2009年东莞市中考数学试题及答案

合集下载

2009年广东中山中考数学试卷及答案(word)

2009年广东中山中考数学试卷及答案(word)

2009年广东省中山市初中毕业生学业考试数 学说明:1.全卷共4页,考试用时100分钟,满分为120分.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、试室号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答、答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.4的算术平方根是( ) A .2±B .2C.D2.计算32()a 结果是( ) A .6aB .9aC .5aD .8a3.如图所示几何体的主(正)视图是( )C .4.《广东省2009年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726亿元,用科学记数法表示正确的是( )A . 107.2610⨯元 B .972.610⨯元 C .110.72610⨯元 D .117.2610⨯元5.方程组223010x y x y +=⎧⎨+=⎩的解是( ) A .1113x y =⎧⎨=⎩2213x y =-⎧⎨=-⎩ B .12123311x x y y ==-⎧⎧⎨⎨=-=⎩⎩ C . 12123311x x y y ==-⎧⎧⎨⎨==-⎩⎩ D.12121133x x y y ==-⎧⎧⎨⎨=-=⎩⎩ 二、填空题:(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.6.分解因式2233x y x y --- .7.已知O ⊙的直径8cm AB C =,为O ⊙上的一点,30BAC ∠=°,则BC = cm .8.一种商品原价120元,按八折(即原价的80%)出售,则现售价应为 元.9.在一个不透明的布袋中装有2个白球和n 个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,摸到黄球的概率是45,则n =_____________.10.用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地板,则第(3)个图形中有黑色瓷砖 块,第n 个图形中需要黑色瓷砖________块(用含n 的代数式表示).……(1) (2) (3)三、解答题(一)(本大题5小题,每小题6分,共30分) 11.(本题满分6分)计算:1sin 30π+32-+0°+(). 12.(本题满分6分)解方程22111x x =--- 13.(本题满分6分)如图所示,ABC △是等边三角形, D 点是AC 的中点,延长BC 到E ,使CE CD =,(1)用尺规作图的方法,过D 点作DM BE ⊥,垂足是M (不写作法,保留作图痕迹); (2)求证:BM EM =.14.(本题满分6分)已知:关于x 的方程2210x kx +-=(1)求证:方程有两个不相等的实数根;(2)若方程的一个根是1-,求另一个根及k 值.15.(本题满分6分)如图所示,A 、B 两城市相距100km ,现计划在这两座城市间修建一条高速公路(即线段AB ),经测量,森林保护中心P 在A 城市的北偏东30°和B 城市的北偏西45°的方向上,已知森林保护区的范围在以P 点为圆心,50km 为半径的圆形区域内,请问计划修建的这条高速公路会不会穿越保护第7题图B第10题图 AD第13题图30° A BFE P45°第15题图1.732 1.414)四、解答题(二)(本大题4小题,每小题7分,共28分) 16.(本题满分7分)某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台? 17.(本题满分7分)某中学学生会为了解该校学生喜欢球类活动的情况,采取抽样调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制成如下的两幅不完整的统计图(如图1,图2要求每位同学只能选择一种自己喜欢的球类;图中用乒乓球、足球、排球、篮球代表喜欢这四种球类中的某一种球类的学生人数),请你根据图中提供的信息解答下列问题:(1)在这次研究中,一共调查了多少名学生?(2)喜欢排球的人数在扇形统计图中所占的圆心角是多少度? (3)补全频数分布折线统计图.18.(本题满分7分)在ABCD 中,10AB =,AD m =,60D ∠=°,以AB 为直径作O ⊙, (1)求圆心O 到CD 的距离(用含m 的代数式来表示); (2)当m 取何值时,CD 与O ⊙相切.19.(本题满分7分)如图所示,在矩形ABCD 中,12AB AC =,=20,两条对角线相交于点O .以OB 、OC 为邻边作第1个平行四边形1OBB C ,对角线相交于点1A ,再以11A B 、图2乒乓球 20% 足球排球 篮球40%图1 第17题图 第18题图1A C 为邻边作第2个平行四边形111A B C C ,对角线相交于点1O ;再以11O B 、11O C 为邻边作第3个平行四边形1121O B B C ……依次类推. (1)求矩形ABCD 的面积;(2)求第1个平行四边形1OBB C 、第2个平行四边形111A B C C 和第6个平行四边形的面积.五、解答题(三)(本大题3小题,每小题9分,共27分) 20、(本题满分9分)(1)如图1,圆心接ABC △中,AB BC CA ==,OD 、OE 为O ⊙的半径,OD BC ⊥于点F ,OE AC ⊥于点G ,求证:阴影部分四边形OFCG 的面积是ABC △的面积的13.(2)如图2,若DOE ∠保持120°角度不变, 求证:当DOE ∠绕着O 点旋转时,由两条半径和ABC △的两条边围成的图形(图中阴影部分)面积始终是ABC △的面积的13.21.(本题满分9分)小明用下面的方法求出方程30=的解,请你仿照他的方法求A 1O 1A 2B 2 B 1C 1 B C 2A OD第19题图 C 第20题图D 图1 图222.(本题满分9分)正方形ABCD 边长为4,M 、N 分别是BC 、CD 上的两个动点,当M 点在BC 上运动时,保持AM 和MN 垂直,(1)证明:Rt Rt ABM MCN △∽△;(2)设BM x =,梯形ABCN 的面积为y ,求y 与x 之间的函数关系式;当M 点运动到什么位置时,四边形ABCN 面积最大,并求出最大面积; (3)当M 点运动到什么位置时Rt Rt ABM AMN △∽△,求x 的值.广东省中山市2009年初中毕业生学业考试数学试题参考答案及评分建议一、选择题(本大题5小题,每小题3分,共15分) 1.B 2.A 3.B 4.A 5.D二、填空题(本大题5小题,每小题4分,共20分)6.()(3)x y x y +-- 7.4 8.96 9.8 10.10,31n + 三、解答题(一)(本大题5小题,每题6分,共30分) 11.解:原式=113122+-+ ··················································································· 4分 =4. ······························································································· 6分12.解:方程两边同时乘以(1)(1)x x +-, ······························································· 2分 2(1)x =-+, ···································································································· 4分 3x =-, ··········································································································· 5分 经检验:3x =-是方程的解. ················································································ 6分 13.解:(1)作图见答案13题图,··························································· 2分NDA CB M第22题图答案13题图AC BDE M(2)ABC △是等边三角形,D 是AC 的中点,BD ∴平分ABC ∠(三线合一), 2ABC DBE ∴∠=∠. ························································································· 4分 CE CD =,CED CDE ∴∠=∠.又ACB CED CDE ∠=∠+∠,2ACB E ∴∠=∠. ····························································································· 5分 又ABC ACB ∠=∠, 22DBC E ∴∠=∠, DBC E ∴∠=∠, BD DE ∴=. 又DM BE ⊥,BM EM ∴=. ·································································································· 6分 14.解:(1)2210x kx +-=,2242(1)8k k ∆=-⨯⨯-=+, ·············································································· 2分无论k 取何值,2k ≥0,所以280k +>,即0∆>,∴方程2210x kx +-=有两个不相等的实数根. ························································ 3分(2)设2210x kx +-=的另一个根为x ,则12k x -=-,1(1)2x -=-,·············································································· 4分 解得:12x =,1k =,∴2210x kx +-=的另一个根为12,k 的值为1. ····················································· 6分15.解:过点P 作PC AB ⊥,C 是垂足,则30APC ∠=°,45BPC ∠=°, ····································· 2分tan30AC PC =°,tan 45BC PC =°,AC BC AB +=, ························································ 4分 tan30tan 45100PC PC ∴+=°°,1100PC ⎫∴+=⎪⎪⎝⎭, ···················································5分 50(350(3 1.732)63.450PC ∴=⨯->≈≈,答:森林保护区的中心与直线AB 的距离大于保护区的半径,所以计划修筑的这条高速公路不会穿越保护区.································································································ 6分 四、解答题(二)(本大题4小题,每小题7分,共28分) 16.解:设每轮感染中平均每一台电脑会感染x 台电脑, ············································ 1分 依题意得:1(1)81x x x +++=, ··········································································· 3分答案15题图A BF E P C2(1)81x +=,19x +=或19x +=-,12810x x ==-,(舍去),··················································································· 5分 33(1)(18)729700x +=+=>. ············································································ 6分答:每轮感染中平均每一台电脑会感染8台电脑,3轮感染后,被感染的电脑会超过700台. ························································································································ 7分 17.解:(1)2020%100÷=(人). ····································································· 1分(2)30100%30%100⨯=, ··················································································· 2分 120%40%30%10%---=,36010%36⨯=°°. ···························································································· 3分 (3)喜欢篮球的人数:40%10040⨯=(人), ························································ 4分 喜欢排球的人数:10%10010⨯=(人). ································································ 5分······················· 7分18.解:(1)分别过A O ,两点作AE CD OF CD ⊥⊥,,垂足分别为点E ,点F , AE OF OF ∴∥,就是圆心O 到CD 的距离. 四边形ABCD 是平行四边形,AB CD AE OF ∴∴=∥,. ·················································································· 2分在Rt ADE △中,60sin sin 60AE AED D AD AD∠=∠==°,,°, 答案17题图答案18题图(1)答案18题图(2)222AE AE m OF AE m m ====,,, ························································ 4分 圆心到CD 的距离OF为2m . ··········································································· 5分 (2)32OF m =, 为O ⊙的直径,且10AB =,当5OF =时,CD 与O ⊙相切于F 点,即523m m ==, ··················································································· 6分当m =时,CD 与O ⊙相切. ······································································· 7分 19.解:(1)在Rt ABC △中,16BC =,1216192ABCD S AB BC ==⨯=矩形. ······································································ 2分(2)矩形ABCD ,对角线相交于点O ,4ABCD OBC S S ∴=△. ···························································································· 3分四边形1OBB C 是平行四边形,11OB CB OC BB ∴∥,∥,11OBC B CB OCB B BC ∴∠=∠∠=∠,.又BC CB =,1OBC B CB ∴△≌△,112962OBB C OBC ABCD S S S ∴===△, ······································································· 5分 同理,111111148222A B C C OBB C ABCD S S S ==⨯⨯=, ························································ 6分第6个平行四边形的面积为6132ABCD S =. ······························································· 7分五、解答题(三)(本大题3小题,每小题9分,共27分) 20.证明:(1)如图1,连结OA OC ,, 因为点O 是等边三角形ABC 的外心,所以Rt Rt Rt OFC OGC OGA △≌△≌△. ····························· 2分AE O G2OFCG OFC OAC S S S ==△△,因为13OAC ABC S S =△△, 所以13OFCGABC S S =△. ························································································ 4分 (2)解法一: 连结OA OB ,和OC ,则AOC COB BOA △≌△≌△,12∠=∠, ··························· 5分 不妨设OD 交BC 于点F ,OE 交AC 于点G , 3412054120AOC DOE ∠=∠+∠=∠=∠+∠=°,°,35∴∠=∠. ······································································· 7分 在OAG △和OCF △中,1235OA OC ∠=∠⎧⎪=⎨⎪∠=∠⎩,,,OAG OCF ∴△≌△, ························································································· 8分 13OFCG AOC ABC S S S ∴==△△. ··············································································· 9分 解法二: 不妨设OD 交BC 于点F ,OE 交AC 于点G , 作OH BC OK AC ⊥⊥,,垂足分别为H K 、, ·················· 5分 在四边形HOKC 中,9060OHC OKC C ∠=∠=∠=°,°, 360909060120HOK ∴∠=-︒-︒=︒°-?, ························ 6分 即12120∠+∠=°.又23120GOF ∠=∠+∠=°,13∴∠=∠. ····································································································· 7分 AC BC =, OH OK ∴=,OGK OFH ∴△≌△, ························································································ 8分 13OFCG OHCK ABC S S S ∴==△. ················································································ 9分答案20题图(2)A E O GFB C D 1 2 3 45 答案第20题图(3) A EOGF B C D 1 3 2H K。

广东省2009年中考试卷及答案

广东省2009年中考试卷及答案

★机密·启用前2009年广东省初中毕业生学业考试语文说明:1.全卷共4页,考试用时100分钟,满分为120分.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号,姓名、试室号、座位号.用2B铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答、答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、基础(28分)1.根据课文默写古诗文。

(10分)(1)子曰:“其恕乎!□□□□,□□□□。

”(《论语》)(1分)(2)阿爷无大儿,木兰无长兄,□□□□□,□□□□□。

(《木兰诗》)(2分)(3)凝望着故乡的方向,凝望着渐渐坠入大海的夕阳,老人哽咽着吟诵起崔颢《黄鹤楼》中的诗句:“□□□□□□□?□□□□□□□。

”闻者无不潸然泪下。

(2分)(4)四面边声连角起,千嶂里,□□□□□□□。

(范仲淹《渔家傲•秋思》)(1分)(5)把杜甫《春望》默写完整。

(4分)国破山河在,城春草木深。

□□□□□,□□□□□。

□□□□□,□□□□□。

白头搔更短,浑欲不胜簪。

2.下列各组中,加点词语意思不同的两项是(4分)A.鸣之而不能通其意/博古通今B.有朋自远方来/今齐地方千里C.可远观而不可亵玩焉/此则岳阳楼之大观也D.征于色发于声而后喻/于是宾客无不变色离席读下面文字,完成第3~5题。

北风在kōngkuàng()寂寥的大地上呼啸肆虐,冰雪冷酷无情地封冻了一切扎根于泥土的植物,无数生命用消极的冬眠躲避严寒。

这时候,腊梅,你却清醒着,毫无畏惧地伸展出光秃秃的枝干,并且把毕生的心血都凝聚在这些光秃秃的枝干上,凝结成无数个小小的蓓蕾,一任寒风把它们摇撼,一任_______,没有一星半瓣绿叶为你遮挡风寒!你能忍受这种jian’āo()么?也许,任何欢乐和美都源自痛苦,都经历了殊死的拼搏,但是,世人未必都懂得这个道理。

2009年广东中山中考数学试卷及答案(word)

2009年广东中山中考数学试卷及答案(word)

2009年广东省中山市初中毕业生学业考试数 学说明:1.全卷共4页,考试用时100分钟,满分为120分.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、试室号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答、答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.4的算术平方根是( ) A .2±B .2C.D2.计算32()a 结果是( ) A .6aB .9aC .5aD .8a3.如图所示几何体的主(正)视图是( )C .4.《广东省2009年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726亿元,用科学记数法表示正确的是( )A . 107.2610⨯元 B .972.610⨯元 C .110.72610⨯元 D .117.2610⨯元5.方程组223010x y x y +=⎧⎨+=⎩的解是( ) A .1113x y =⎧⎨=⎩2213x y =-⎧⎨=-⎩ B .12123311x x y y ==-⎧⎧⎨⎨=-=⎩⎩ C . 12123311x x y y ==-⎧⎧⎨⎨==-⎩⎩ D.12121133x x y y ==-⎧⎧⎨⎨=-=⎩⎩ 二、填空题:(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.6.分解因式2233x y x y --- .7.已知O ⊙的直径8cm AB C =,为O ⊙上的一点,30BAC ∠=°,则BC = cm .8.一种商品原价120元,按八折(即原价的80%)出售,则现售价应为 元.9.在一个不透明的布袋中装有2个白球和n 个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,摸到黄球的概率是45,则n =_____________.10.用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地板,则第(3)个图形中有黑色瓷砖 块,第n 个图形中需要黑色瓷砖________块(用含n 的代数式表示).……(1) (2) (3)三、解答题(一)(本大题5小题,每小题6分,共30分) 11.(本题满分6分)计算:1sin 30π+32-+0°+(). 12.(本题满分6分)解方程22111x x =--- 13.(本题满分6分)如图所示,ABC △是等边三角形, D 点是AC 的中点,延长BC 到E ,使CE CD =,(1)用尺规作图的方法,过D 点作DM BE ⊥,垂足是M (不写作法,保留作图痕迹); (2)求证:BM EM =.14.(本题满分6分)已知:关于x 的方程2210x kx +-=(1)求证:方程有两个不相等的实数根;(2)若方程的一个根是1-,求另一个根及k 值.15.(本题满分6分)如图所示,A 、B 两城市相距100km ,现计划在这两座城市间修建一条高速公路(即线段AB ),经测量,森林保护中心P 在A 城市的北偏东30°和B 城市的北偏西45°的方向上,已知森林保护区的范围在以P 点为圆心,50km 为半径的圆形区域内,请问计划修建的这条高速公路会不会穿越保护1.732 1.414)第7题图B第10题图 AD第13题图30° A BFE P45°第15题图四、解答题(二)(本大题4小题,每小题7分,共28分) 16.(本题满分7分)某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台? 17.(本题满分7分)某中学学生会为了解该校学生喜欢球类活动的情况,采取抽样调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制成如下的两幅不完整的统计图(如图1,图2要求每位同学只能选择一种自己喜欢的球类;图中用乒乓球、足球、排球、篮球代表喜欢这四种球类中的某一种球类的学生人数),请你根据图中提供的信息解答下列问题:(1)在这次研究中,一共调查了多少名学生?(2)喜欢排球的人数在扇形统计图中所占的圆心角是多少度? (3)补全频数分布折线统计图.18.(本题满分7分)在ABCD 中,10AB =,AD m =,60D ∠=°,以AB 为直径作O ⊙, (1)求圆心O 到CD 的距离(用含m 的代数式来表示); (2)当m 取何值时,CD 与O ⊙相切.19.(本题满分7分)如图所示,在矩形ABCD 中,12AB AC =,=20,两条对角线相交于点O .以OB 、OC 为邻边作第1个平行四边形1OBB C ,对角线相交于点1A ,再以11A B 、1A C 为邻边作第2个平行四边形111A B C C ,对角线相交于点1O ;再以11O B 、11O C 为邻边图2乒乓球20% 足球排球 篮球40%图1 第17题图 第18题图作第3个平行四边形1121O B B C ……依次类推. (1)求矩形ABCD 的面积;(2)求第1个平行四边形1OBB C 、第2个平行四边形111A B C C 和第6个平行四边形的面积.五、解答题(三)(本大题3小题,每小题9分,共27分) 20、(本题满分9分)(1)如图1,圆心接ABC △中,AB BC CA ==,OD 、OE 为O ⊙的半径,OD BC ⊥于点F ,OE AC ⊥于点G ,求证:阴影部分四边形OFCG 的面积是ABC △的面积的13.(2)如图2,若DOE ∠保持120°角度不变, 求证:当DOE ∠绕着O 点旋转时,由两条半径和ABC △的两条边围成的图形(图中阴影部分)面积始终是ABC △的面积的13.21.(本题满分9分)小明用下面的方法求出方程30=的解,请你仿照他的方法求出下面另外两个方程的解,并把你的解答过程填写在下面的表格中.A 1O 1A 2B 2 B 1C 1 B C 2A OD第19题图 C 第20题图D 图1 图222.(本题满分9分)正方形ABCD 边长为4,M 、N 分别是BC 、CD 上的两个动点,当M 点在BC 上运动时,保持AM 和MN 垂直,(1)证明:Rt Rt ABM MCN △∽△;(2)设BM x =,梯形ABCN 的面积为y ,求y 与x 之间的函数关系式;当M 点运动到什么位置时,四边形ABCN 面积最大,并求出最大面积; (3)当M 点运动到什么位置时Rt Rt ABM AMN △∽△,求x 的值.广东省中山市2009年初中毕业生学业考试数学试题参考答案及评分建议一、选择题(本大题5小题,每小题3分,共15分) 1.B 2.A 3.B 4.A 5.D二、填空题(本大题5小题,每小题4分,共20分)6.()(3)x y x y +-- 7.4 8.96 9.8 10.10,31n + 三、解答题(一)(本大题5小题,每题6分,共30分) 11.解:原式=113122+-+ ··················································································· 4分 =4. ······························································································· 6分12.解:方程两边同时乘以(1)(1)x x +-, ······························································· 2分2(1)x =-+, ···································································································· 4分3x =-, ··········································································································· 5分 经检验:3x =-是方程的解. ················································································ 6分 13.解:(1)作图见答案13题图,··························································· 2分 (2)ABC △是等边三角形,D 是AC 的中点,BD ∴平分ABC ∠(三线合一), 2ABC DBE ∴∠=∠. ························································································· 4分 NDA C BM第22题图答案13题图AC BDE MCE CD =,CED CDE ∴∠=∠.又ACB CED CDE ∠=∠+∠,2ACB E ∴∠=∠. ····························································································· 5分 又ABC ACB ∠=∠, 22DBC E ∴∠=∠, DBC E ∴∠=∠, BD DE ∴=. 又DM BE ⊥,BM EM ∴=. ·································································································· 6分 14.解:(1)2210x kx +-=,2242(1)8k k ∆=-⨯⨯-=+, ·············································································· 2分无论k 取何值,2k ≥0,所以280k +>,即0∆>,∴方程2210x kx +-=有两个不相等的实数根. ························································ 3分(2)设2210x kx +-=的另一个根为x ,则12k x -=-,1(1)2x -=-,·············································································· 4分 解得:12x =,1k =,∴2210x kx +-=的另一个根为12,k 的值为1. ····················································· 6分15.解:过点P 作PC AB ⊥,C 是垂足,则30APC ∠=°,45BPC ∠=°, ····································· 2分tan30AC PC =°,tan 45BC PC =°,AC BC AB +=, ························································ 4分 tan30tan 45100PC PC ∴+=°°,11003PC ⎛⎫∴+= ⎪ ⎪⎝⎭, ···················································5分 50(350(3 1.732)63.450PC ∴=⨯->≈≈,答:森林保护区的中心与直线AB 的距离大于保护区的半径,所以计划修筑的这条高速公路不会穿越保护区.································································································ 6分 四、解答题(二)(本大题4小题,每小题7分,共28分) 16.解:设每轮感染中平均每一台电脑会感染x 台电脑, ············································ 1分 依题意得:1(1)81x x x +++=, ··········································································· 3分2(1)81x +=,答案15题图A BF E P C19x +=或19x +=-,12810x x ==-,(舍去),··················································································· 5分 33(1)(18)729700x +=+=>. ············································································ 6分答:每轮感染中平均每一台电脑会感染8台电脑,3轮感染后,被感染的电脑会超过700台. ························································································································ 7分 17.解:(1)2020%100÷=(人). ····································································· 1分(2)30100%30%100⨯=, ··················································································· 2分 120%40%30%10%---=,36010%36⨯=°°. ···························································································· 3分 (3)喜欢篮球的人数:40%10040⨯=(人), ························································ 4分 喜欢排球的人数:10%10010⨯=(人). ································································ 5分······················· 7分18.解:(1)分别过A O ,两点作AE CD OF CD ⊥⊥,,垂足分别为点E ,点F ,AE OF OF ∴∥,就是圆心O 到CD 的距离. 四边形ABCD 是平行四边形,AB CD AE OF ∴∴=∥,. ·················································································· 2分在Rt ADE △中,60sin sin 60AE AED D AD AD∠=∠==°,,°,222AE AE m OF AE m m ====,,, ························································ 4分 答案17题图答案18题图(1)答案18题图(2)圆心到CD 的距离OF. ··········································································· 5分 (2)3OF =, 为O ⊙的直径,且10AB =,当5OF =时,CD 与O ⊙相切于F 点,5m ==, ··················································································· 6分当3m =时,CD 与O ⊙相切. ······································································· 7分 19.解:(1)在Rt ABC △中,16BC =,1216192ABCD S AB BC ==⨯=矩形. ······································································ 2分(2)矩形ABCD ,对角线相交于点O ,4ABCD OBC S S ∴=△. ···························································································· 3分四边形1OBB C 是平行四边形,11OB CB OC BB ∴∥,∥,11OBC B CB OCB B BC ∴∠=∠∠=∠,.又BC CB =,1OBC B CB ∴△≌△,112962OBB C OBC ABCD S S S ∴===△, ······································································· 5分 同理,111111148222A B C C OBB C ABCD S S S ==⨯⨯=, ························································ 6分第6个平行四边形的面积为6132ABCD S =. ······························································· 7分五、解答题(三)(本大题3小题,每小题9分,共27分) 20.证明:(1)如图1,连结OA OC ,, 因为点O 是等边三角形ABC 的外心,所以Rt Rt Rt OFC OGC OGA △≌△≌△. ····························· 2分2OFCG OFC OAC S S S ==△△,答案20题图(1)AE O G FBCD因为13OAC ABC S S =△△, 所以13OFCGABC S S =△. ························································································ 4分 (2)解法一: 连结OA OB ,和OC ,则AOC COB BOA △≌△≌△,12∠=∠, ··························· 5分 不妨设OD 交BC 于点F ,OE 交AC 于点G ,3412054120AOC DOE ∠=∠+∠=∠=∠+∠=°,°,35∴∠=∠. ······································································· 7分 在OAG △和OCF △中, 1235OA OC ∠=∠⎧⎪=⎨⎪∠=∠⎩,,,OAG OCF ∴△≌△, ························································································· 8分 13OFCG AOC ABC S S S ∴==△△. ··············································································· 9分 解法二: 不妨设OD 交BC 于点F ,OE 交AC 于点G , 作OH BC OK AC ⊥⊥,,垂足分别为H K 、, ·················· 5分 在四边形HOKC 中,9060OHC OKC C ∠=∠=∠=°,°, 360909060120HOK ∴∠=-︒-︒=︒°-?, ························ 6分 即12120∠+∠=°.又23120GOF ∠=∠+∠=°,13∴∠=∠. ····································································································· 7分 AC BC =, OH OK ∴=,OGK OFH ∴△≌△, ························································································ 8分 13OFCG OHCK ABC S S S ∴==△. ················································································ 9分答案20题图(2)A E O GFB C D 1 2 3 45 答案第20题图(3) A EOGF B C D 1 3 2H K。

2009年广东省初中毕业生学业考试数学试卷

2009年广东省初中毕业生学业考试数学试卷
C 第 14 题图
15. (本题满分 6 分)如图所示, A 、 B 两城市相距 100km.现计划在这两座城市间修筑一 ,经测量,森林保护中心 P 在 A 城市的北偏东 30° B 城市的北 和 条高速公路(即线段 AB ) 偏西 45° 的方向上. 已知森林保护区的范围在以 P 点为圆心, 50km 为半径的圆形区域内. 请 问计划修筑的这条高速公路会不会穿越保护区.为什么? (参考数据: 3 ≈ 1.732,2 ≈ 1.414 ) E 30° A P
Q O
D
B
P
C
E
第 18 题图
19. (本题满分 7 分)如图所示,在矩形 ABCD 中, AB = 12,AC = 20 ,两条对角线相交 于点 O . OB 、OC 为邻边作第 1 个平行四边形 OBB1C ; 以 对角线相交于点 A1 ; 再以 A1 B1 、
A1C 为邻边作第 2 个平行四边形 A1 B1C1C ,对角线相交于点 O1 ;再以 O1 B1 、 O1C1 为邻边

彰显数学魅力!演绎网站传奇! 彰显数学魅力!演绎网站传奇! 学魅力 网站传奇
小题, 二、填空题(本大题 5 小题,每小题 4 分,共 20 分)请将下列各题的正确答案填写在答题 填空题( 卡相应的位置上. 卡相应的位置上. C 3 6.分解因式 2 x 8 x =__________. 7.已知 ⊙O 的直径 AB = 8 cm, C 为 ⊙O 上的一点, ∠BAC = 30° BC = __________cm. , 则 8.一种商品原价 120 元,按八折(即原价的 80%)出售, 则现售价应为 __________元. 9.在一个不透明的布袋中装有 2 个白球和 n 个黄球, A B O
17. (本题满分 7 分)某中学学生会为了解该校学生喜欢球类活动的情况,采取抽样调查的 方法,从足球、乒乓球、篮球、排球等四个方面调查了若干名学生的兴趣爱好,并将调查的 结果绘制成如下的两幅不完整的统计图(如图 1,图 2,要求每位同学只能选择一种自己喜 欢的球类; 图中用乒乓球、 足球、 排球、 篮球代表喜欢这四种球类的某一种球类的学生人数) ,

2009年广东省深圳市中考数学试题及答案

2009年广东省深圳市中考数学试题及答案

2009年深圳市初中毕业生学业考试数学试卷说明:1.全卷分二部分,第一部分为选择题,第二部分为非选择题,共 4页。

考试时间90分钟,满分100分。

第一部分 选择题一、选择题(本题有10小题,每题3分,共30分) 1.如果a 的倒数是-1,那么a 2009等于( )A .1B .-1C .2009D .-20092.由若干个相同的小立方体搭成的几何体的三视图如图所示,则搭成这个几何体的小立方体的个数是( ) A .3 B .4 C .5 D .6主视图 左视图 俯视图 3.用配方法将代数式a 2+4a -5变形,结果正确的是( )A.(a +2)2-1B. (a +2)2-5C. (a +2)2+4D. (a +2)2-94.横跨深圳及香港之间的深圳湾大桥(Shenzhen Bay Bridge )是中国唯一倾斜的独塔单索面桥,大桥全长4770米,这个数字用科学计数法表示为(保留两个有效数字)( ) A .24710⨯ B .34.710⨯ C .34.810⨯ D .35.010⨯ 5.下面的图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .6.下图是同一副扑克中的4张扑克牌的正面,将它们正面朝下洗匀后放在桌上,小明从中抽出一张,则抽到偶数的概率是( )A .13B .12C .34 D .237.如图,反比例函数4y x =-的图象与直线13y x =-的交点为A ,B ,过点A 作y 轴的平行线与过点B 作x 轴的平行线相交于点C ,则ABC △的面积为( ) A .8 B .6 C .4 D .28.如图,数轴上与1A ,B ,点B 关于点A 的对称点为C ,设点C 表示的数为x ,则2x x+=( )AB. C. D .29.某商场的老板销售一种商品,他要以不低于进价20%价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价.若你想买下标价为360元的这种商品,最多降价多少时商店老板才能出售( ) A .80元 B .100元 C .120元 D .160元 10.如图,已知点A 、B 、C 、D 均在已知圆上,AD //BC ,AC 平分BCD ∠,120ADC = ∠,四边形ABCD 的周长为10cm .图中阴影部分的面积为( ) A .B .C .D .第二部分(非选择题,共70分)二、填空题(本题有6小题,每题3分,共18分) 11.小明在7次百米跑练习中成绩如下:则这7次成绩的中位数是 秒12.小明和小兵两人参加学校组织的理化实验操作测试,近期的5次测试成绩如图所示,则小明5次成绩的方差21S 与小兵5次成绩的方差22S 之间的大小关系为21S 22S .(填“>”、“<”、“=”)13.如图,矩形ABCD 中,由8个面积均为1的小正方形组成的L 型模板如图放置,则矩形ABCD 的周长为 _.14.已知123112113114,,,...,1232323438345415a a a =+==+==+=⨯⨯⨯⨯⨯⨯依据上述规律,则99a = .15.如图a 是长方形纸带,∠DEF =20°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE的度数是 .BAD A CB AE AF AAC ACB 图a图c1 2 3 4 5 小明 小兵16.刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(a ,b )进入其中时,会得到一个新的实数:a 2+b -1,例如把(3,-2)放入其中,就会得到32+(-2)-1=6.现将实数对(m ,-2m )放入其中,得到实数2,则m = .三、解答题(本大题有7题,共52分)17.(6分)计算:202( 3.14)45π---︒. 18.(6分)先阅读理解下面的例题,再按要求解答:例题:解一元二次不等式290x ->. 解:∵29(3)(3)x x x -=+-,∴(3)(3)0x x +->.由有理数的乘法法则“两数相乘,同号得正”,有 (1)3030x x +>⎧⎨->⎩ (2)3030x x +<⎧⎨-<⎩解不等式组(1),得3x >,解不等式组(2),得3x <-,故(3)(3)0x x +->的解集为3x >或3x <-,即一元二次不等式290x ->的解集为3x >或3x <-.问题:求分式不等式51023x x +<-的解集.19.(6分)如图,斜坡AC 的坡度(坡比)为1:3,AC =10米.坡顶有一旗杆BC ,旗杆顶端B 点与A 点有一条彩带AB 相连,AB =14米. 试求旗杆BC 的高度.20.(7分)深圳大学青年志愿者协会对报名参加2011年深圳大运会志愿者选拔活动的学生进行了一次与大运知识有关的测试,小亮对自己班有报名参加测试的同学的测试成绩作了适当的处理,将成绩分成三个等级:一般、良好、优秀,并将统计结果绘成了如下两幅不完整的统计图,请你根据图中所给信息解答下列问题:(1)请将两幅统计图补充完整;(2)小亮班共有 名学生参加了这次测试,如果青年志愿者协会决定让成绩为“优秀”的学生参加下一轮的测试,那么小亮班有 人将参加下轮测试;ABCD(3)若这所高校共有1200名学生报名参加了这次志愿者选拔活动的测试,请以小亮班的测试成绩的统计结果来估算全校共有多少名学生可以参加下一轮的测试。

2009广东省中考数学试题和答案

2009广东省中考数学试题和答案

第7题图BADCBADCBA2009年广东省初中毕业生数学学业考试考试用时100分钟,满分120分一、选择题(本大题5小题,每小题3分,共15分)。

1. 4的算术平方根是( )A.±2B.2C.2±D.22. 计算()23a 结果是( )A.6aB.9aC.5aD.8a 3. 如图所示几何体的主(正)视图是( )4. 《广东省2009年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726亿 元,用科学计数法表示正确的是( )A.元101026.7⨯ B.9106.72⨯元 C.1110726.0⨯元 D.111026.7⨯元 5. 如图所示的矩形纸片,先沿虚线按箭头方向向右对折,接着将对折后的纸片沿虚线剪下 一个小圆和一个小三角形,然后将纸片打开是下列图中的哪一个( )二、填空题(本大题5小题,每小题4分,共20分)。

6. 分解因式x x 823-=_______________________.7. 已知⊙O 的直径AB=8cm ,C 为⊙O 上的一点,∠BAC=30°, 则BC=_________cm.8. 一种商品原价120元,按八折(即原价的80%)出售,则现售价应为__________元.9. 在一个不透明的布袋中装有2个白球和n 个黄球,它们除颜色不同外,其余均相同,若 从中随机摸出一球,摸到黄球的概率是54,则n=__________________. 10. 用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地板,则第(3)个图形中有黑色瓷砖________块,第n 个图形中需要黑色瓷砖___________块(用含n 的代数式表示).三、解答题(一)(本大题5小题,每小题6分,共30分) 11. 计算-+-921sin30°+()03+π.12. 解方程11122--=-x x第14题图EDCBA13. 如图所示,在平面直角坐标系中,一次函数y=kx+1的图像与反比例函数xy 9的图像在第一象限相交于点A ,过点A 分别作x 轴、y 轴的垂线,垂足为点B 、C.如果四边形OBAC 是正方形,求一次函数的关系式.14. 如图所示,△ABC 是等边三角形,D 点是AC 的中点,延长BC 到E ,使CE=CD. (1) 用尺规作图的方法,过D 点作DM ⊥BE ,垂足是M (不写作法,保留作图痕迹); (2)求证:BM=EM.第15题图45°30°FEPBA15. 如图所示,A 、B 两城市相距100km.现计划在这两座城市间修筑一条高速公路(即线段AB ),经测量,森林保护中心P 在A 城市的北偏东30°和B 城市的北偏西45°的方向上.已知森林保护区的范围在以P 点为圆心,50km 为半径的圆形区域内.请问计划修筑的这条高速公路会不会穿越保护区.为什么?(参考数据:414.12,732.13≈≈)四、解答题(二)(本大题4小题,每小题7分,共28分)16. 某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮被感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?第17题图图2足球乒乓球20%篮球40%排球17. 某中学学生会为了解该校学生喜欢球类活动的情况,采取抽样调查地方法,从足球、乒乓球、篮球、排球等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制成如下的两幅不完整的统计图(如图1、图2,要求每位同学只能选择一种自己喜欢的球类;图中用乒乓球、足球、排球、篮球代表喜欢这四种球类中的某一种球类的学生人数),请你根据图中提供的信息解答下列问题:(1)在这次研究中,一共调查了多少位学生?(2)喜欢排球的人数在扇形统计图中所占的圆心角是多少度? (3)补全频数分布折线统计图.第18题图QPOEDCBA第19题图C 2C 1A 2B 2B 1O 1OA 1DCB A18. 在菱形ABCD 中,对角线AC 与BD 相交于点O ,AB=5,AC=6.过D点作DE ∥AC 交BC的延长线于点E. (1)求△BDE 的周长;(2)点P为线段BC 上的点,连接PO 并延长交AD 于点Q.求证:BP=DQ.19. 如图所示,在矩形ABCD 中,AB=12,AC=20,两条对角线相交于点O.以OB 、OC 为邻边作第1个平行四边形C OBB 1,对角线相交于点1A ;再以C A B A 111、为邻边作第2个平行四边形C C B A 111,对角线相交于点1O ;再以1111C O B O 、为邻边作第3个平行四边形1211C B B O ……依此类推.(1)求矩形ABCD 的面积;(2)求第一个、第二个、第六个平行四边形的面积。

2009年中考数学试题参考答案

2009年中考数学试题参考答案

2009年中考数学试题参考答案一、 选择题(每题3分,共30分)ADCBA BADCD二、 填空题(每题3分,共18分)11、1 12、A B ⊥CD 或AD=BD 或AC =CB 等 13、y=2x 14、20 15、10+33 16、19 三、解答题(每小题8分,共16分)17、解:由(1)得 x >-2 ………………………… 2分 由(2)得3x -1《2x -2 得x ≤-1 ………………………… 4分 所以,不等式组的解集为-2〈x ≤-1……6分在数轴上表示为 ……………………… 8分 18.解:原式=()()2111x x x x x -+÷+ ……………………………… 2分 =()()1112-+∙+x x xxx …………………………… 4分=1-x x ………………………………………………… 6分当x=2时,1-x x =2122=- …………………………… 8分四、解答题(每小题9分,共18分)19、解:(1)作业完成时间在1.5 ~2小时时间段内的学生有6人 …… 2分 (2)该班共有学生:40%4518=名 ………… 4分(3)(略) ………………………………………………… 6分 (4)作业完成时间在0.5~1小时的部分对应的扇形圆心角的度数是: 360°×30% = 108° ………………………………………9分20、解:(1)用列表法或数状图表示为: 列表法…………………………5分树状图法(2)P(恰好选中女生甲和男生A)=61 ………………………………………………8分∴恰好选中女生甲和男生A 的概率为61……………………………………… 9分21、证明:(1)在□ABCD 中,AD=CB,AB=CD,∠D=∠B …………………………… 1分 ∵EF 分别是AB 、CD 的中点 ∴DF=21CD,BE=21AB , DF=BE ………………………………………3分∴△AFD ≌△CEB ………………………………………………4分 (2)在□ABCD 中,AB=CD,AB ∥CD ……………………………………6分 由(1)得BE=DF ,∴AE=CF ………………………………………………7分 ∴四边形AECF 是平行四边形 ………………………………………8分22、解:∵点A(-3,1),B(2,n)是一次函和反比例函数的交点 ∴把x=-3,y=1代入y=xm ,得:m=-3∴反比例函数的解析式是y=- x3 …………………………………………3分把x=-3,y=n 代入y=-x3 得:n=-23把x=-3,y=1,x=2,y=-23分别代入y=kx+b得:⎪⎩⎪⎨⎧-=+=+-23213b k b k ,解得 ⎪⎩⎪⎨⎧-=-=2121b k ……………………………………4分 ∴一次函数的解析式为y=- 2121-x ……………………………………5分(3)过点A 作AE ⊥x 轴于点E ∴A 点的纵坐标为1,∴AE=1 由一次函数的解析式为y=- 2121-x得C 点的坐标为(0,-21), ……………………………………6分∴OC=21在Rt △OCD 和Rt △EAD 中,∠COD=∠AED=90°,∠CDO=∠ADE∴Rt △OCD ∽Rt △EAD ……………………………………7分 ∴==COAE CDAD 2 ……………………………………8分23、(1)证明:连接OD, ∵OD=OA, ∴∠ODA=OAD ………………………………1分又∵DE 是⊙O 的切线,∴∠ODE=90°,OD ⊥DE ……………………………2分 又∵DE ⊥EF, ∴OD ∥EF ……………………………………3分 ∴∠ODA=∠DAE, ∠DAE=∠OAD, ∴AD 平分∠CAE …………………………5分 (2)解:∵AC 是⊙O 的直径,∴∠ADC=90°………………………………6分 由(1)知:∠ODA=∠DAE, ∠AED=∠ADC, ∴△ADC ∽△AED, ∴ADAC AEAD = ………………………………7分在Rt △ADE 中,DE=4,AE=2, ∴AD=25 ………………………………7分∴52252AC =,∴AC=10 ……………………………………8分∴⊙O 的半径为5 ……………………………………9分 24、解(1)∵抛物线与x 轴交于A(1,0),B(70)∴y=a (x-1)(x-7) ……………………………………1分 又∴抛物线与y 轴交于C,且OA=7,则C 点的坐标为(7,0) ∴7=a (0-1)(0-7),7a=7, a=1 ……………2分∴抛物线的解析式为y=(x-1)(x-7)=782+-x x …………………………3分 (2)∵E 点在抛物线上∴m=25-40+7,m=-8 …………4分 ∵直线y=kx+b 经过点C(0,7),E(5,-8)∴⎩⎨⎧-===8757k b 解得:k=-3,b=7 …………………………5分∴直线CE 的表达式是y=-3x+7 ……………………………………6分 (3)设直线CE 于x 轴的交点为D 当y=0时,-3x+7=0,x=37∴D 点的坐标为(37,0) ……………………………………7分∴S=3531008)377(217)377(21==⨯-⨯+⨯-⨯=+∆∆BDE BDC S S …………8分(4)在抛物线上存在点P 使得△ABP 为等腰三角形 ………………………9分 ∵抛物线的顶点是满足条件的一个点除此之外,还有六个点理由如下: ∵AP=BP=103909322==+>6分别以A 、B 为圆心,半径长为6画圆,分别与抛物线交于点B 、1P 、2P 、A 、3P 、4P 、5P 、6P ,除去A 、B 两点外,其余六个点为满足条件的点,…………11分∴一共有七个满足条件的点P ……………………………………12分。

广东省东莞市中考数学试题及答案

广东省东莞市中考数学试题及答案

广东省东莞市初中毕业生学业考试数 学考试用时100分钟,满分为120分一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.-2的倒数是( ) A .2B .-2C .21D .21-【答案】D 。

【考点】倒数。

【分析】根据两个数乘积是1的数互为倒数的定义,直接得出结果。

2.据中新社北京2010年12月8日电,2010年中国粮食总产量达到546 400 000吨,用科学记数法表示为( )A .5.464×107吨 B .5.464×108吨 C .5.464×109吨 D .5.464×1010吨【答案】B 。

【考点】科学记数法。

【分析】根据科学记数法的定义,科学记数法的表示形式为1010n a a <⨯≤,其中1,n 为整数,表示时关键要正确确定a 的值以及n 的值。

故选B 。

3.将左下图中的箭头缩小到原来的1,得到的图形是( )【答案】A 。

【考点】相似。

【分析】根据形状相同,大小不一定相等的两个图形相似的定义,A 符合将图中的箭头缩小到原来的21的条件;B 与原图相同;C 将图中的箭头扩大到原来的2倍;D 只将图中的箭头ABD题3图长度缩小到原来的21,宽度没有改变。

故选A 。

4.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为( ) A .51 B .31 C .85 D .83【答案】C 。

【考点】概率。

【分析】根据概率的计算方法,直接得出结果。

5.正八边形的每个内角为( )A .120ºB .135ºC .140ºD .144º 【答案】B 。

【考点】多边形内角和定理。

【分析】根据多边形内角和定理,求出正八边形的内角和为(8-2)×1800=10800,再平均10800÷8=1350。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第7题图
O
C
B
A
D C B
A D
C B A 2009年广东省东莞市中考数学试卷
一、选择题
1. 4的算术平方根是( )
A.±2
B.2
C.2±
D.2
2. 计算()
2
3a 结果是( )
A.6
a B.9
a C.5
a D.8
a
3. 如图所示几何体的主(正)视图是( )
4. 《广东省2009年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726亿 元,用科学计数法表示正确的是( )
A.元10
1026.7⨯ B.9106.72⨯元 C.1110726.0⨯元 D.111026.7⨯元
5. 如图所示的矩形纸片,先沿虚线按箭头方向向右对折,接着将对折后的纸片沿虚线剪下 一个小圆和一个小三角形,然后将纸片打开是下列图中的哪一个( ) 二、填空题
6. 分解因式x x 823
-=_______________________.
7. 已知⊙O 的直径AB=8cm ,C 为⊙O 上的一点,∠BAC=30°, 则BC=_________cm.
8. 一种商品原价120元,按八折(即原价的80%)出售,则 现售价应为__________元. 9. 在一个不透明的布袋中装有2个白球和n 个黄球,它们除颜色不同外,其余均相同,若 从中随机摸出一球,摸到黄球的概率是
5
4
,则n=__________________. 10. 用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地板,则第(3)个图形中 有黑色瓷砖________块,第n 个图形中需要黑色瓷砖_______________块(用含n 的代数式 表示).
第14题图
E D
C B A 第15题图
45°
30°F
E
P
B
A
第13题图
O C
B A x
y
三、解答题(一) 11. 计算-+-92
1sin30°+()0
3+π.
12. 解方程
11
1
22--=-x x
13. 如图所示,在平面直角坐标系中,一次函数y=kx+1
的图像与反比例函数x
y 9
=的图像在第一象限相交于点A ,
过点A 分别作x 轴、y 轴的垂线,垂足为点B 、C.如果四
边形OBAC 是正方形,求一次函数的关系式.
14. 如图所示,△ABC 是等边三角形,D 点是AC 的中点, 延长BC 到E ,使CE=CD. (1) 用尺规作图的方法,过D 点作DM ⊥BE , 垂足是M (不写作法,保留作图痕迹); (2)求证:BM=EM.
15. 如图所示,A 、B 两城市相距100km.现计划在这两座城市间修筑一条高速公路(即线段AB ),经测量,森林保护中心P 在A 城市的北偏东30°和B 城市的北偏西45°的方向上.已知森林保护区的范围在以P 点为圆心,50km 为半径的圆形区域内.请问计划修筑的这条高速公路会不会穿越保护区.为什么?(参考数据:
414.12,732.13≈≈)
四、解答题(二)
第18题图Q P O
E D C B A 第17题图图2
足球乒乓球20%
篮球40%
排球排球篮球乒乓球足球图1
项目
人数
50
40302010
O O 1
O
A 1
D
C
B A
16. 某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮被感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?
17. 某中学学生会为了解该校学生喜欢球类活动的情况,采取抽样调查地方法,从足球、乒乓球、篮球、排球等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制成如下的两幅不完整的统计图(如图1、图2,要求每位同学只能选择一种自己喜欢的球类;图中用乒乓球、足球、排球、篮球代表喜欢这四种球类中的某一种球类的学生人数),请你根据图中提供的信息解答下列问题: (1)在这次研究中,一共调查了多少位学生?
(2)喜欢排球的人数在扇形统计图中所占的圆心角是多少度? (3)补全频数分布折线统计图.
18. 在菱形ABCD 中,对角线AC 与BD 相交于点O ,AB=5,AC=6.过D点作DE ∥AC 交BC的延长线于点E. (1)求△BDE 的周长;
(2)点P为线段BC 上的点,
连接PO 并延长交AD 于点Q.求证:BP=DQ.
19. 如图所示,在矩形ABCD 中,AB=12,AC=20,两条对角线相交于点O.以OB 、OC 为邻边作第1个平行四边形C OBB 1,对角线相交于点1A ;再以C A B A 111、为邻边作第2个平行四边形C C B A 111,对角线相交于点1O ;再以1111C O B O 、为
邻边作第3个平行四边形1211C B B O ……依此类推. (1)求矩形ABCD 的面积;
第20题图
图2
图1
O
A
B
C
D
E
O
G
F E
D C
B
A
C OBB 1C C B A 111(2)求第1个平行四边形 、第2个
平行四边形
和第6个平行四边形的面积.
五、解答题(三)
20.(1)如图1,圆内接△ABC 中,AB=BC=CA ,OD 、OE 为⊙O 的半径,OD ⊥BC 于点F ,OE ⊥AC 于点G ,求证:阴影部分四边形OFCG 的面积是△ABC 的面积的
3
1. (2)如图2,若∠DOE 保持120°角度不变,求证:当∠DOE 绕着O 点旋转时,由两条半径和△ABC 的两条边围成的图形(图中阴影部分)面积始终是△ABC 的面积的3
1.
21. 小明用下面的方法求出方程032=-x 的解,请你仿照他的方法求出下面另外两个方程的解,并把你的解答过程填写在下面的表格中.
方程 换元法得新方程 解新方程 检验 求原方程的解
32=-x 0
32,=-=t t x 则令2
3=t 02
3〉=t 4
9,
2
3=
=x x 所以
第22题图
N
M D
C
B
A
22. 正方形ABCD 边长为4,M 、N 分别是BC 、CD 上的两个动点,当M 点在BC 上运动时,保持AM 和MN 垂直,
(1)证明:Rt △ABM ∽Rt △MCN ; (2)设BM=x ,梯形ABCN 的面积为y ,求y 与x 之间的函数关系式;当M 点运动到什么位置时,四边形ABCN
的面积最大,并求出最大面积; (3)当M 点运动到什么位置时Rt △ABM ∽Rt △AMN , 求此时x 的值.
32=-+x x 0
42=--+x x。

相关文档
最新文档