柠檬酸发酵
柠檬酸发酵的原理

柠檬酸发酵的原理柠檬酸是一种有机酸,化学式为C6H8O7。
它常见于柠檬、橙、柚子等柑橘类水果中,具有酸味和鲜味。
柠檬酸的发酵是指通过微生物在适宜环境条件下对柠檬酸底物进行代谢分解,产生新的化合物、气体或能量的过程。
柠檬酸发酵的过程可以分为两个阶段:引入柠檬酸菌和发酵反应。
首先,柠檬酸发酵的关键是引入柠檬酸菌。
柠檬酸菌是一类嗜酸性细菌,它们广泛存在于自然界中,常见于各种水果、土壤、植物等环境中。
这些细菌具有代谢柠檬酸的能力,并能分解柠檬酸为其他代谢产物。
在适宜的生长条件下,柠檬酸菌会在培养基中生长和繁殖。
柠檬酸菌需要一定的温度、pH值以及营养物质供应,如碳源、氮源、矿物盐等。
这些条件对于维持菌体生长和代谢活性都非常重要。
当柠檬酸菌引入培养基后,它们会开始与柠檬酸底物进行代谢,进而引发柠檬酸的发酵。
柠檬酸发酵可产生以下代谢产物。
首先,柠檬酸菌代谢柠檬酸的初始酶是柠檬酸酶,将柠檬酸分解为顺式-脱氢异柠檬酸。
柠檬酸酶存在于柠檬酸菌的细胞内。
随后,顺式-脱氢异柠檬酸经过酶促反应被还原为'顺式'脱氢酶异柠檬酸,再被脱氢酶反应转化为柠檬酸。
接下来,由于柠檬酸发酵过程中柠檬酸的分解和合成是相互竞争的,此时代谢产物多取决于柠檬酸菌生长条件的调节。
在有氧条件下(即有足够的氧气供应),柠檬酸将被完全代谢为二氧化碳和水,释放能量。
此时发酵的产物主要是气体,如二氧化碳。
这种情况下,柠檬酸发酵可以在其它微生物中应用。
然而,当在缺氧条件下进行柠檬酸发酵时(如在发酵罐中),由于氧气供应不足,柠檬酸菌会进一步代谢柠檬酸。
在此情况下,发酵的产物主要是有机酸,如乳酸、丙酸等。
这种发酵过程称为无氧呼吸。
结合柠檬酸菌自身特点和提供的环境条件,可以选择调控发酵过程中柠檬酸的转化路径,实现不同发酵产品的生产。
总结起来,柠檬酸发酵的原理是通过引入柠檬酸菌并在适宜条件下提供营养物质,利用柠檬酸菌的代谢能力,将柠檬酸转化为新的化合物。
柠檬酸发酵工艺

下补水接种。 • 严格无菌操作。
• 5.补水接种 • 避免淀粉回生,并且减少染菌几率。
• 6.装盘进室
• 曲醅疏松,不可压实,厚度6~7cm,高温 天气5cm左右
(五)发酵规程
• 1.薄层发酵法 • 品温30~35℃左右 • 发酵终点由酸度决定,48h后每12h测一次,
五、溶解氧的控制
产酸速率与溶氧分压成正比。 菌体生长中,有呼吸作用, 在对数生长期需氧量达到最高峰 进入产酸期后,氧的消耗降低 到一个较低的水平
溶解氧浓度的控制
• 2.置换法发酵
• 采用低糖而营养较丰富的培养液先培养菌 盖,菌盖形成后再更换发酵培养基一次或 数次。
• 培养液糖浓度50g/L,室温34~36℃、培养 液32~34 ℃,第二天室温32~34 ℃,一般 接种40h可形成紧实菌盖,排掉培养液,补 充发酵培养基(第一次置换),室温降至 30~32℃,发酵48~60h在排去发酵液,进 行第二次置换,以此循环。
• 优点:
• (1)发酵体系是均一的液体,传热传质良好,不 存在死区;
• (2)设备占地面积小,生产规模大;
• (3)发酵速率高,采用预培菌丝球接种只需 50~70h;
• (4)产算率高,产柠檬酸几乎接近理论产率,菌体 生成量少;
• (5)发酵设备密闭,杂菌污染可能性小,管理方 便;
• (6)完全机械化操作,并可以实现自动控制,劳 动强度低,劳动生产率高;
• (7)发酵副产物少,有利于产品提取,所得产品 质量高。
(一)黑曲霉柠檬酸深层发酵条件控制
一、营养要求
• 根据柠檬酸发酵机制,黑曲霉能够大量积累柠檬酸的条件, 提供高浓度的葡萄糖和充足的氧,对磷、锰、铁、锌等无机 盐物质处于低水平。
柠檬酸发酵机制

柠檬酸发酵机制柠檬酸生产分发酵和提取两部分。
发酵有固态发酵、液态浅盘发酵和深层发酵3种方法。
固态发酵是以薯干粉、淀粉粕以及含淀粉的农副产品为原料,配好培养基后,在常压下蒸煮,冷却至接种温度,接入种曲,装入曲盘,在一定温度和湿度条件下发酵。
采用固态发酵生产柠檬酸,设备简单,操作容易。
液态浅盘发酵多以糖蜜为原料,其生产方法是将灭菌的培养液通过管道转入一个个发酵盘中,接入菌种,待菌体繁殖形成菌膜后添加糖液发酵。
发酵时要求在发酵室内通入无菌空气。
深层发酵生产柠檬酸的主体设备是发酵罐。
微生物在这个密闭容器内繁殖与发酵。
现多采用通用发酵罐。
它的主要部件包括罐体、搅拌器、冷却装置、空气分布装置、消泡器,轴封及其他附属装置。
发酵罐径高比例一般是1:2.5,应能承受一定的压力,并有良好的密封性。
除通用式发酵罐外,还可采用带升式发酵罐、塔式发酵罐和喷射自吸式发酵罐等。
为了得到产柠檬酸的优良菌种,通常是从不同地区采集的土壤或从腐烂的水果中分离筛选,然后通过物理和化学方法进行菌种选育。
例如薯干粉深层发酵柠檬酸的菌种就是通过不断变异和选育得到的。
菌种适合在高浓度下发酵,产酸水平较高。
柠檬酸的发酵因菌种、工艺、原料而异,但在发酵过程中还需要掌握一定的温度、通风量及pH值等条件。
一般认为,黑曲霉适合在28~30℃时产酸。
温度过高会导致菌体大量繁殖,糖被大量消耗以致产酸降低,同时还生成较多的草酸和葡萄糖酸;温度过低则发酵时间延长。
微生物生成柠檬酸要求低pH,最适pH为2~4,这不仅有利于生成柠檬酸,减少草酸等杂酸的形成,同时可避免杂菌的污染。
柠檬酸发酵要求较强的通风条件,有利于在发酵液中维持一定的溶解氧量。
通风和搅拌是增加培养基内溶解氧的主要方法。
随着菌体生成,发酵液中的溶解氧会逐渐降低,从而抑制了柠檬酸的合成。
采用增加空气流速及搅拌速度的方法,使培养液中溶解氧达到60%饱和度对产酸有利。
柠檬酸生成和菌体形态有密切关系,若发酵后期形成正常的菌球体,有利于降低发酵液粘度而增加溶解氧,因而产酸就高;若出现异状菌丝体,而且菌体大量繁殖,造成溶解氧降低,使产酸迅速下降。
柠檬酸发酵机理

通过调整发酵温度和pH值,找到最适 宜的发酵条件,以提高柠檬酸的产量 和降低能耗。
产物的分离与纯化技术改进
分离技术
采用新型的分离技术,如超滤、纳滤、反渗透等,实现柠檬酸的高效分离和纯 化,降低分离成本。
纯化技术
采用结晶、离子交换、吸附等纯化技术,进一步提高柠檬酸的纯度,满足不同 应用需求。
细菌
某些细菌如柠檬酸杆菌、 氧化杆菌等也可以进行柠 檬酸发酵。
微生物的代谢途径
葡萄糖代谢
微生物将葡萄糖通过糖酵解途径 转化为丙酮酸,这是柠檬酸发酵 的起始步骤。
丙酮酸代谢
丙酮酸在丙酮酸羧化酶的作用下 转化为草酰乙酸,再经过三羧酸 循环转化为柠檬酸。
乙酰CoA的合成
在柠檬酸发酵过程中,乙酰CoA 是重要的中间代谢产物,可以用 于合成脂肪酸等物质。
厌氧发酵
微生物在厌氧条件下,将葡萄糖或其他糖类转化 为丙酮酸,再经过一系列反应生成柠檬酸。
3
好氧发酵
微生物在好氧条件下,通过糖酵解途径将葡萄糖 转化为丙酮酸,再经过氧化脱羧等反应生成柠檬 酸。
柠檬酸发酵的分类
黑曲霉发酵
黑曲霉在好氧条件下进行发酵,通过糖酵解途径将葡萄糖转化为 丙酮酸,再经过氧化脱羧等反应生成柠檬酸。
产物提取与精制
过滤分离
将发酵液进行过滤,分 离出菌体和未消耗的原
料。
离子交换
利用离子交换剂吸附柠 檬酸离子,与其他离子 进行交换,实现柠檬酸
的分离。
浓缩结晶
将分离出的柠檬酸溶液 进行浓缩和冷却,促使
柠檬酸结晶析出。
干燥与包装
将结晶的柠檬酸进行干 燥和包装,得到符合标
准的柠檬酸产品。
05 柠檬酸发酵的优化与改进
柠檬酸发酵原料及生产方法

糖蜜中的糖分主要是蔗糖和葡萄糖,这些糖分在微生物的作用下可以转化为柠檬酸。
葡萄糖
葡萄糖是一种单糖,是微生物发酵的 主要能源物质。
葡萄糖的渗透压较低,需要与其他原 料混合使用以调节发酵过程中的渗透 压。
葡萄糖在微生物的作用下可以转化为 柠檬酸,是柠檬酸发酵的重要原料。
果糖
果糖是一种单糖,是水果和蜂蜜 中的主要糖分。
01
02
03
废弃物资源化利用
将柠檬酸发酵过程中的废 弃物进行回收和再利用, 减少废弃物排放,同时实 现资源化利用。
环保生产技术研发
研发和应用环保生产技术, 降低柠檬酸发酵过程中的 环境污染,提高可持续性。
强化环境监管
加强环境监管力度,对柠 檬酸发酵企业实施严格的 环境保护标准,促进企业 环保意识的提高。
03
02 柠檬酸发酵生产方法
固态发酵法
固态发酵法是一种利用固体底物进行发酵的方法,通常在固体底物中加入适量的 水,然后接种菌种进行发酵。该方法具有设备简单、投资少、操作方便等优点, 但也有发酵效率较低、周期较长等缺点。
常用的固体底物包括糖蜜、甘蔗渣、稻草等农业废弃物,这些原料来源广泛,价 格低廉,适合大规模生产。
THANKS FOR WATCHING
感谢您的观看
Байду номын сангаас
控制温度在最佳范围内。
酸碱度
酸碱度是影响柠檬酸发酵的重要因 素之一,通过调节酸碱度可以促进 菌体的生长和代谢,提高柠檬酸的 产量。
溶氧量
溶氧量对柠檬酸发酵的影响也较大, 通过控制搅拌速度和通气量,保持 适宜的溶氧水平,有利于菌体的生 长和代谢。
产物提取与精制
提取方法
根据柠檬酸的性质和发酵液的特点, 选择合适的提取方法,如离子交换、 萃取、吸附等,以最大程度地提取柠 檬酸。
柠檬酸发酵及产物提取

综合实验:柠檬酸发酵及产物提取(一)柠檬酸发酵一、实验原理柠檬酸发酵为典型的有机酸发酵,淀粉质原料经淀粉酶作用水解为葡萄糖,葡萄糖经EMP途径氧化为丙酮酸,丙酮酸进一步被氧化脱羟生成乙酰CoA,就一般能量代谢过程而言,生成的乙酰CoA与草酰乙酸缩合成柠檬酸后进入三羟酸循环,通过三羟酸循环进行有氧呼吸的能量代谢。
但就柠檬酸产生菌而言,由于其乌头酸流水作业事酶和异柠檬酸脱氢酶活性很低,而柠檬酸合成酶的活性很高,因而大量积累柠檬酸,草酰乙酸的提供则仍通过丙酮酸羧化而成,柠檬酸的生成途径如下式:2 C6H12O6 +3 O2→2 C6H8O7 +4 H2O国内目前柠檬酸发酵所采用的原料主要是山芋干及废糖蜜。
二、实验器材(一)材料1.菌种:黑曲霉2.蔗糖、硫酸铵等(二)主要仪器设备1.旋转式摇床、超净工作台、15L发酵罐等三、操作步骤1.种子培养基制备:马铃薯培养基配方:(1000ml)马铃薯(去皮)200g葡萄糖(或蔗糖)20g琼脂15~25g水1000ml自然pH2.种子液培养:将已灭菌的种子培养基接入一环斜面孢子于35℃±1℃、250r.p.m条件下培养24~36h。
3.种子培养液质量要求:镜检菌丝生长健壮,结成菊花形小球,球直径不超过100μm,每毫升含菌球数在1~2万之间,无异味、无杂菌污染;pH2~2.5;酸度1.5~2.0%。
4.发酵培养基制备:蔗糖15%,硫酸铵0.4%,磷酸二氢钾0.1%,硫酸镁7水0.025%。
5. 上罐灭菌(操作同实验一)5.发酵:将培养好的种子液按发酵培养液体积的5%接入到已灭菌的发酵培养基中,于35℃±1℃、500转条件下发酵4天。
6.分别在0,24,48,72,96小时测定一下参数。
四、实验结果1.对种子液进行镜检,画下菌丝形态,并测定菌球直径及粗略估算每ml种子液中的菌球数。
2.测定成熟发酵液的酸度,并就发酵结束后的菌体形态作出描述。
3.计算柠檬酸发酵的转化率,即每100克葡萄糖经转化所能生成的柠檬酸克数,柠檬酸酵的理论转化率按下列反应计算应为106.7%。
第13章柠檬酸发酵

第三:是在缺少锰的条件下,蛋白质分解或蛋白质合成受阻造成的铵的高浓度能解除柠檬酸(CTA)对磷酸果糖激酶(PFK)的抑制。 此外,柠檬酸的分泌,降低其胞内浓度。
回补途径
☆TCA循环重要功能除产能外,为一些氨基酸和其它化合物的合成提供了中间产物; ☆生物合成中所消耗的中间产物若得不到补充,循环就会中断; ☆回补方式:①通过某些化合物的CO2固定作用, ②一些转氨基酶所催化的反应也能合成草酰乙酸和-酮戊二酸, ③通过乙醛酸循环
★通过某些化合物的CO2固定作用使三羧酸循环的中间产物得到回补: 丙酮酸羧化酶: CO2+丙酮酸+ATP+H2O Mg++ 草酰乙酸+ADP+Pi 磷酸烯醇式丙酮酸羧化酶: CO2 +PEP+ H2O 草酰乙酸+H3PO4 苹果酸酶: CO2 +丙酮酸+NADPH+H+ 苹果酸+ NADP+
3) 腌制品 各种肉类和蔬菜在腌制加工时,加入或涂上柠檬酸可以改善风味,除腥去臭,抗氧化。 4) 罐头食品 加入柠檬酸除了调酸作用之外,还有螯合金属离子的作用,保护其中的抗坏血酸,使之不被金属离子破坏。柠檬酸添加到植物油中也有类似的作用。
5) 豆制品及调味品 用含有柠檬酸的水浸渍大豆,可以脱腥并便于后续加工。柠檬酸可以用于大豆等豆类蛋白、葵花子蛋白的水解,生产出风味别致的调味品。它也可以用于成熟调味品(酱油等)的调味。 6) 其它 柠檬酸在医药、化学等其它工业中也有一定的作用。柠檬酸铁胺可以用作补血剂;柠檬酸钠可用作输血剂;柠檬酸可制造食品包装用薄膜及无公害洗涤剂。
柠檬酸发酵的原理及应用

柠檬酸发酵的原理及应用原理介绍柠檬酸(C6H8O7)是一种重要的有机酸,广泛应用于食品、饮料、医药等领域。
柠檬酸可以通过发酵过程来生产,其发酵原理主要包括以下几个方面:1.发酵菌种选择:柠檬酸发酵常用的菌种包括柠檬酸杆菌、黄曲霉等。
这些菌种具有较高的柠檬酸产量和较短的发酵周期,适合用于大规模生产。
2.基质选择:发酵过程中的基质是维持菌种生长和柠檬酸产量的关键因素。
常用的基质包括糖类(如葡萄糖、果糖)、淀粉、甘油等。
不同基质的选择会对柠檬酸的产量和品质产生影响。
3.发酵条件调控:发酵条件的调控对柠檬酸发酵的效果起着重要作用。
包括温度、pH值、搅拌速度、氧气供应等参数的调节,可以影响菌种生长和柠檬酸产量。
应用领域柠檬酸作为一种重要的食品和工业原料,在多个领域有广泛的应用。
以下列举了柠檬酸几个主要的应用领域:1. 食品和饮料工业•柠檬酸作为酸味调节剂,广泛用于饮料、果汁、果酱、糖果等食品的制作中,能够增加食品的酸味,提升口感。
•柠檬酸还可以作为乳化剂、稳定剂,用于调制乳制品、冷饮、糕点等,具有增加食品的稳定性和保质期的作用。
2. 医药和化妆品行业•柠檬酸作为医药中间体,可以用于制备多种药物,如抗生素、止血剂、解热药等。
•在化妆品制造中,柠檬酸可以作为调节剂、抗氧化剂等,用于调整pH值、抑制细菌生长,并起到保湿、美白等作用。
3. 清洁和生活用品•柠檬酸可作为有机酸性清洁剂,可去除水垢、油脂等,并且具有良好的环境友好性。
•在洗涤剂和洗衣粉中,柠檬酸可以作为增白剂,提升洗涤效果。
4. 金属清洁和锈蚀保护•柠檬酸可以与金属表面形成络合物,在清洁金属表面时起到去污、去锈蚀的作用。
•柠檬酸也可以用于金属防锈处理,形成覆盖层来阻止金属进一步生锈。
总结柠檬酸的发酵原理和应用领域涉及多个方面,其发酵原理包括酵母菌选择、基质选择和发酵条件调控等。
在食品、医药、清洁和金属保护等领域,柠檬酸具有广泛的应用,是一种重要的有机酸。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(一)EMP途径
EMP途径又称糖酵解途径或二磷酸己糖途径(图5-2)。
C6H12O6 + 2NAD+ + 2ADP + 2Pi → 2CH3COCOOH + 2NADH + 2H+ + 2ATP + 2H2O
EMP途径的特征性酶是1,6 - 二磷酸果糖醛缩酶,它催化1,6 - 二磷酸果 糖裂解生成2个磷酸丙糖,其中磷酸二羟丙酮可以转为3-磷酸甘油醛。 2个磷酸丙糖经磷酸烯醇式丙酮酸生成2分子丙酮酸。丙酮酸是EMP途 径的关键产物,由它出发在不同微生物中可以进行多种发酵。
微生物从呼吸底物脱下氢和电子向最终受氢(电子)体转移的过 程中,要经过一系列的中间传递体,而这些中间传递体按一定的 顺序排列成链,按顺序将氢和电子转移,最终将电子传给氢,这 种“链”称为呼吸链,也称为生物氧化链。 它主要由脱氢酶、辅酶Q(CoQ)、细胞色素组成。 真核生物的呼吸链在线粒体内膜上,原核生物的呼吸链在细胞质 膜上。 它的主要功能就是传递氢和电子,同时将电子传递过程中释放的 能量合成ATP。
一、微生物糖代谢的途径
糖类是异养微生物的主要碳素来源和能量来源,包括各种多糖、双糖 和单糖。多糖必须在细胞外由相应的胞外酶水解,才能被吸收利用;双 糖和单糖被微生物吸收后,立即进入分解途径,被降解成简单的含碳化 合物,同时释放能量,供应细胞合成所需的碳源和能源。 微生物糖代谢的主要途径有:EMP途径,HMP途径ED途径PK和HK途径等 四种。
生成ATP。
(二)氧化磷酸化:底物脱氢或失电子的过程与磷酸化这两个过程紧密
地偶联在一起,氧化释放的能量用于ATP合成。
(三)光合磷酸化:在光照条件下,叶绿体将ADP和无机磷(Pi)结合形成
ATP的过程。
第二节 微生物的分解代谢
糖、蛋白质、脂类等营养物质被微生物利用之前,通常都需要被分解 成小分子的物质。营养物质不同,分解的方式也不一样。
三、 ATP的产生
ATP是生物体内能量的主要传递者。 当微生物获得能量后,都是先将它们转换成ATP。当需要能量时,ATP 分子上的高能键水解,重新释放出能量。ATP是一高能磷酸化合物,ADP 与Pi合成ATP的过程叫做磷酸化。 微生物体内ATP合成的方式有三种:
(一)底物水平磷酸化:底物分子中的能量直接以高能键形式转移给ADP
第五章 微生物的代谢
第一节 微生物的能量代谢
第二节 微生物的分解代谢
第三节 微生物发酵的代谢途径
第四节 微生物独特的合成代谢
第一节 微生物的能量代谢
一、微生物的呼吸类型
有氧呼吸 无氧呼吸 发酵
根据微生物呼吸类型不同,可以将微生物分为好氧微生物、厌氧 微生物和兼性厌氧微生物。
二、生物氧化链
C6H12O6+ ADP + Pi + NAD+→ CH3CHOHCOOH + CH3CH2OH + CO 2+ ATP + NADH + H+
图5-4 磷酸戊糖解酮酶(PK)途径
图5-5 磷酸己糖解酮酶(HK)途径
二、多糖的分解
(一)淀粉的分解
微生物对淀粉的分解是由微生物分泌的淀粉酶催化进行的。 微生物产生的淀粉酶主要有以下几种:
1.α
-淀粉酶(又称液化酶)
这种酶可从直链淀粉的内部任意切割α -1,4糖苷键而不能切割α -1,6 糖苷键。淀粉经该酶作用之后粘度很快下降。最终产物是麦芽糖和少量 葡萄糖。不少微生物都可产生α -淀粉酶,芽孢杆菌属、梭菌属和曲霉属 中的种,产生的较多。
2.β -淀粉酶(又称糖化酶) 这种酶是从直链淀粉分子的外端(即非还原端)开始作用于α -1,4 糖苷键,每次水解出一个麦芽糖分子,但这种酶不能水解也不能越过 α -1,6糖苷键。分解产物是麦芽糖和分子较大的极限糊精。能产生 β -淀粉酶的细菌很少,但能产生β -淀粉酶的真菌却不少,根霉和黑 曲霉、米曲霉等都可产生大量β -淀粉酶。
(三)ED途径
ED途径又称2-酮-3-脱氧-6-磷酸葡糖酸裂Байду номын сангаас途径(图5-3)。
C6H12O6 + ADP + Pi+ NADP+ + NAD+ → 2CH3COCOOH + ATP + NADPH + H+ + NADH + H+
图5-3 ED途径
(四)磷酸解酮酶途径
该途径的特征性酶是磷酸解酮酶,根据解酮酶的不同,把具有磷酸戊 糖解酮酶的称为PK途径(图5-4),把具有磷酸己糖解酮酶的称HK途 径(图5-5)。
(三)果胶质的分解
果胶是构成高等植物细胞间质的主要物质。分解果胶质的酶也是一个 多酶复合物。 分解果胶的微生物主要是一些细菌和真菌,如芽孢杆菌、梭状芽孢杆 菌、节杆菌、黄杆菌、假单胞菌,以及曲霉、青霉、根霉、毛霉和镰 刀霉等。
天然果胶质(原果胶)
水可溶性果胶 果胶酸 半乳糖醛酸→糖代谢途径
3.葡萄糖淀粉酶 这种酶是从淀粉分子的非还原端开始,每次切割下一个葡萄糖分子。 但对α -1,6键作用缓慢。黑曲霉、米曲霉可产生这种酶。
4.极限糊精酶
这种酶专门分解α -1,6键,切下枝链淀粉的侧枝,黑曲霉和米曲霉 也可产生这种酶。
(二)纤维素和半纤维素的分解
纤维素和半纤维是世界上最丰富的碳水化合物。天然纤维素的分解涉 及两种酶:C1酶和Cx酶。 产生半纤维素酶的微生物主要有曲霉、根霉和木霉等。
几丁质是真菌细胞壁和昆虫体壁的组成成分,是不易被分解的含氮多 糖类物质,一般生物都不能分解它,只有某些细菌和放线菌能分解和 利用它,甲壳质的分解步骤如下:
三、蛋白质的分解
(一)蛋白质的分解
蛋白质是由氨基酸组成的大分子化合物,蛋白质的分解产物为肽和氨基 酸。 微生物分解蛋白质的能力因菌种而有很大差异。一般来说,真菌水解蛋 白质的能力较细菌强。细菌中只在芽孢杆菌、梭菌、假单胞菌、变形杆 菌和肠杆菌等属中少数菌种才有分解力强的蛋白酶,而且它们只有在大 量生长时才合成蛋白酶。因此,在开始生长时如果只供给纯蛋白质作为 氮源,它们大多不能生长。加入少量可被迅速利用的氮源如蛋白胨,细 菌得以大量生长繁殖并产生蛋白酶,分解蛋白质。
图5-1 EMP途径 “-1”代表消耗ATP数“+2”代表生成ATP数
(二)HMP途径
HMP途径又称磷酸戊糖途径(图5-2)。它是循环途径。
C6H12O6 + 2NAD+ + 2ADP + 2Pi → 2CH3COCOOH + 2NADH + 2H+ + 2ATP + 2H2O
图5-2 HMP途径(TK为转羟乙醛酶,TA为转二羟丙酮基酶)