= 60 秒;
(4) 1秒=
1 60
分;
(5) 1度=3600秒;
1
(6) 1秒= 3600
【湘教版】七年级上册:4.3.2.1《角的度量与计算(1)》题组训练(含答案)

4.3.2.1 角的度量与计算(第1课时)提技能·题组训练角的度、分、秒的换算1.36.33°可化为( )A.36°30′3″B.36°33′C.36°30′30″D.36°19′48″【解析】选D.因为0.33×60′=19.8′,0.8×60″=48″,所以36.33°=36°19′48″.【易错提醒】要注意进位原则(满60进1)和退位原则(借1当60).2.14时的钟表的时针与分针所形成的角的度数是( )A.30°B.45°C.60°D.90°【解析】选C.钟表的1个大格是周角=30°,14时的时针与分针形成的角是2个大格,故为60°.3.(1)24′= °.(2)39°12′= °.【解析】(1)24′=24×°=0.4°.(2)因为12′=12×°=0.2°,所以39°12′=39.2°.答案:(1)0.4 (2)39.24.(2014·新沂实验质检)将26°48′36″用度表示.【解析】把36″化成分,36″=′×36=0.6′,48′+0.6′=48.6′,把48.6′化成度,48.6′=°×48.6=0.81°.所以26°48′36″=26.81°.【知识归纳】角的度、分、秒的换算1.用度、分、秒表示度时,要先把度的小数部分化成分,再把分的小数部分化成秒,用公式1°=60′,1′=60″.2.用度表示度、分、秒时,要先把秒化成分,再把分化成度,用公式1″=′,1′=°.5.(1)把26.29°转化为度、分、秒表示的形式.(2)把33°24′36″转化成度表示的形式.【解析】(1)26.29°=26°+0.29°=26°+0.29×60′=26°+17.4′=26°+17′+0.4×60″=26°17′+24″=26°17′24″.(2)33°24′36″=33°+24′+36×′=33°+24′+0.6′=33°+24.6′=33°+24.6×°=33.41°.6.(1)1.05°等于多少分?等于多少秒?(2)将70.23°用度、分、秒表示.【解析】(1)60′×1.05=63′;3600″×1.05=3780″.所以1.05°等于63分,等于3780秒.(2)将0.23°化为分,可得0.23×60′=13.8′,再把0.8′化为秒,得0.8×60″=48″.所以70.23°=70°13′48″.角度的运算1.40°15′的一半是( )A.20°B.20°7′C.20°8′D.20°7′30″【解析】选D.×40°15′=20°+7.5′,0.5′=0.5×60″=30″.所以40°15′的一半是20°7′30″.2.计算:86°23′12″-67°36′50″= .【解析】86°23′12″-67°36′50″=86°22′72″-67°36′50″=85°82′72″-67°36′50″=(85-67)°(82-36)′(72-50)″=18°46′22″.答案:18°46′22″3.计算:(1)12°17′×4.(2)159°52′÷5(精确到分).【解析】(1)12°17′×4=12°×4+17′×4=48°+68′=48°+(1°+8′)=49°8′.(2)159°52′÷5=159°÷5+52′÷5=31°+4°52′÷5=31°+(4×60′+52′)÷5≈31°58′.【知识归纳】角度的运算1.角度相加,应是度与度相加,分与分相加,秒与秒相加.但要注意度、分、秒之间的进位是60进制,进位时,60″=1′,60′=1°.2.角度相减,度与度相减,分与分相减,秒与秒相减.当分与分相减不够减时,应向度借,当秒与秒相减不够减时,应向分借,借位时,1°=60′,1′=60″.3.角度与数字相乘,就是用度、分、秒分别与数字相乘,如果满60分要进1度,满60秒要进1分.4.角度除以数字,先用度除以数字,如果度有余数,要将度余数乘以60化为分,然后再用分除以数字,若有余数,再把余数乘以60化成秒,再用秒除以数字.并注意题中要求的精确度,进行四舍五入.【变式训练】计算:(1)15°24′×5.(2)31°42′÷5.【解析】(1)15°24′×5=75°120′=77°.(2)31°42′÷5=6°+1°42′÷5=6°+102′÷5=6°+20′+2′÷5=6°20′+120″÷5=6°20′+24″=6°20′24″.4.(2014·鸡西质检)如图,OC是∠AOD的平分线,OB是∠AOC的平分线,若∠COD=53°18′,求∠AOD和∠BOC.【解析】因为OC是∠AOD的平分线,所以∠AOD=2∠COD,∠AOC=∠COD,因为∠COD=53°18′,所以∠AOD=2×53°18′=106°36′,∠AOC=53°18′.因为OB是∠AOC的平分线,所以∠BOC=∠AOC=×53°18′=26°39′.【错在哪?】作业错例课堂实拍钟表上3时30分时的时针与分针的夹角是多少?(1)错因:_________________________________________________________(2)纠错: __________________________________________________________________________________________________________________________________________________________________________________________答案: (1)没有弄清楚时针所在的位置.(2) 3时30分时,分针指向6,时针在3和4的中间,所以时针和分针之间的夹角等于2个半大格的角度,又因为每个大格所夹的角度是30°,所以3点30分时,时针分针夹角是:30°×2+30°÷2=75°.。
湘教版数学七年级上册4.3.2《角的度量与计算》说课稿

湘教版数学七年级上册4.3.2《角的度量与计算》说课稿一. 教材分析《角的度量与计算》是湘教版数学七年级上册4.3.2的内容。
本节课的主要内容是让学生掌握角的度量方法,学会使用量角器度量角的大小,并能够进行角的计算。
这部分内容是学生学习几何的基础知识,对于培养学生的空间观念和逻辑思维能力具有重要意义。
在教材中,首先介绍了角的度量单位,即度、分、秒,然后讲解了量角器的使用方法,最后通过实例让学生学会用度量结果来解决实际问题。
教材内容由浅入深,循序渐进,符合学生的认知规律。
二. 学情分析七年级的学生已经掌握了角的有关知识,对于角的概念和分类有一定的了解。
但是,学生在角的度量方面的实践操作能力还不够强,对于量角器的使用方法还不够熟练。
因此,在教学过程中,教师需要注重学生的实践操作,引导学生掌握量角器的使用方法,提高学生的动手能力。
三. 说教学目标1.知识与技能目标:让学生掌握角的度量单位,学会使用量角器度量角的大小,并能够进行角的计算。
2.过程与方法目标:通过观察、操作、思考、交流等过程,培养学生的空间观念和逻辑思维能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的合作意识和创新精神。
四. 说教学重难点1.教学重点:角的度量单位,量角器的使用方法,角的计算。
2.教学难点:量角器的使用方法,角的计算。
五. 说教学方法与手段本节课采用讲授法、示范法、练习法、合作学习法等教学方法。
同时,利用多媒体课件、量角器等教学手段,帮助学生直观地理解角的概念,提高学生的学习兴趣。
六. 说教学过程1.导入:通过复习旧知识,引导学生回顾角的概念和分类,为新课的学习做好铺垫。
2.讲解:讲解角的度量单位,讲解量角器的使用方法,引导学生动手操作,掌握量角器的使用技巧。
3.练习:设计一些练习题,让学生运用所学知识进行角的度量和计算,巩固所学内容。
4.总结:对本节课的内容进行总结,强调角的度量和计算的重要性。
5.拓展:引导学生思考角的度量和计算在实际生活中的应用,激发学生的学习兴趣。
4.3.2 第1课时 角的度量与计算

点击进入word链接
课件目录
首页
末页
第1课时 角的度量与计算
答案
点击进入答案PPT链接
点击进入答案word链接
课件目录
首页
末页
课件目录
首页
末页
第1课时 角的度量与计算
解:(1)∠MON=∠MOC+∠CON =12∠AOC+12∠COB =12(∠AOC+∠COB) =12×(28°+42°) =35°.
课件目录
首页
末页
第1课时 角的度量与计算
(2)OM,ON 的位置发生变化. 理由:当将 OC 绕点 O 转动时,∠AOC 的大小发生变化.∵∠AOM=12∠AOC, ∴∠AOM 的度数也发生变化. 又∵射线 OA,OB 的位置不变, ∴OM 的位置随 OC 位置的变化而变化. 同理,ON 的位置随 OC 的位置变化而变化.
第1课时 角的度量与计算
归类探究
类型之一 角的度数的换算 (1)用度、分、秒表示 42.34°;
(2)用度表示 15°24′36″. 解: (1)先把 0.34°化为分:60′×0.34=20.4′, 再把 0.4′化为秒:60″×0.4=24″, ∴42.34°=42°20′24″.
课件目录
首页
课件目录
首页
末页
第1课时 角的度量与计算
(3)∠MON 的大小不变,∠MON=35°. ∠MON=12∠AOC+12∠COB =12(∠AOC+∠COB) =12∠AOB =12×70° =35°.
课件目录
首页
末页
第1课时 角的度量与计算
9.如图 4-3-21①,将笔记本活页的一角折过去,使角的顶点 A 落在点 A′处, BC 为折痕.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
判一判
1)一个角的余角必为锐角. ( √ ) 2)一个角的补角必为钝角. (× ) 3)同一个角的补角比它的余角大90度. (√ ) 4)互余的两个角一定都是锐角,两个锐角一定互余. ( ×) 5)如果∠1=30°,∠2=25°,∠3=35°,那么∠1 、∠2、∠3这三个角互为余角. ( × )
1 3
,
求这个角的度数
解:设这个角为x°,
则这个角的余角为(90-x)°,
补角为(180-x)°.
根据题意,得 90 - x = 13(180 - x)
,
解得
x = 45 .
因此,这个角的度数为45°.
•20
练习
1. 填空: (1) 105°26′的补角等于 74°34′ ;
(2) 28°25′32″的余角等于 61°34′28″ .
那么∠5与∠6的大小有什么关系?
(b)
动脑筋
(4)已知∠1与∠2互余,∠3与∠4互余,如果 ∠1=∠3,那么∠2与∠4的大小有什么关系?
结论
同角或等角的余角相等.
典例精析
例1. 如图,∠AOB与∠BOD互为余角,OC是∠BOD 的平分线,∠AOB=29.66°,求∠COD的度数.
解:因为∠AOB与∠BOD互为余角,
60o
80o
100o
120o
150o
170o
•8
观察与思考
∠α
∠α的余角
5°
85°
32°
58°
45°
45°
77°
13°
62°23′ 27°37′
x°(0<x<90) (90-x)°
∠α的补角 175° 148° 135° 103°
117°37′ (180-x)°
观察可得结论: 锐角的补角比它的余角大__9_0_°_.
2. 如图,∠BOD = 118°,∠COD 是直角, OC 平分∠AOB, 求∠AOB的度数.
答:∠AOB的度数为56度.
课堂小结
互余
两角间的 1 2 90
数量关系 (1 90 2)
互补
1 2 180 (1 180 2)
对应图形
性质
同角或等角的 余角相等
同角或等角的 补角相等
•23
•4
概念学习
2 1
ห้องสมุดไป่ตู้
如果两个角的和等于90°( 直角 ),就说这 两个角互为余角 ( 简称为两个角互余 ).
如图,可以说 ∠1 是 ∠2 的余角,或∠2 是∠1的余 角,或∠1和 ∠2互余.
几何语言表示为: ∵∠1+∠2=90°, ∴∠1与∠2互为余角
•5
概念学习
4 3
如果两个角的和等于180°(平角),就说 这两个角互为补角 ( 简称为两个角互补 ).
作业
P130 习题4.3 A组 6、7、8
结束
如图,可以说 ∠3 是 ∠4 的补角,或 ∠4是 ∠3 的 补角,或 ∠3 和 ∠4 互补.
几何语言表示为: ∵∠3+∠4=180°, ∴∠3与∠4互为补角
•6
练一练
1.图中给出的各角,哪些互为余角?
15o
24o
46.2o
75o
66o
43.8o
•7
练一练
2.图中给出的各角,哪些互为补角?
10o
30o
•10
动脑筋 (1)如图(a),∠1与∠2互补,∠1与∠3互补, 那么∠2与∠3的大小有什么关系?
(a)
结论
同角的补角相等.
动脑筋
(2)已知∠1与∠2互补,∠3与∠4互补,如果 ∠1=∠3,那么∠2与∠4的大小有什么关系?
结论
等角的补角相等.
结论
同角(或等角)的补角相等.
动脑筋
(3)如图(b),∠4与∠5互余,∠4与∠6互余,
所以∠BOD = 90°-∠AOB = 90°-29.66°= 60.34°.
又因为OC是∠BOD的平分线,
30.17° 60.34°
29.66°
所以 ∠COD =
12∠BOD
=
1× 2
60.34° = 30.17°.
因此,∠COD 的度数为 30.17°.
•19
例2.已知一个角的余角是这个角的补角的
4.3.2 角的度量与计算
第2课时
导入新课
情境引入
2
比 萨 斜 塔
1
•2
比 萨 斜 塔
3 1
•3
讲授新课
一 余角和补角的概念
合作探究
活动:将一张长方形纸片,
2
沿一个角折叠后,折痕与长 1
方形的边形成了4个角. 思考:
4 3
1. ∠1 与∠2 有什么数量关系?
∠1+∠2 = 90°
2. ∠3与∠4有什么数量关系? ∠3+∠4 = 180°