催化裂化吸收稳定系统[学习内容]

合集下载

催化裂化工艺流程及主要设备教学内容

催化裂化工艺流程及主要设备教学内容

从流化域来看,单段再生和两
段再生都属于鼓泡床和湍流床 的范畴,传递阻力和返混对烧 碳速率都有重要的影响。
你知道吗?
如果把气速提高到1. 2m/s
以上,而且气体和催化剂向 上同向流动,就会过渡到快 速床区域。
烧焦罐再生(亦称高效再生)就是 循环流化床的一种方式
二密床高度4~6m. 烟气流速 0.1~0.25m/s
①对于全混床反应器,第一段出口的半再生剂的含碳量 高于再生剂的含碳量,从而提高了烧碳速率;
②在第二段再生时可以用新鲜空气和更高的温度,提高 了烧碳速率;
③第二段内的水气分压可以很低,减轻了催化剂的水热 老化;且第二段的催化剂藏量比单段再生器的催化剂藏量低, 停留时间较短。因此,第二段可采用较高的再生温度。
提升管反应器
(1)提升管
➢ 提升管反应器是一根长30~40m的管道,介质是油气和催化剂 ➢ 提升管下端油气速度一般为6 ~l0m/s,出口油气速度为16 ~30m/s, ➢ 操作温度,500~550℃。油气停留时间2~4S。 ➢ 为避免设备内壁受高流速催化剂冲蚀和减少热量损失,管内设有
100~125mm厚的隔热耐磨衬里。 ➢ 伸到汽提段、沉降器内的部分只设耐磨衬里。 ➢ 提升管的上端出口处设有气-固快速分离机构,用于使催化剂与油气
稀相管高度8~15m.
烧焦罐再生 烟气流速7~10m/s
循环管是烧焦罐再生器的独有设备, 它的作用是把热催化剂从二密相返回 烧焦罐,提高烧焦罐底部温度和烧焦 罐密度,以提高烧焦速度并增加烧焦 能力。早期的烧焦罐装置循环比为 I~I.5,循环管直径与再生剂管直径相 当;近年设计的烧焦罐装置循环比为 1.5~2,循环管直径明显大于再生管 直径。
催化裂化工艺流程及主要设备

催化裂化的吸收稳定作用

催化裂化的吸收稳定作用
催化裂化的吸收稳定作用
项目
描述
过程名称
催化裂化吸收稳定系统
主要作用
将富气和粗汽油分离成干气、液化气和稳定汽油
关键组件Байду номын сангаас
吸收塔、解吸塔、稳定塔、再吸收塔
工艺流程
1. 富气和粗汽油进入吸收塔,通过吸收剂(如汽油或贫吸收油)吸收其中的C3、C4组分。
2. 从吸收塔顶排出的气体(富含C2及更轻组分)为干气。
3. 吸收塔底的富吸收油进入解吸塔,通过加热使吸收的C3、C4组分解吸出来。
3. 引入新工艺和新型催化剂,提高产气率和经济效益。
经济效益
技术改造后,液态烃收率显著提高,经济效益明显。
4. 解吸气(主要为C3、C4)进入稳定塔进行精馏分离,得到液化气和部分回流液。
5. 液化气从稳定塔塔顶采出,塔底得到蒸汽压合格的稳定汽油。
物料平衡
- 干气:约4%
- 液化气:约12%
- 稳定汽油:约50%
技术改造
1. 采用新型液体分布器和高效填料技术,提高吸收率和处理能力。
2. 对解吸塔和稳定塔进行改造,如增加填料高度、优化塔内结构等。

催化裂化讲义

催化裂化讲义
及典型故障分析 ▪ 第六节 反应—再生系统主要工艺计算简介 ▪ 本章小结
第一节 催化裂化化学反应原理
▪ 一、单体烃催化裂化的化学反应 ▪ (一)烷烃
▪ 烷烃主要发生分解反应,分解成较小分子的烷烃和烯烃, 烷烃分解时多从中间的C—C键处断裂,分子越大越容易 断裂
▪ (二)烯烃
▪ 烯烃的主要反应也是分解反应,但还有一些其它重要反应, 主要反应有:
(二)三阀
▪ 1.单动滑阀
单动滑阀用于床层反应器催化裂化和高低并列式提升管催化裂化装置。 其作用是:正常操作时用来调节催化剂在两器间的循环量,出现重大事 故时用以切断再生器与反应沉降器之间的联系,以防造成更大事故。
▪ 2.双动滑阀
双动滑阀是一种两块阀板双向动作的超灵敏调节阀,安装 在再生器出口管线上(烟囱),其作用是调节再生器的压 力,使之与反应沉降器保持一定的压差。
径或筛分组成。工业用微球催化剂颗粒直径一般在20~80之间。 ▪ 我国用磨损指数来评价微球催化剂的机械强度 ▪ (六)密度 ▪ 1.真实密度:颗粒的质量与骨架实体所占体积之比 ▪ 2.颗粒密度:把微孔体积计算在内的单个颗粒的密度 ▪ 3.堆积密度 :催化剂堆积时包括微孔体积和颗粒间的孔隙体积的密

三、裂化催化剂的失活与再生
▪ 综合上述两个排列顺序可知,芳烃虽然吸附能力强,但反应能力弱,使 整个石油馏分的反应速度变慢 ;对于烷烃,虽然反应速度快,但吸附 能力弱,从而对原料反应的总效应不利。富含环烷烃的石油馏分应是催 化裂化的理想原料
(二)石油馏分的催化裂化反应是复杂的平 行—顺序反应
▪ 石油馏分进行催化裂化反应时,原料向几个方向进行反应, 中间产物又可继续反应,从反应工程观点来看,这种反应 属于平行—顺序反应。原料油可直接裂化为汽油或气体, 属于一次反应,汽油又可进一步裂化生成气体,这就是二 次反应。平行—顺序反应的一个重要特点是反应深度对产 品产率分布有重大影响。

催化裂化培训

催化裂化培训

因而只有将催化剂表面的焦炭脱除,才能 使催化剂恢复活性、循环使用。一般采用烧焦 的方式脱除催化剂表面的焦炭。因此催化裂化 装置必须包括反应和催化剂再生两个部分。
图9-1-1 提升管催化裂化原理流程图
催化裂化装置由三个部分组成: 反应-再生系统,原料油经过换热与循环油
混合后从提升管反应器下部进入,再与再生 催化剂混合升温气化并发生反应。反应温度 一般为480~530℃,原料在提升管反应器中 的停留时间为1~4秒,反应压力为0.1~ 0.3MPa,反应后的油气在沉降器以及旋风分 离器中与催化剂迅速分离。
表9-2-5 环烷烃的催化裂化转化率
环烷烃
转化率,m%
47.0
H3C
CH3
CH3
H3C
CH3
CH3 CH3
75.6 78.6 51.8
六员环正碳离子的裂解可以有两种途径:
C-C键的断裂生成烯烃与二烯烃。
+R
R
+
CH2=C-CH2CH2CH2CH2
R +
CH2=C-CH2CH2CH2CH2
R +
CH2=C-CHCH2CH2CH3
为了实现反应过程和催化剂的再生过程连续 进行,同时高活性的沸石分子筛催化剂的应 用,在二十世纪60年代提升管反应器催化裂 化工艺被开发出来。
在众多的石油加工工艺中,催化裂化工艺是 应用最为广泛,其加工能力占原油加工量的 30%,已成为最重要的石油二次加工手段。
四、催化裂化工艺流程简述
催化裂化是一个脱碳的过程,原料在裂 化时一方面要生成氢碳原子比较高、分子量 较小(相对于原料而言)的轻质油和气体, 同时也要缩合生成一部分氢碳原子比较低的 产物,甚至是焦炭。这样催化剂在反应过程 中很快就会被焦炭所覆盖而失去其活性。

催化裂化装置工艺中吸收稳定的流程简述

催化裂化装置工艺中吸收稳定的流程简述

催化裂化装置工艺中吸收稳定的流程简述下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!催化裂化装置是炼油工业中的重要设备,用于将重质石油馏分转化为高附加值的轻质产品,其中吸收稳定是催化裂化工艺中至关重要的环节之一。

催化裂化 加氢裂化吸收稳定系统流程及优化

催化裂化 加氢裂化吸收稳定系统流程及优化

催化裂化加氢裂化吸收稳定系统流程及优化1. 引言1.1 概述催化裂化和加氢裂化是石油炼制领域中常用的重要工艺,主要用于石油原料的转化和提纯。

通过催化裂化和加氢裂化技术,可以将重质石油馏分转变为更高附加值的产品,如汽油、柴油、润滑油等。

这些工艺的关键在于稳定系统流程的运行,以确保产品质量的稳定性、生产效率的提高和设备寿命的延长。

本文目的在于深入探讨催化裂化和加氢裂化吸收稳定系统流程,并提出优化方案以改善工艺效果。

首先概述了本文将要讨论的内容和结构,然后介绍了引言部分的目标。

1.2 文章结构本文主要分为五个部分进行描述。

第一部分是引言,简要介绍了本文内容和结构。

第二、三和四部分则详细讨论了催化裂化系统流程、加氢裂化系统流程以及吸收系统流程优化。

最后一部分是结论与展望,总结了已经探讨过的内容,并对未来进行展望。

1.3 目的本文的目的是深入探讨催化裂化和加氢裂化吸收稳定系统流程,并提出优化方案以改善工艺效果。

通过对系统组成、工艺概述和问题解决方案的介绍,旨在帮助工程师和研究人员更好地理解这些重要工艺,并为实践中的流程优化提供指导。

同时,本文还将对未来的研究方向进行展望,为相关领域提供新的思路和建议。

通过深入分析和讨论,我们期望能够推动催化裂化和加氢裂化技术的进一步发展和优化。

以上就是引言部分的内容,在接下来的文章中,我们将逐一探讨催化裂化系统流程、加氢裂化系统流程以及吸收系统流程优化。

这些内容将有助于读者更好地理解相关工艺,并为实践中的问题解决和优化提供参考。

最后,我们将对已经探讨过的内容进行总结,并展望未来该领域研究方向。

以下内容不属于引言部分。

2. 催化裂化系统流程:2.1 系统组成:催化裂化系统主要由反应器、催化剂输送装置、分离装置和再生装置组成。

其中,反应器是催化裂化过程中最重要的组件,它用于将原料油在催化剂的作用下发生裂解反应。

催化剂输送装置用于将新鲜催化剂及再生后的催化剂注入反应器中。

分离装置则用于将裂解产物进行分离和提纯,包括汽油分离塔、液-液萃取塔等。

炼油催化裂化理论知识

炼油催化裂化理论知识

第二部分基础理论知识第二章炼油催化裂化理论知识2.1概述2.1.1催化裂化发展过程1938年4月6日年世界上第一套固定床催化裂化工业化装置问世,这是炼油工艺的重大发展,然而它存在一系列无法克服的缺点:设备结构复杂,操作繁琐,控制困难。

要克服固定床的缺点,需要两项革新,即催化剂在反应和再生操作之间循环和减小催化剂的粒径。

第一项革新结果出现了移动床,两项革新的结合得到了流化床。

本世纪40年代相继出现了移动床催化裂化和流化床催化裂化装置。

60年代中期出现的分子筛型催化剂带来了重大突破,成为催化技术发展的里程碑。

我国第一套移动床催化裂化装置是由前苏联设计并于1958年投产的。

1964年建成第二套,以后我国自己开发了流化催化裂化装置,故以后移动床催化裂化装置就不再建设了,这两套移动床催化裂化装置也于80年代改为流化催化裂化装置。

我国流化催化裂化的发展始于60年代,1965年5月5日,我国第一套0.6Mt /a同高并列式流化催化裂化装置在抚顺石油二厂建成投产,标志着我国炼油工业进入一个新阶段。

30多年来,我国流化催化裂化在炼油工业中一直处于重要地位,目前仍在发展。

到1993年底统计我国催化裂化装置的能力为5000余万吨/年,仅次于美国,位居世界第二。

随着石油资源的短缺和原油日趋变重,流化催化裂化在加工重质原料方面也取得了进展。

催化裂化掺炼渣油,提高轻质油收率最为显著,我国经过“六五”重大技术攻关,攻克了再生器的内外取热设施,渣油雾化技术,提升管出口快速分离技术,抗重金属污染催化剂等一系列技术难关。

目前,我国渣油催化裂化技术已发展成多种形式,有带内外取热的单段再生,不带取热的两段再生,带外取热的两段再生等。

到1993年底,石化总公司50套催化裂化装置,已有33套掺炼了渣油,掺炼量达到919万吨,渣油掺炼比达到了24.38%,已成为我国重要的渣油转化装置对提高轻质油收率,增加经济效益,起到非常重要的作用。

尽管催化裂化装置具有漫长的历史,但他远非一个完整的技术。

催化裂化装置吸收稳定系统的原理是什么

催化裂化装置吸收稳定系统的原理是什么

催化裂化装置吸收稳定系统的原理是什么?催化裂化生产过程的主要产品是气体、汽油和柴油,其中气体产品包括干气和液化石油气,干气作为本装置燃料气烧掉,液化石油气是宝贵的石油化工原料和民用燃料。

所谓吸收稳定,目的在于将来自分馏部分的催化富气中C2以下组分与C3以上组分分离以便分别利用,同时将混入汽油中的少量气体烃分出,以降低汽油的蒸气压,保证符合商品规格。

吸收-稳定系统包括吸收塔、解吸塔、再吸收塔、稳定塔以及相应的冷换设备。

由分馏系统油气分离器出来的富气经气体压缩机升压后,冷却并分出凝缩油,压缩富气进入吸收塔底部,粗汽油和稳定汽油作为吸收剂由塔顶进入,吸收了C3、C4(及部分C2)的富吸收油由塔底抽出送至解吸塔顶部。

吸收塔设有一个中段回流以维持塔内较低的温度,吸收塔顶出来的贫气中尚夹带少量汽油,经再吸收塔用轻柴油回收其中的汽油组分后成为干气送燃料气管网。

吸收了汽油的轻柴油由再吸收塔底抽出返回分馏塔。

解吸塔的作用是通过加热将富吸收油中C2组分解吸出来,由塔顶引出进入中间平衡罐,塔底为脱乙烷汽油被送至稳定塔。

稳定塔的目的是将汽油中C4以下的轻烃脱除,在塔顶得到液化石油气〈简称液化气〉,塔底得到合格的汽油——稳定汽油。

吸收解吸系统有两种流程,上面介绍的是吸收塔和解吸塔分开的所谓双塔流程;还有一种单塔流程,即一个塔同时完成吸收和解吸的任务。

双塔流程优于单塔流程,它能同时满足高吸收率和高解吸率的要求。

催化裂化反应装置基本原理一、催化裂化工艺过程的特点催化裂化过程是使原料在有催化剂存在下,在470~530度和0.1~0.3兆帕的压力条件下,发生一系列化学反应,转化成气体,汽油、柴油等轻质产品和焦炭的过程。

催化裂化的原料一般是重质馏分油,例如减压馏分油(减压蜻油)和焦化馏分油等,随着催化裂化技术和催化剂工艺的不断发展,进一步扩大了催化裂化原料范围,部分或全部渣油也可作催化原料。

催化裂化过程具有以下几个特点: 1335920680(1)轻质油收率高,可达70~80%,而原油初馏的轻质油收率仅为10~40%。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

特选内容
贫气 补充吸收剂

一中

塔 二中
解 吸
中沸器

16
脱乙烷汽油
5.2.3.1 吸收塔-解吸塔
粗汽油
贫气 补充吸收剂
(8)改进双塔流程 -解吸塔双股进料 (二级冷凝)
压缩富气

一中


二中
• 平衡罐冷凝负荷很小;
• 解吸气量少;
• 解吸塔的负荷小;
• 解吸效果好;
平衡罐
平衡罐
• 避免轴向浓度返混。
粗汽油
贫气 补充吸收剂
压缩富气 吸 收 塔
一中 二中
解 吸 塔 平衡罐
特选内容
13
脱乙烷汽油
5.2.3.1 吸收塔-解吸塔
(6)双塔流程 -解吸塔冷热双股进料
粗汽油
贫气
补充吸收剂
• 利用了稳定汽油的热能;
压缩富气 吸
一中
• 解吸塔顶温度低;

• 解吸气量少;
塔 二中
• 吸收塔的负荷小;
• 吸收效果好;
特选内容
4
• 存在问题
负荷增加; 干气不干:吸收效果不好,干气中带液化气; 干气带液:再吸收液泛冲塔; 液化气C5含量高:液化气不合格,汽油收率下降; 稳定汽油C4含量高:汽油蒸汽压不合格; 能耗高:吸收-解吸之间大量液化气循环。
特选内容
5
• 设备改造方案
吸收塔:采用高效规整填料 解吸塔:采用高效规整填料 稳定塔:采用MD和高效塔盘 再吸塔:采用高效规整填料
(1)单塔流程
• 流程和设备简单; • 在同一塔中进行的吸收和解
吸过程要求相左,同时满足塔 顶和塔底的质量要求有困难;
• 吸收段和解吸段之间缺乏有 效的调节控制方法;
粗汽油 压缩富气
补充吸收剂


一中

贫气
二中
• 吸收段对过解吸敏感。
平衡罐 解 吸 段
特选内容
9
脱乙烷汽油
5.2.3.1 吸收塔-解吸塔
• 平衡罐冷凝负荷小;
• 解吸塔重沸器加热负荷降低;

• 冷热进料口间存在轴向浓度

返混。

平衡罐
特选内容
14
脱乙烷汽油
5.2.3.1 吸收塔-解吸塔
实施效果:
• 解吸塔再沸器维持原状;
• 顶温度低;
• 贫气C3+含量: 改造前 改造设计 实际
• 夏季 >10% <5%
<3%
• 冬季 > 5% <3% 1.5%



特选内容
17
5.2.3.2 稳定塔和深度稳定
(1) 深度稳定要求:
稳定汽油中C4 - <1%(wt); 稳定汽油中C5维持一定的蒸汽分压。
(2) 操作要求:
塔底C5蒸汽分压不可过高,否则影响再吸收塔负荷;
(3) 补充吸收剂要求:
C4 -尽量低并以C6 - C9组分为主(理想组分); 塔底C5蒸汽分压不可过高。
特选内容
18
5.2.3.2 稳定塔和深度稳定
(4) 改进深度稳定流程
补充吸收剂 稳定汽油
稳 定 塔
液化气
脱乙烷汽油
深度稳特选定内汽容油
19
5.2.4 模拟结果比较
5.2.4.1 吸收塔-解吸塔流程模拟实验结果
(1) 计算条件(1400kt/a):
• 油气分离器:
t=36°C,P=1.32MPa
• 解吸塔进料温度: • 单塔压力:
粗汽油
补充吸收剂
压缩富气
吸 收

富吸收油
一中 二中
贫气
平衡罐 解 吸 段
中沸器
特选内容
11
脱乙烷汽油
5.2.3.1 吸收塔-解吸塔
(4)双塔流程 -解吸塔冷进料
粗汽油
贫气 补充吸收剂
• 解吸塔顶温度低; • 解吸气量少; • 吸收塔的负荷小;
压缩富气 吸 收 塔
一中 二中
• 吸收效果好;
• 平衡罐冷凝负荷小;
5.2 催化裂化吸收稳定系统
特选内容
1
5.2.1. 前言
——FCCU实际生产中经常出现的问题
• 反应—再生系统输出的富气量与吸收稳定系统的设计 负荷不匹配,各塔的操作状况恶化并影响产品质量;
• 气体回收过程各可变参数关系及重要性不清楚,也未 能优选匹配,影响系统发挥最大处理能力和最佳分离 效果;
• 吸收效果不好,C3+成份(液化气)大量损失; • 解吸塔过解吸和解吸不够时有发生; • 再吸收塔液泛,引起硫磺回收装置的操作波动; • 稳定塔精馏效果不好。
特选内容
6
• 影响吸收效果的因素:
吸收压力; 吸收温度; 补充吸收剂量; 解吸塔理论板数; 吸收塔理论板数。
特选内容
7
5.2.3. 流程改进
系统流程图
粗汽油
补充吸收剂

压缩富气
收 段
一中
二中
贫气
轻柴油
干气
再 吸 收 段
轻柴富吸收油
平衡罐
解 吸 段
特选内容
脱乙烷汽油
稳 定 塔
稳定汽油
液化气
8
5.2.3.1 吸收塔-解吸塔
tC=36°C, th=70°C Pt=1.28Mpa(A),DP=0.04MPa
• 双塔吸收塔压力:
Pt=1.28Mpa(A),DP=0.02MPa
• 双塔解吸塔压力:
Pt=1.41Mpa(A),DP=0.02MPa
• 富气(组成略):
W=28600kg/hr
• 粗汽油:
特选内容
2
5.2.2 系统分析
• 吸收稳定过程
富气 粗汽油
干气 液化气 稳定汽油
• 吸收稳定系统任务
加工来自分馏塔顶油气分离器的粗汽油和富 气,分离出干气,并回收液化气和稳定汽油。
特选内容
3
• 负荷大幅度增加
催化重油加工能力不断增加; 干气、液化气和稳定汽油质量要求进一步提高; 采用的新型催化剂使轻质油收率特别是液化气 产 率成倍提高。
• 解吸塔重沸器加热负荷大。
解 吸 塔 平衡罐
特选内容
12
脱乙烷汽油
5.2.3.1 吸收塔-解吸塔
(5)双塔流程
-解吸塔热进料
• 利用了稳定汽油的热能; • 解吸塔顶温度高; • 解吸气量较大且液化气含量
高; • 解吸塔重沸器加热负荷大; • 吸收塔的负荷大; • 吸收效果较差; • 吸收塔冷凝负荷大。
(2)改进单塔流程A
• 利用了稳定汽油的热能; • 解吸气量少; • 吸收塔的负荷小; • 吸收效果好; • 设备较复杂; • 冷负荷增加。
粗汽油 压缩富气
补充吸收剂


一中

贫气
二中
平衡罐
进料取热
解 吸
中沸器

特选内容
10
脱乙烷汽油
5.2.3.1 吸收塔-解吸塔
(3)改进单塔流程B
• 利用了稳定汽油的热能; • 解吸气量少; • 吸收塔的负荷小; • 吸收效果好; • 罐前冷负荷增加。
粗汽油 压缩富气
平衡罐
Байду номын сангаас
补充吸收剂

一中

塔 二中
解 吸 塔
贫气
特选内容
15
脱乙烷汽油
5.2.3.1 吸收塔-解吸塔
(7)改进双塔流程 -解吸塔冷进料 (中间再沸器)
粗汽油 压缩富气
• 利用了稳定汽油的热能; • 解吸塔顶温度低; • 解吸气量少; • 吸收塔的负荷小; • 吸收效果好; • 平衡罐冷凝负荷小; • 解吸塔重沸器加热负荷降低。 平衡罐
相关文档
最新文档