数列的排列规律(三年级)

合集下载

三年级 数列规律 (附带完整答案)

三年级 数列规律 (附带完整答案)

第九讲 数列规律在 今天这节课中,我们将来研究数列问题.教师通过示例引导学生正确认识数列,并且帮助学生掌握研究数列、发现数列规律的方法,以及获得利用规律解决问题的能力. 知识点 1、掌握一些常见的数列的规律.2、掌握一些特殊数列的规律,并能熟练应用规律解决问题.3、理解掌握运用数列规律解决数阵问题.分析:小王接着无法报了,因为观察小王和小李报出的所有数:172,84,40,118,7,可以发现,报数的规律是按前一数的一半减2后往下报的,但是7再往下报的话就不是整数了,所以小王接着无法再往下报了.日常生活中,我们经常接触到许多按一定顺序排列的数,如: (1)自然数:1,2,3,4,5,6,7, (1)(2)年份:1990,1991,1992,1993,1994,1995,1996(3)某年级各班的学生人数(按班级顺序一、二、三、四、五班排列)45,45,44,46,45像上面的这些例子,按一定次序排列的一列数就叫做数列.数列中的每一个数都叫做这个数列的项,其中第1个数称为这个数列的第1项,第2个数称为第2项,…,第n 个数就称为第n 项.如数列(3)中,第1项是45,第2项也是45,第3项是44,第4项是46,第5项是45.根据数列中项的个数分类,我们把项数有限的数列(即有有穷多个项的数列)称为有穷数列,把项数无限的数列(即有无穷多个项的数列)称为无穷数列,上面的几个例子中,(2)(3)是有穷数列,(1)是无穷数列.教学目标专题精讲想挑 战 吗?小王和小李玩数字游戏,小王说:“我先报数,你得按规律往下报,不许瞎报.”于是小王先报:“172.”小李说:“没看到规律,我报不出,你再报两个.”小王又报:“84,40.”小李说:“行了,我报18,7.” 你知道小王下一个该报几吗?(一)找数列中的规律【例1】观察下面的数列,找出其中的规律,并根据规律,在括号中填上合适的数.(1)100,95,90,85,80,(),70(2)1,3,6,10,(),21,28,36,()(3)1,3,9,27,(),243(4)1,8,27,64,125,(),343(5)2,1,3,4,7,(),18,29,47(6)1,2,6,24,120,(),5040分析:(1)100,95,90,85,80,(),70通过观察不难发现,从第2项开始,每一项都比它前面一项少5,也就是说每相邻两项所得的差都等于5.因此,括号中应填的数是75,即:80-5=75.像(1)这样,相邻两项之间的差是定值,我们把这样的数列叫做等差数列.(2)1,3,6,10,(),21,28,36,()(方法1)先计算相邻两数的差,有:3-1=2, 6-3=3,10-6=4,……,28-21=7,36-28=8,……由此可以推知这些差一次为2、3、4、5、6……,所以这列数从小到大地排列规律是相邻两数的差按2、3、4、5、6……增加,括号里应填15,45,即10+5=15,36+9=45(方法2)继续考察相邻项之间的关系,可以发现:因此,可以猜想,这个数列的规律为:每一项等于它的项数与其前一项的和,那么,第5项为15,即15=10+5,最后一项即第 9项为 45,即 45=36+9.代入验算,正确.(方法3)通过观察,这一列数还有如下的规律:第1项:1=1第2项:3=1+2第3项:6=1+2+3第4项:10=1+2+3+4第5项:()第6项:21=1+2+3+4+5+6……可以得到这个数列的规律是:每一项都等于从1开始,以其项数为最大数的n个连续自然数的和.因此,第5项为15,即:15=1+2+3+4+5;第9项为45,即:45=1+2+3+4+5+6+7+8+9.(3)1,3,9,27,(),243此数列中,从相邻两项的差是看不出规律的,但是,从第2项开始,每一项都是其前面一项的3倍.即:3=1×3,9= 3×3,27=9×3,也就是说相邻两项之间的商相等.因此,括号中应填 81,即81= 27×3,代入后, 243也符合规律,即 243=81×3.像(3)这样,相邻两项之间的商是定值,我们把这样的数列叫做等比数列.通过观察可以发现: 1=1×1×1,8=2×2×2,27=3×3×3, 64=4×4×4,125=5×5×5,343=7×7×7 我们把这样的数列叫做立方数列,即每一项等于其项数乘以项数再乘以项数,所以,括号里应填6×6×6的积216.(5)2,1,3,4,7,(),18,29,47这个数列即不是等差数列,也不是等比数列,但是可以发现,从第三项开始每一项都等于前面两项地和,即:3=1+2,4=1+3,7=3+4,……,47=18+29,所以括号中的数应该是:4+7=11.(6)1,2,6,24,120,(),5040(方法一)这个数列不同于上面的数列,相邻项相加减后,看不出任何规律.考虑到等比数列,我们不妨研究相邻项的商,显然:所以,这个数列的规律是:除第1项以外的每一项都等于其项数与其前一项的乘积.因此,括号中的数为第6项720,即 720=120×6.(方法二)本题也可以考虑连续自然数,显然:第1项 1=1第2项2=1×2第3项6=1×2×3第4项24=1×2×3×4……所以,第6项应为1×2×3×4×5×6=720【例2】观察下面的数列,找出其中的规律,并根据规律,在括号中填上合适的数.(1)3,4,8,8,13,(),18,32,(),64(2)18,3,15,3,12,3,(),()(3)1,1,1,3,5,9,17,(),()(4)1,2,6,16,44,(),328分析:(1)3,4,8,8,13,(),18,32,(),64通过观察发现,前面的方法都不适用于这个数列,但是如果隔着看这个数列中的一些数是非常有规律的,如:3,8,13,18,而他们恰好是第一项、第三项、第五项、第七项,所以不妨把数列分为奇数项(即第1,3,5,7,9项)和偶数项(即第2,4,6,8项)来考虑,把数列按奇数和偶数项重新分组排列如下:奇数项:3,8,13,18,()偶数项:4,8,(),32,64可以看出,奇数项构成一等差数列,偶数项构成一等比数列.因此,第9项应为23(18+5=23),第6项为16(8×2=16).如果隔着看,如果第一个数18减3就得到第二个数15,15减3就得到第五个数12,而第二、第四……个数始终是3,根据这一规律,括号中应填9和3像(1)(2)这样的数列,每个数列中都含有两个系列,这两个系列的规律各不相同,类似这样的数列,称为双系列数列或双重数列.(3)1,1,1,3,5,9,17,(),()可以发现, 3=1+1+1,5=1+1+3,9=1+3+5,从第四个数起,每一个数都等于前三个数的和,可知需填补的数字为: 5+9+17=31 , 9+17+31=57本题考虑的是相邻四个数地直接关系,这一类题都是考虑后面一个数字与前面几个数字地共同关系,由于前面几个数字可以进行的运算方式有很多,所以这种题型的变化方式也很多.(4)1,2,6,16,44,(),328观察发现,6=2×(2+1),16=2×(2+6),44=2×(16+6),328=2×(120+44),所以,应填120=2×(44+16).【例3】观察下面的数列,找出其中的规律,并根据规律,在括号中填上合适的数.(1)4+2,5+8,6+14,7+20,(),……(2)(1,2,100),(2,4,90),(3,8,80),(4,16,70),()(3)1×3,2×2,1×1,2×3,1×2,2×1,1×3,()分析:(1)4+2,5+8,6+14,7+20,(),……这排加法算式,前面一个数构成数列:4,5,6,7,……;后一个数构成数列:2,8,14,20,…….对于数列4,5,6,7,……,由观察得知,第2项等于第1项加上1,第3项等于第1项加上2,第4项等于第1项加上3,……,所以第5项等于第1项加上4,即4+4=8.同理,数列:2,8,14,20,……,第2项等于第1项加上1×6,第3项等于第1项加上2×6,第4项等于第1项加上3×6,……,所以第5项等于第1项加上4×6,即2+4×6=26.所以,括号里应填8+26.(2)(1,2,100),(2,4,90),(3,8,80),(4,16,70),()观察这个数列中每一组中对应位置上的数字,可以得到如下规律:每组第一个是1、2、3、4、......这是一个自然数列,第二个是2、4、8、16......,这是一个等比数列第三个100、90、80、70......,这是一个递减的等差数列;所以,第5组中的数应该是:5,16×2,70-10,即第五组的括号中应填(5,32,60).(3)1×3,2×2,1×1,2×3,1×2,2×1,1×3,()这是一排乘法算式,观察可以发现,前面一个数的规律是:1,2,1,2,1,2,1……;后一个数的规律是:3,2,1,3,2,1,3,……,对于前一个数列,是由1、2两个数字循环组成的,所以第八项应为2;对于第二个数列,是由3、2、1循环组成的,所以第八项的第二个数字应为2.所以,括号里应填2×2.【例4】建筑工人将一堆木头堆成如下图的形状,你知道如果按这样的方法堆木头,一共堆15层的话,第15层有多少根?分析:通过观察这堆木头可以发现,最上面的一层有1根木头,第二层有2根,第三层有3根,第四层有4根,……我们可以将这道题转化一下,有一组数:1,2,3,4,5,6,……问第十五层有多少根,也就是求这组数中第十五个数是什么,通过我们刚刚学过的我们知道,这是一个等差数列,第十五项为15,也就是第十五层有15根木头.[拓展]阿尔法喜欢收集小木棒,并将它们按右图的形状摆放在书桌上,最底下一层阿尔法摆放了27根小木棍,接着摆放了26根,以此类推,到最后阿尔法发现最上面一层只放了3根小木棒后就没有了,你知道阿尔法一共收集了多少根小木棒吗?分析:通过读题我们知道,阿尔法的这堆小木棒摆放有一定的规律:第一层:3,第二层:4,第三层:5,第四层:6,……,最后一层:27,通过观察可以得出,这一列数构成等差数列,问阿尔法一共有多少小木棒,也就是将每层小木棒的数目加起来的和,即:3+4+5+6+7+8+9+10+11+…+25+26+27=(27+3)+(26+4)+……+(16+14)+15=30×12+15=375,所以,阿尔法一共收集了375根小木棒.【例5】有一列数:1,1989,1988,1,1987,….从第三个数起,每一个数都是它前面两个数中大数减小数的差.那么第1989个数是多少?分析:为了找到规律,我们把这列数再往下写出一些:1,1989,1988,1,1987,1986,1,1985,1984,1,1983,1982,1,1982,…,这样我们就可以很容易的看出规律了,即每三个一组,第一个为1,后两个是从1989依次减1排下去;1989/3=663,共有663组,去掉每一组中的1,剩下663×2=1326个,从1989顺序递减,到最后一个应该是1989-1326+1=664.所以,第1989个数是664.(二)特殊数列中的规律:【例6】仔细观察下面的数表,找出规律,然后补填出空缺的数字.(1)62493758412816(2)282113589914分析:(1)观察数表中的数,发现每一列中:37-16=21,49-28=21,62-41=21,即第二行的数字比第一行对应位的数字都大21 ,所以空缺处应填79(58+21=79).(2)观察后两行发现,5+9=14,8+13=21,即第一列的数字是同行中后两列的数之和,所以空缺处应填19(28-9=19).【例7】 下图所示的两组图形中的数字都有各自的规律,先把规律找出来,再把空缺的数字填上:(1)3637830375956?(2)2020101816825( )( )分析:(1)通过观察前两个图形中的数,可以发现:30=(5+7+3)×2,36=(8+3+7)×2,所以空缺的数字应为:(5+6+9)×2=40.(2)观察前两个圆圈,可以发现如下关系:20-10=10,10×2=20;18-10=8,8×2=16. 所以第三个圆圈中最下面的括号中应填15(25-10=15),右边的括号应填30(15×2=30).[拓展]图中各个数之间存在着某种关系.请按照这一关系求出数a 和b .分析:图中5个圆、10个数字,其中5个数字是只属于某一个圆本身的,5个数字是每两个圆相重叠的公共区域的,观察发现:10+20=15×2,20+40=30×2,也就是说两圆重叠部分的公共区域的数字2倍,正好等于两圆独有数字之和,所以,a=2×17-10=24,b=(16+40)÷2=28.最后验算一下:20×2-16=24,符合.[趣味数学]先仔细看看右图的方阵,你会发现方阵中每一个方格有4个数字,可是中间的方格少了一个数字,你能找出规律,并在“?”处填上适当的数吗?分析:方格中上2个数是1个三位数,下2个数是1个两位数,以右上方的方格为例,上面是357,下面是51,两数相除的商为7,各格上下两数相除的商都是7,这就是我们要找的规律,根据这一规律,“?”处应填4.【例8】 先观察下面各算式,再按规律填数.(1) 1×9+2=11 (2) 21×9=18912×9+3=111 321×9=2889 123×9+4=1111 4321×9=38889 12345×9+6=_________ 54321×9=( ) 1234567×9+____=___________ 654321×9=( )44 16 319 62 830 8 4 ?35 75 111 21 6分析:(1)在这一组算式中,得数都是由若干个“1”组成的.1的个数恰好是后面的加数.如1×9+2,后面的加数是2,结果中也就有2个1.根据这一规律,12345×9+6的结果是由6个1组成,即111111.最后一个算式应当是1234567×9+8=11111111.(2)通过观察可以看出这是一组排列有序的数字“梯田”,一层一层有规律的向下延伸.乘号前面是21、321、4321,乘号后面都是9,相乘的答案的最高位分别是1、2、3,而位数分别是三位数、四位数、五位数.由此可得:54321×9的最高位是4,位数是5+1=6,个位上都是9,其余各位都是8;654321×9的最高位是5,个位是9,其余各位都是8,位数是6+1=7.所以,54321×9=488889, 654321×9=5888889.(三) 数阵中数列的规律【例9】 用数字摆成右面的三角形,请你仔细观察后回答下面的问题:(1) 这个三角阵的排列有何规律?(2) 根据找出的规律写出三角阵的第6行、第7行. (3) 推断第10行的各数之和是多少? 分析:(1)首先可以看出,这个三角阵的两边全由1组成;其次,这个三角阵中,第一行由1个数组成,第2行有两个数…第几行就由几个数组成;最后,也是最重要的一点是:三角阵中的每一个数(两边上的数1除外),都等于上一行中与它相邻的两数之和.如:2=1+1,3=2+1,4=3+1,6=3+3.(2)根据由(1)得出的规律,可以发现,这个三角阵中第6行的数为1,5,10,10,5,1;第7行的数为1,6,15,20,15,6,1.(3)要求第10行的各数之和,我们不妨先来看看开始的几行数. 第一行 1=1第二行 1+1=21第三行 1+2+1=22第四行 1+3+3+1=23第五行 1+4+6+4+1=24第六行 1+5+10+10+5+1=25其中,n2表示n个2相乘,即n 2222⨯⨯⨯个 ,n为自然数通过观察可以看出,每一行中n2中的n都等于行数减去1,至此,我们可以推断,第10行各数之和为29=512.[小知识]本题中的数表就是著名的杨辉三角,这个数表在组合论中将得到广泛的应用.杨辉三角最本质的特征是,它的两条斜边都是由数字1组成的,而其余的数则是等于它肩上的两个数之和. 其实,中国古代数学家在数学的许多重要领域中处于遥遥领先的地位.中国古代数学史曾经有自己光辉灿烂的篇章,而杨辉三角的发现就是十分精彩的一页. 杨辉,字谦光,北宋时期杭州人.在他1261年所著的《详解九章算法》一书中,辑录了如上所示的三角形数表,称之为“开方作法本源”图.[巩固]右图是按一定的规律排列的数学三角形,请问第10行第三个数是多少?分析:仔细观察左起第一个数的变化规律:第一行第一个数:1,第二行第一个数:1+1,第三行第一个数:1+1+2,第四行第一个数:1+1+2+3,……,所以第十行左起第一个数是:1+1+2+3+4+5+6+7+8+9=46,这个数字三角形的每一行都是等差数列(第一行除外),所以,第10行第三个数是48.【例10】自然数如右表的规律排列(1)求上起第10行,左起第7个数.(2)87在上起第几行,左起第几列?分析:(1)注意观察这个数表第一列数的排列规律,这些数是:1,4,9,16,25,…,这些数有一个共同特点,它们是每一行序数自己与自己相乘的积,所以,第10行左起第一个数是:10×10=100,而且从第三行开始,每一行的前几个数字都依次递减,所以第10行左起第7个数是:100-6=94.(2)注意数阵中几个数的变化规律是按从上到下拐弯向左的方向依次增加1,因为87=9×9+6,,所以,87在第6行左起第1个数后面9个,也就是第6行左起第10个.[拓展一]按图所示的顺序数数,问当数到1500时,应数到第几列?分析:(方法1)把数表中的每两行分为一组,则第一组有9个数,其余各组都只有8个数.有:(1500-9)÷8=186……3,所以,1500位于第188组的第3个数,即1500位于第④列.(方法2)考虑除以8所得的余数.第①列除以8余1,第②列除以8余2或是8的倍数,第③列除以8余3或7,第④列除以8余4或6,第⑤列除以8余5;而1500÷8=187……4,则1500位于第④列.当数到2007时,它在哪一列呢?(方法1)(2007—9)÷8=249……6,2007位于第251组的第6个数,2007位于第③列.(方法2)2007÷8=250……7,则2007位于第③列,[拓展二]毕达哥拉斯是个大数学家,有一次他正要出门拜访朋友,发现一个仆人不干活,躲在门外玩,于是,毕达哥拉斯命令这个仆人:“你看对面神庙共有七根柱子,现在你从左到右开始数,然后返回来接着数,我回来的时候你要告诉我第5000根柱子是哪一根!”这个仆人很聪明,他用不到一分钟的时间就得到了答案,你能做到吗?分析:转化为数学模型如下:A B C D E F G12345671312111098141516171819 (20)考虑到数表中的数呈S形排列,我们不妨把每两行分为一组,除去1,每组12个数,则按照组中数字从小到大的顺序,它们所在的列分别为B、C、D、E、F、G、F、E、D、C、B、A.因此,我们只要考察5000是第几组中的第几个数就可以了,因为5000是除去1后的第4999个数,4999÷13=384…7,即5000是第385组中的第7个数,所以,第5000根柱子位于F位置,是从左到右的第6根.[小结]学找数阵中的规律,应当像寻找数列中的规律一样,应注意几点1.仔细观察数阵中的所有数.2.注意观察相邻两个数之间的变化规律和同上一行地数的共同点.3.有些数阵不容易一下子找到或找对规律,要仔细观察,再做思考.4.找到规律后,多次举例进行验证.专题展望在本讲学习中,我们学习了数列的规律以及数阵中数列的规律问题,在以后的学习中我们将继续学习此类问题.练习三1.(例1)根据下列各串数的规律,在括号中填入适当的数:(1)3,6,9,12,( ),18,21(2)2,3,5,8,13,(),34,……(3)60,63,68,75,( ),95(4)6,1,8,3,10,5,12,7,( ),( )(5)0,1,1,2,3,5,8,( ),21(6)2,6,12,20,(),42,……分析:(1)数列中后一项比前一项大3,为等差数列,括号中填15(2)从第三项开始每一项都等于前面两项的和,8+13=21(3)数列中相邻两项的差依次增加2,所以括号里应填84(75+9=84)(4)观察可以发现这个数列是双重数列,奇数项为:6、8、10、12、…偶数项为:1、3、5、7…都是等差数列,所以括号中应分别填14(12+2=14)和9(7+2=9)(5)从第三项开始,每一项都等于前面两项的和,所以括号里应填13(5+8=13)(6)观察数列可以得到:2=1×2,6=2×3,12=3×4,20=4×5,42=6×7,所以括号中的数为:5×6=302. (例2)下面是两个具有一定的规律的数列,请你按规律补填出空缺的项: (1) 1,5,11,19,29,________,55; (2) 1,2,6,16,44,________,328.分析:(1)观察发现,后项减前项的差为:4、6、8、10、......所以,应填41(=29+12),41+14=55符合.(2)观察发现,6=2×(2+1),16=2×(2+6),44=2×(16+6),所以,应填120=2×(44+16),2×(120+44)=328符合.3. (例5)1,2,3,2,3,4,3,4,5,4,5,6,….上面是一串按某种规律排列的自然数,问其中第101个数至第110个数之和是多少?分析:观察发现,数列的规律为三个一组、三个一组,即1、2、3;2、3、4;3、4、5;4、5、6;……每一组的第一个数为从1开始的自然数列,每一组中的三个数为连续自然数,每组的第一个数都是这个组的组数;因为101÷3=33......2,说明第101个是第33+1=34组中的第二个数,那么应该是34+1=35;从101到110共有110-101+1=10个数,那么这10个数分别是:35、36,35、36、37,36、37、38,37、38;所以,他们的和为35+36+35+36+37+36+37+38+37+38=365.4. (例7)下图所示的图形中的数字都有各自的规律,先把规律找出来,再把空缺的数字填上:?6432874215532分析:通过观察前两个图形中的数,可以发现:15=(3×5×2)÷2,28=(2×4×7)÷2,也就是中间的数等于三个角上的数乘积的一半,所以,“?”中应填的数为:(3×4×6)÷2=36.5. (例10)下图所示的图表中的数字都有自的规律,先把规律找出来,再把空缺的数字填上:分析:观察表格中的数,第一行的数字已经全部给出,而剩下的几行都是求最后一个数字,就要考虑每一行中最后一个数字与前面数字的关系,由第一行数字规律可知,15=1+2+3+4+5 ,由此可得第二、三、四、五行最后一个数;同样方法观察竖行.所以横行依次为60,65,70,75,325,竖行依次为40, 65, 90, 115, 325成长故事狼怕圆圈小狐狸和小狼王分兔子时,由于小狐狸耍小聪明占了便宜,因此小狼王一直跟在后面追小狐狸.小狐狸飞快地往东跑,由于天黑看不清楚,只听得“咚”的一声,和一个从对面跑来的动物撞到了一起.“噔噔噔”,小狐狸一连倒退了3步,一屁股坐在了地上.小狐狸刚要发火,定睛一看,啊,是小狼王!小狐狸发现小狼王双眼通红,还发出逼人的凶光,不禁全身哆嗦了一下.它立刻用手一抹脸,现出了满脸的笑容,往前走了一小步问:“狼大哥,吃了几只兔子呀?这里的兔子肉还香吧?”小狼王大吼了一声说:“东边明明没有兔子,你却骗我说有65只兔子!看我不打死你!”小狐狸向后退了一步,双手乱摆说:“没有的事!我算得一点错也没有!”“叫你嘴硬!”小狼王说完就扑了上去,小狐狸扭头就跑.它突然看到路边有9个圆圈.小狼王看见圆圈也立刻停住了脚,它吃惊地说:“啊,9个绳套!”小狼王低头仔细一看,怎么回事,其中7个绳套里还有数字?这时耳边响起了一种浑厚有力的声音:“谁能把空圆圈中的数字填对,你想要干什么就会有什么!”小狼王说:“我来填左边的圈.1、3、7下一个该是几呢?是9.这些都是单数呀!”小狼王在圈里填上一个9,跳进圈里高兴地叫道:“我想吃兔子!”话音刚落,圆圈立刻变成了绳套,一下子套住了小狼王的脚,绳套往上一提,就把小狼王倒挂在树上了.小狐狸笑嘻嘻地说:“傻狼!这几个数的规律是:3=1×2+1,7=3×2+1,15=7×2+1,31=15 ×2+1,63=31×2+1,127=63×2+1.右边这个圈里填上127才没错!”小狐狸填上了127,又跳进圈里说:“我想吃山鸡!”“唿”的一声,一条绳子把小狐狸也倒挂在树上.原来这9个绳套是猴子、小熊、老山羊用来教训它们两个坏蛋的.https:///?userid=1787958560 1。

数列的规律与推理

数列的规律与推理

数列的规律与推理数列是由一系列数字按照一定规律排列而成的序列。

在数学中,数列的规律和推理具有重要的意义,它们可以帮助我们了解数字之间的关系,揭示数学世界中的奥秘。

本文将探讨数列的规律与推理,并提供一些实例来加深理解。

一、等差数列等差数列是指数列中相邻的两个数之间的差值保持不变。

换句话说,每一项都比前一项大(或小)相同的数。

等差数列的常见形式为An=a1+(n-1)d,其中An表示第n项,a1表示首项,d为公差。

例子1:考虑以下数列:1, 3, 5, 7, 9...这是一个等差数列,首项a1=1,公差d=2。

我们可以通过公式An=a1+(n-1)d来求得第n项。

例如,第6项A6=1+(6-1)2=11。

例子2:考虑以下数列:100, 90, 80, 70, 60...这也是一个等差数列,但是与例子1不同,公差为-10。

我们同样可以使用公式An=a1+(n-1)d,来求得第n项。

例如,第8项A8=100+(8-1)(-10)=20。

二、等比数列等比数列是指数列中相邻的两个数之间的比值保持不变。

换句话说,每一项都等于前一项乘以一个常数。

等比数列的常见形式为An=a1*r^(n-1),其中An表示第n项,a1表示首项,r为公比。

例子3:考虑以下数列:2, 4, 8, 16, 32...这是一个等比数列,首项a1=2,公比r=2。

我们可以通过公式An=a1*r^(n-1)来求得第n项。

例如,第6项A6=2*2^(6-1)=64。

例子4:考虑以下数列:81, 27, 9, 3, 1...这也是一个等比数列,但是与例子3不同,公比为1/3。

我们同样可以使用公式An=a1*r^(n-1),来求得第n项。

例如,第8项A8=81*(1/3)^(8-1)=1/9。

三、斐波那契数列斐波那契数列是一种特殊的数列,它的前两项是1,之后的每一项都等于前两项之和。

斐波那契数列的常见形式为Fn=Fn-1+Fn-2,其中Fn表示第n项。

数列规律总结技巧

数列规律总结技巧

数列规律总结技巧数列是数学中常见的一种数学对象,它由一系列按照特定规律排列的数字组成。

在学习数学的过程中,掌握数列的规律总结技巧对于解决问题和提高数学能力非常重要。

本文将分享一些数列规律总结的技巧和方法。

首先,我们来讨论一些常见的数列类型及其规律。

等差数列是最简单的一种数列,它的规律是每个数与它前面的数之差都相等。

例如,1,3,5,7,9就是一个等差数列,公差为2。

要总结等差数列的规律,我们可以观察数列中相邻两个数的差值是否相等,如果相等,那么这个数列就是等差数列。

接下来是等比数列,它的规律是每个数与它前面的数之比都相等。

例如,1,2,4,8,16就是一个等比数列,公比为2。

总结等比数列的规律时,我们可以观察数列中相邻两个数的比值是否相等,如果相等,那么这个数列就是等比数列。

除了等差数列和等比数列,还有一些其他常见的数列类型,如斐波那契数列、阶乘数列等。

对于这些数列,我们可以通过观察数列中数字之间的关系来总结它们的规律。

例如,斐波那契数列的规律是每个数等于前两个数之和,阶乘数列的规律是每个数等于前一个数乘以当前的数。

在总结数列规律时,我们可以利用数学公式和数学运算的性质。

例如,对于等差数列,我们可以利用等差数列的通项公式来计算任意位置的数值。

对于等比数列,我们可以利用等比数列的通项公式来计算任意位置的数值。

通过运用这些公式,我们可以更快地找到数列的规律。

此外,我们还可以利用数列的性质和特点来总结规律。

例如,对于一些特殊的数列,如回文数列和对称数列,它们具有特殊的对称性质,我们可以通过观察数列中数字的排列顺序和位置来总结它们的规律。

总结数列规律的技巧还包括数列的递推关系和递归关系。

数列的递推关系是指通过前面的数推导出后面的数的关系式。

例如,斐波那契数列的递推关系是F(n) =F(n-1) + F(n-2),其中F(n)表示第n个斐波那契数。

数列的递归关系是指通过后面的数推导出前面的数的关系式。

通过研究数列的递推关系和递归关系,我们可以总结出数列的规律。

三年级奥数找规律

三年级奥数找规律

斐波那契的兔子(数列)知识图谱斐波那契的兔子知识精讲一.数列1.定义:按一定顺序排列的一列数叫做数列.注意:(1)数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;(2)定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现.2.数列的项:数列中的每一个数都叫做这个数列的项.各项依次叫做这个数列的第1项(或首项),第2项,……,第n项(末项).二.常见的数列1.兔子数列(斐波那契数列):从第3项开始,每一项都等于前两项之和的数列.2.等差数列:从第二项起,每一项与它的前一项的差等于同一个数的数列.3.等比数列:从第二项起,每一项除以它的前一项的商等于同一个数的数列.三点剖析本讲主要培养学生的综合创新能力,其次还会注重培养学生的运算能力、观察推理能力和实践应用能力.本讲内容是在整数基本计算与找规律的基础上,进一步了解一列数中数与数之间的关系和规律.后续课程还会学习一些简单数列的计算.课堂引入例题1、 最近,唐小果在家附近的小公园里,总能看见好多小兔子,唐小果就想了解一下兔子繁殖.在上网浏览时遇到了这样一个问题:假设每生产一对兔子必须是一雌兔一雄兔,并且所有的兔子都能进行相互交配,所生下来的兔子都能保证成活.那么有一对兔子,每一个月可以生下一对小兔子,而且假定小兔子在出生的第二个月就可以再生小兔子,那么过三个月后,有多少对兔子?过半年后?9个月呢?带着这个问题,小果就去找她的小伙伴了……聪明的你,知道半年后有多少兔子吗?例题2、 写出课堂引入中每个月的兔子数量组成的这列数,观察有什么特点?兔子数列等例题1、 斐波那契数列(Fibonacci sequence ),又称黄金分割数列、因数学家列昂那多·斐波那契(Leonardoda Fibonacci )以兔子繁殖为例子而引入,故又称为“兔子数列”.一般而言,兔子在出生两个月后,就有繁殖能力,一对兔子每个月能生出一对兔子.如果所有兔子都不死,那么一年以后可以繁殖多少对兔子?我们不妨拿新出生的一对小兔子分析一下:第一个月小兔子没有繁殖能力,所以还是一对;两个月后,生下一对小兔子的对数共有两对;三个月以后,老兔子又生下一对,因为小兔子还没有繁殖能力,所以一共是三对.……以此类推我们利用表格找一找规律:这个是可以用枚举数出来的吧~第一个月,会新出生一对小兔子,所以总共有2对兔子.第二个月,原来的兔子会再生产一对小兔子,而第一个月出生的小兔子还不能生产,所以总共有3对小兔子.那第三个月,原来的兔子会再生产一对小兔子,第一个月出生的小兔子也可以再生产一对小兔子,但第二个月出生的小兔子,还不能生产,所以总共有5对兔子. 这不就是“斐波那契的兔子问题”吗?经过月数 0 1 2 3 4 5 6 7 … 幼崽对数 1 0 1 1 2 3 5 8 … 成兔对数 0 1 1 2 3 5 813… 总体对数11235813 21…幼崽对数=前一个月成年兔子对数;成年兔子对数=前一个月成年兔子对数+前一个月幼崽对数;总体对数=本月成年兔子对数+本月幼崽对数;我们不难发现幼崽对数、成兔对数、总体对数都构成一个数列.(1)一年后,幼崽对数、成兔对数、总体对数各是多少个?15个月之后呢?(2)相邻两个月之间兔子对数的差是多少呢?(3)兔子对数有什么规律吗?试着自己总结一下.例题2、一定数目的点或圆在等距离的排列下可以形成一个等边三角形,这样的数被称为三角形数.古希腊著名科学家毕达哥拉斯把数1,3,6,10,15,21……这些数量的(石子),都可以排成三角形,像这样的数称为三角形数.……仔细观察哦~13610(1)第8个图形中有多少个石子?第15个呢?(2)相邻两个图形的石子数有什么关系吗?这列数有什么规律吗?例题3、中国古代数学家在数学的许多重要领域中处于遥遥领先的地位.中国古代数学史曾经有自己光辉灿烂的篇章,而杨辉三角的发现就是十分精彩的一页.杨辉,字谦光,北宋时期杭州人.在他1261年所著的《详解九章算法》一书中,辑录了如上所示的三角形数表,称之为“开方作法本源”图.杨辉三角是一个由数字排列成的三角形数表,一般形式如下:11 11 2 11 3 3 11 4 6 4 11 5 10 10 5 1…………(1)第10行有几个数?分别是多少?(2)杨辉三角有什么特点?相邻两行有什么关系吗?随练1、斐波那契数列在自然科学的其他分支,有许多应用.例如:树木的生长,由于新生的枝条,往往需要一段“休息”时间,供自身生长,而后才能萌发新枝.所以,一株树苗在一段间隔,例如一年,以后长出一条新枝;第二年新枝“休息”,老枝依旧萌发;此后,老枝与“休息”过一年的枝同时萌发,当年生的新枝则次年“休息”.这个规律,就是生物学上著名的“鲁德维格定律”.观察下图,第一年、第二年、第三年、第四年……第八年各有多少分枝?这些数之间有什么规律?等差等比数列例题1、根据历史传说记载,国际象棋起源于古印度,至今见诸于文献最早的记录是在萨珊王朝时期用波斯文写的.据说,有位印度教宗师见国王自负虚浮,决定给他一个教训.他向国王推荐了一种在当时尚无人知晓的游戏.国王当时整天被一群溜须拍马的大臣们包围,百无聊赖,很需要通过游戏方式来排遣郁闷的心情.国王对这种新奇的游戏很快就产生了浓厚的兴趣,高兴之余,他便问那位宗师,作为对他忠心的奖赏,他需要得到什么赏赐.宗师开口说道:请您在棋盘上的第一个格子上放1粒麦子,第二个格子上放2粒,第三个格子上放4粒,第四个格子上放8粒……(1)第8个格子上放了几粒麦子?第10个格子呢?(2)前5个格子一共放了多少粒麦子?前8个格子呢?(3)这组数列中,相邻两个数有什么规律吗?例题2、数列在生活中也有很多的应用,被用于解决实际问题.如:(1)一百零八塔是中国现存的大型古塔群之一,位于银川市南60公里的青铜峡水库西岸崖壁下,塔群坐西面东,依山临水,塔基下曾出土西夏文题记的帛书和佛祯,可能建于西夏时期是喇嘛式实心塔群.佛塔依山势自上而下,按1、3、3、5、5、7、9、11、13、15、17、19的奇数排列成十二行,总计一百零八座,形成总体平面呈三角形的巨大塔群,因塔数而得名.那么,按照这样的规律,第15行有多少个佛塔?第20行呢?(2)在校技能节比赛中,值周班的同学负责收集同学们喝完水的矿泉水瓶.学校8点开场比赛,每一个小时清点一次收集到的矿泉水瓶,9点钟共收到了120个,10点钟收到了240个,11点钟收到了480个,按这个规律,到下午1点钟,共收到了多少个矿泉水瓶?(3)学校礼堂共有25排座位,后一排比前一排多两个座位,最后一排有70个座位,问第20排有多少个座位?第10排呢?第1排呢?数列在生活中的应用真不少呢!例题3、二分裂一般指生殖方式,无丝分裂、有丝分裂、减数分裂是真核有性生殖的细胞的分裂方式,原核生物如细菌以无性或者遗传重组二种方式繁殖,最主要的方式是以二分裂这种无性繁殖的方式:一个细菌细胞壁横向分裂,形成两个子代细胞.(1)开始有一个细菌,假设一个细菌分裂成两个子代细胞需要30秒,3分钟后有多少个细胞?(2)一个生物瓶中装有1个细菌,假设一个细菌分裂成两个子代细胞需要10秒,半小时后,整个瓶中都是细菌,那么什么时候生物瓶中有半瓶的细菌细胞?仔细观察题目,看清要求哦~随练1、下图是用火柴棒拼出的一列图形,依次类推,则第十个图形中的火柴棒的根数有________根,第n个图形中的火柴棒的根数有________根.随练2、如图一个堆放钢管的V形架的最下面一层放一根钢管,往上每一层都比它下面一层多放一个,最上面一层放30根钢管,求这个V形架上共放着多少根钢管?易错纠改例题1、将一条长方形的纸条对折一次可以得到1条折痕,保持折痕平行时对折两次可以得到3条折痕,对折三次可以得到7条折痕,对折四次可以得到15条折痕,对折十次可以得到多少条折痕?我拿张纸来试一试不就知道了吗?我还是找找它们之间的规律吧?1、3、7、15……下一个是不是29呢?聪明的你知道是多少吗?拓展1、分析并口述题目的做题思路及方法.找规律填数:0,3,8,15,24,(),48,63.2、一根绳子弯成如图形状,当用剪刀沿一条虚线剪断时,绳子被剪成5段;沿两条虚线剪断时,绳子被剪成9段;沿三条虚线剪断时,绳子被剪成13段;以此方法,沿10条虚线剪断时,绳子被剪成多少段?(1)(2)(3)3、下面是由大小相同的小正方体木块叠放而成的图形,第一个图中有1个木块,第二个图中有6个木块,第三个图中有15个木块,第四个图中有28个木块,按照这样的规律摆放下去,则第七个图中小木块的个数是多少?4、下面是按规律排成的一列数,从左向右数第九个数是多少?3,5,9,17,33,65,……5、观察下面的数列,找出其中的规律,并根据规律,在括号中填上合适的数.(1)2,5,8,11,(),17,20.(2)19,17,15,13,(),9,7.(3)1,3,9,27,(),243.(4)64,32,16,8,(),2.(5)1,1,2,3,5,8,()21,34.(6)1,3,4,7,11,18,(),47.(7)1,3,6,10,(),21,28,36,().(8)1,2,6,24,120,(),5040.6、小明上楼梯,每次走一个台阶或两个台阶现在他要上一段楼梯,有12个台阶,有多少种方法呢?(可以先看台阶有1、2、3、4个……会有多少种方法)7、一条直线上一个点可以构成0条线段,两个点可以构成1条线段,三个点可以构成3条线段,四个点可以构成6条线段,以此类推15个不同的点可以构成多少条线段?。

小学三年级奥数——01找规律

小学三年级奥数——01找规律
〔1〕1,2,3,4,6…… 〔2〕1,2,4,8,16…… 〔3〕1,0,0,1,0 ,0, 1,0,0 ……
解题思路:
从连续的几个数中找到规律,就可以知道 其余所有的数。
寻找数列的排列规律,要从相邻两数的和、 差、积、商考虑;要从数列的排列分组考 虑等多个角度考虑。
〔1〕相邻两数的差是固定不变的
练习题6:
D
等比数列:后项除以前项为定值的叫做等比数列。
பைடு நூலகம்
〔4〕单双项分组找规律
〔〕.〔〕…… 〔〕.〔〕…… 〔〕.〔〕…… 〔〕.〔〕…… 〔〕.〔〕 〔〕.〔〕……
〔5〕连续型分组找规律
〔〕.〔〕…… 〔〕.〔〕……
〔6〕后项由前项推导而出:
〔〕.〔〕…… 〔〕.〔〕…… 〔〕.〔〕…… 〔〕.〔〕…… 〔〕.〔〕……
例: 3,6,9,12,〔〕,〔〕 2 , 4 , 6 , 8 , 10,〔〕,〔〕
等差数列:后项减前项的差是定值。
〔2〕相邻两数的差是变化的
1,2 , 4 , 7,11,〔 〕,〔 〕…… 1,2,5,10,17,〔〕,〔〕……
〔3〕与相邻两数的商和积有关 〔〕.〔〕…… 〔〕.〔〕….. 〔〕.〔〕……
〔7〕与项数有关
〔〕.〔〕…… 〔〕.〔〕…… 〔〕.〔〕……
图形型找规律:
方法: 观察图形的变化,主要从各图形的形状、方向、 数量、大小及各组成局部的相对位置入手,从 中找出变化规律。找到每局部的相关规律是关 键。
例1:
练习题1
例2:
练习题2:
例4:
练习题4:
例5:
练习题5:
例6:
数字型找规律:
〔1〕1,2,3,4,6…… 〔2〕1,2,4,8,16…… 〔3〕1,0,0,1,0 ,0, 1,0,0 ……

数列中的规律

数列中的规律

数列中的规律数列是数学中常见的概念,它是一组按照特定顺序排列的数。

数列中的规律是指数列中各项之间存在的一种有序的关系。

在数学中,研究数列的规律与性质有助于我们揭示数学的奥秘,深入理解数学的本质。

一、等差数列的规律等差数列是指数列中各项之间的差值恒定的特殊数列。

在等差数列中,每一项与前一项的差值固定为一个常数,这个常数被称为公差。

以等差数列的一般形式表示为:an = a1 + (n-1)d,其中 an 表示数列中的第 n 项,a1 表示数列的首项,n 表示数列中的项数,d 表示公差。

等差数列的规律非常明显,每一项与前一项之间的差值恒定。

例如,数列2, 5, 8, 11, 14就是一个公差为3的等差数列。

二、等比数列的规律等比数列是指数列中各项之间的比值恒定的特殊数列。

在等比数列中,每一项与前一项的比值相等,这个比值被称为公比。

以等比数列的一般形式表示为:an = a1 * r^(n-1),其中 an 表示数列中的第 n 项,a1 表示数列的首项,n 表示数列中的项数,r 表示公比。

等比数列的规律比较抽象,需要通过计算来确定。

例如,数列2, 4, 8, 16, 32就是一个公比为2的等比数列。

三、斐波那契数列的规律斐波那契数列是一种特殊的数列,其规律是前两项之和等于第三项。

也就是说,斐波那契数列中的每一项都是前两项之和。

斐波那契数列的一般形式表示为:F(n) = F(n-1) + F(n-2),其中 F(n)表示数列中的第 n 项,F(n-1) 表示数列中的第 n-1 项,F(n-2) 表示数列中的第 n-2 项。

斐波那契数列的规律特别有趣,常常可以在自然界和生活中找到它的身影。

例如,兔子繁殖、植物生长等都可以用斐波那契数列来描述。

四、其他常见数列的规律除了等差数列、等比数列和斐波那契数列,数学中还存在其他各种各样的数列,它们具有不同的规律和特点。

例如,递归数列是一种通过递归关系来定义的数列,每一项都由前一项或前几项求得;自然数数列是一种最简单的数列,即从1开始,依次递增1。

小学三年级奥数找简单数列的规律【五篇】

小学三年级奥数找简单数列的规律【五篇】

小学三年级奥数找简单数列的规律【五篇】解答:奇数项构成数列1,3,5,7,…,每一项比前一项多2;偶数项构成数列4,8,12,…,每一项比前一项多4,所以应填:16”【第二篇:斐波那契数列】斐波那契数列为1,1,2,3,5,8,13,那么数列的第100项与前98项之和的差是多少?解答:因为第100项等于第99项与第98项之和,所以第100项与前98项之和的差等于第99项与前97项之和的差.同理第99项与前97项之和的差等于第98项与前96项之和的差,……依次类推,可得第100项与前100项之和的差等于第3项与前1项的差,即为第2项,所以第100项与前98项之和的差是【第三篇:填完数列】按照数列的变化规律在括号里填上合适的数:3,1,6,2,12,3,24,4,(),()。

【答案解析】第1个数、第3个数、第5个数、第7个数……依次为:3,6,12,24,…又组成一个新的数列,后一个数是前一个数的2倍。

所以,第9个数应填48;同样,第2个数、第4个数、第6个数、第8个数……依次为:1,2,3,4,…,也组成一个新的数列,后一个数比前一个数大1。

所以,第10个数应填5【第四篇:周期数列】小明在地上写了一列数:7,0,2,5,3,7,0,2,5,3…你知道他写的第81个数是多少吗?你能求出这81个数相加的和是多少吗?【答案解析】⑴从排列上能够看出这组数按7,0,2,5,3依次重复排列,那么每个周期就有5个数.81个数则是16个周期还多1个,第1个数是7,所以第81个数是7,81÷5=16 (1)⑵每个周期各个数之和是:7+0+2+5+3=17.再用每个周期各数之和乘以周期次数再加上余下的各数,即可得到答案.17×16+7=279,所以,这81个数相加的和是279.【第五篇:等差数列】对于数列4、7、10、13、16、19……,第10项是多少?49是这个数列的第几项?第100项与第50项的差是多少?【答案解析】能够观察出这个数列是公差是3的等差数列.根据刚刚学过的公式:第n项=首项+公差×(n-1),项数=(末项-首项)÷公差+1,第n项-第m项=公差×(n-m);第10项为:4+3×(10-1)=4+27=31,49在数列中的项数为:(49-4)÷3+1=16,第100项与第50项的差:3×(100-50)=150。

(完整版)三年级知识点找简单数列的规律

(完整版)三年级知识点找简单数列的规律

三年级知识点:找简单数列的规律找简单数列的规律日常生活中,我们经常接触到许多按一定顺序排列的数,如:自然数:1,2,3,4,5,6,7,… (1)年份:1990,1991,1992,1993,1994,1995,1996 (2)某年级各班的学生人数(按班级顺序一、二、三、四、五班排列)45,45,44,46,45 (3)像上面的这些例子,按一定次序排列的一列数就叫做数列.数列中的每一个数都叫做这个数列的项,其中第1个数称为这个数列的第1项,第2个数称为第2项,…,第n个数就称为第n项.如数列(3)中,第1项是45,第2项也是45,第3项是44,第4项是46,第5项45。

根据数列中项的个数分类,我们把项数有限的数列(即有有穷多个项的数列)称为有穷数列,把项数无限的数列(即有无穷多个项的数列)称为无穷数列,上面的几个例子中,(2)(3)是有穷数列,(1)是无穷数列。

研究数列的目的是为了发现其中的内在规律性,以作为解决问题的依据,本讲将从简单数列出发,来找出数列的规律。

例1 观察下面的数列,找出其中的规律,并根据规律,在括号中填上合适的数. ①2,5,8,11,(),17,20。

②19,17,15,13,(),9,7。

③1,3,9,27,(),243。

④64,32,16,8,(),2。

⑤1,1,2,3,5,8,(),21,34…⑥1,3,4,7,11,18,(),47…⑦1,3,6,10,(),21,28,36,(). ⑧1,2,6,24,120,(),5040。

⑨1,1,3,7,13,(),31。

⑩1,3,7,15,31,(),127,255。

(11)1,4,9,16,25,(),49,64。

(12)0,3,8,15,24,(),48,63。

(13)1,2,2,4,3,8,4,16,5,().(14)2,1,4,3,6,9,8,27,10,().分析与解答①不难发现,从第2项开始,每一项减去它前面一项所得的差都等于3.因此,括号中应填的数是14,即:11+3=14。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1)8,12,16,20,24,(),();
(2)98,89,80,71,(),();数列的排列规律名词解释:
像1,2,3,4……或1992,1996,2000,2004……等,按照某些规律排列着的一列数,我们把这列数叫做数列。

在一个数列中,从左往右的第几个数,叫做这个数列的第几项。

一、例题讲解
1.找出下面数列的规律,并根据规律在括号里填上设当的数。

(1)1,4,7,10,13,(),();
(2)83,75,67,59,(),();
(3)0,1,3,6,10,15,(),()。

2.按照数列的变化规律在括号里填上合适的数。

(1)1,2,3,5,8,13,(),();
(2)2,5,11,23,47,(),();
(3)3,1,6,2,12,3,24,4,(),()。

二、独立练习
1. 按照数列的变化规律在括号里填上合适的数。

(3)1,3,9,27,(),()。

2. 按照数列的变化规律在括号里填上合适的数。

(1)5,6,11,17,28,(),();
(2)1,4,13,40,(),();
(3)1,5,2,10,3,15,4,20,(),()
3. 按照数列的变化规律在括号里填上合适的数。

(1)1,2,6,24,120,(),5040;
(2)1,4,9,16,25,(),();
(3)0,3,8,15,24,(),48,63;
(4)1,1,3,7,13,(),31。

4. 按照数列的变化规律在括号里填上合适的数。

(1)3,2,5,2,7,2,9,2,( ),( );
(2)2,5,14,41,122,( ),( )。

三、拓展提高
1. 按照数列的变化规律在括号里填上合适的数。

(1)1,()()()()
111,,,,;234 (2)1,8,27,64,( ),( )。

2. 按照数列的变化规律在空格里填上合适的数。

(1) (2) (3)
四、真题解答
1.一次智力测验,主持人亮出4块三角形的牌子,在第四块牌子中,“?”表示的数是 。

(2003年全国“希望杯”数学邀请赛)
247 363 465 ?
25 17 38 23 47 15 45 36
2.有二十个数排成一列:1,1,2,3,…,4181,6765。

第一、第二个数都是1,最后两个数分别是4181和6765。

从第三个数开始,每个数都是它前面两个和。

问:这列数中的第17个数是什么?(1995年全国华罗庚金杯少年数学邀请赛)
注意:找规律必须满足数列的每一项,是每一项共同的规律。

练习题(一)
1.指出下面数列的规律,并在()里填上适当的数。

(1)3 , 6 , 9 , 12 , ( ) , ( );
(2)97 , 93 , 89 , ( ) , 81 , ( )。

(3)1 , 7 , 13 , 19 , ( ),( );
2.找规律填空。

(1) 2 , 4 , 8 , 16 ,(),()
(2)1 , 2 , 4 , 7 , 11 , 16 ,(),()
(3)1 , 1 , 2 , 3 , 5 , 8 ,(),(),34
(4)1 , 4 , 9 , 16,(),()
3.找规律填空
(1) 10 , 11 , 9 , 12 , 8 ,(),()
(2) 2 , 5 , 3 , 8 , 9 , 2 , 5 , 3 , 8 , 9 , 2 ,(),()
4.请在○中填入合适的数(杨辉三角形)
第一行 1
第二行 1 1
第三行 1 2 1
第四行 1 3 3 1
第五行 1 4 6 4 1
第六行 1 ○○○○ 1
5.按下图分割三角形,即:①把三角形等分为四个相同的小三角形(如图(b));②把①中的小三角形(尖朝下的除外)都等分为四个更小的三角形(如图(C))…继续下去,将会得到一系列的图,依次把这些图中不重叠的三角形的个数记下来,成为一个数列:1,4,13,40…请你继续按分割的步骤,以便得到数列的前5项.然后,仔细观察数列,从中找出规律,并依照规律得出数列的第10项,即第9项分割后所得的图中不重叠的小三角形的个数.
6.观察前面三个算式的规律,根据规律计算后面的两个算式的结果。

1+2+1=2×2
1+2+3+2+1=3×3
1+2+3+4+3+2+1=4×4
1+2+3+4+5+4+3+2+1=?
1+2+3+4+5+6+7+6+5+4+3+2+1=?
试一试:找规律,直接填得数。

99×1=99 99×4=396 99×7=
99×2=198 99×5=495 99×8=
99×3=297 99×6= 99×9=
练习题(二)
1.填在下面正方形内的数有相同的规律,请你找出他们的规律,然后确定C ,那么C 是 。

(1989年北大少年数学邀请赛)
2.一列数:0,1,1
,2,4,7,13,A
,…从左到右具有一定的排列规律,那么A 可以是四个数22,23,24,25
中的一个数,这个数是。


2005
南京市少年数学智力冬令营)
3.观察下面几个算式,找出规律:
1
+2
+1
=4,
1

2+
3+
2+1=9,
1+2+3+4+3+2+1=16,
1+2+3+4+5+4+3+2+1=25,
……
请利用上面的规律,迅速算出:
1+2+3+…+99+100+99+…+3+2+1= 。

(2006年香港圣公会小学数学奥林匹克)
4.如图,将黑白两种小珠自上而下一层层的
排,每层又是从左到右逐颗的排,当白珠第一次
比黑珠多2004颗时,那么恰好拍到第 层的
第 颗。

(2003年全国小学数学奥林匹克)
5.下列数阵中有100个数,他们的和是 。

(2004年福州市“迎春
杯”小学数学竞赛)
11 12 13 … 19 20
12 13 14 … 20 21
13 14 15 … 21 22
┇┇┇┇┇┇
20 21 22 … 28 29。

相关文档
最新文档