即磁性随晶轴方向显示各向异性
晶体中的各向异性

2 结晶生长的微观描述
如图 1 所示,晶体生长体系的组成从溶液相到晶相经历了三个区间,即液相区、过渡相区与晶相区。在
液相区, 溶质与溶剂以离子水平均匀混合。晶体的
组成原子在溶液中通过彼此之间很强的化学键相互键
合,从而形成众多的生长单元 ( 离子、分子或 团 簇) 。
在过渡相区,生长单元经扩散逐步接近晶体,在靠近晶
( 1. State Key Laboratory of Rare Earth Resource Utilization,Changchun Institute of Applied Chemistry,Chinese Academy of Sciences, Changchun 130022,China; 2. School of Chemical Engineering,Dalian University of Technology,Dalian 116024,China)
人工晶体学报
JOURNAL OF SYNTHETIC CRYSTALS
Vol. 41 Supplement August,2012
晶体中的各向异性研究
孙丛婷1,2 ,李克艳2 ,宋术岩1 ,薛冬峰1,2
( 1. 中国科学院长春应用化学研究所稀土资源利用国家重点实验室,长春 130022; 2. 大连理工大学化工学院,大连 116024)
此,有效地设计表面键合环境有利于调节各向异性生
长形态。在 Cu2 O 结晶过程中,EDTA 被证实起到了还 原剂和螯合剂的双重作用 。 [12,13,20] EDTA 的浓度决定
了 Cu2 O 生长过程中的控制步骤。在高 Cu( II) / EDTA
浓度比的结晶条件下,Cu2 O 的结晶习性主要受到反应 图 3 控制,结晶环境中的 EDTA Fig. 1 Schematics of three phase zone
稀土单分子磁体磁各向异性的理论研究

稀土单分子磁体磁各向异性的理论研究
随着近几年来稀土单分子磁体(Rare Earth Single Molecule Magnets,简称RESM)研究热潮的升温,稀土单分子磁体的磁各向异性被越来越多的学者所关注,引起了众人的关注。
因此,磁各向异性的理论研究成为未来稀土单分子磁体的发展一个重要的研究方向。
一、磁各向异性的概念
磁各向异性(magnetic anisotropy),即材料磁性特性随向量旋转方向变化,将其
折射成一种特殊的方向性。
也就是说,材料磁性能力只有在特定的方向上才有强烈的表现力,这就是磁各向异性的作用。
二、磁各向异性的研究目的
研究磁各向异性的目的是为了更加深入的了解磁性材料的性能,并且为磁性材料的微米尺度制造、存储磁记忆等提供研究基础。
三、稀土单分子磁体的磁各向异性
(1)稀土六配位单分子磁体(R6SMs)。
R6SMs试图通过调节其稀土核心结构,来改善其磁各向异性,以增强其磁力及稳定性。
四、磁各向异性的理论研究
(1)基于简单多电子结构的理论模型。
该研究方法借助简单多电子结构对稀土核
心结构进行描述建模,通过调制其结构参数来调控它们的磁各向异性,并加以分析。
总之,就稀土单分子磁体的发展而言,磁各向异性的理论研究就显得极为重要,只有通过深入的理论研究,才能够更好地推动稀土单分子磁体的发展。
磁晶与向异性与磁轴伸缩课件

医疗领域
利用磁晶与向异性材料的生物相 容性和磁响应性,应用于医学影 像、药物载体、肿瘤治疗等领域
。
06
案例研究:磁晶与向 异性在硬盘中的应用
硬盘的工作原理
硬盘存储原理
硬盘通过存储数据在磁性材料上,利用磁性材料的磁化状态来记录数据。当电流通过磁头线圈时,磁 头与磁盘表面接触,产生磁场,使磁盘表面上的磁性颗粒磁化,从而记录数据。
磁晶与向异性与磁轴伸缩课 件
目录
• 磁晶与向异性简介 • 磁晶的分类与特性 • 向异性与磁轴伸缩 • 磁晶与向异性在科技中的应用 • 磁晶与向异性面临的挑战与解决方案 • 案例研究:磁晶与向异性在硬盘中的应用
01
磁晶与向异性简介
磁晶与向异性的定义
磁晶
磁晶是指在晶体结构中,由于原 子、分子或离子的排列方式不同 ,导致磁场方向发生变化的特性 。
复杂晶体结构的磁晶各向异性表现出更为复杂的特性,其磁化强度M在不同方向上 可能存在更为复杂的变化。
常见的复杂晶体结构有铁氧体、稀土金属间化合物等。
03
向异性与磁轴伸缩
向异性定义与分类
定义
向异性是指物质在各个方向上表现出不同的物理性质。
分类
晶体材料的向异性可以分为自发向异性和诱导向异性。自发向异性是指晶体材 料本身固有的性质,而诱导向异性则是在外部磁场或电场作用下表现出的性质 。
应用
利用向异性与磁轴伸缩之间的关系,可以开发出新型的传感器、换能器等器件, 用于磁场或电场的测量和调控。同时,这种效应在磁性存储器、磁性随机存储器 等领域也有着广泛的应用前景。
04
磁晶与向异性在科技 中的应用
磁记录技术
磁记录技术是一种利用磁性材料特性进行信息存储的技术,如硬盘、磁 带等。磁晶与向异性在磁记录技术中起着关键作用,它们决定了磁记录 的稳定性和可靠性。
磁晶各向异性PPT课件

示为: H
d
x
N
xM
x
H
d
y
N
yM
y
H
d
z
N
zM
z
NxNy Nz 1
在CGS单位值中
NaNbNc4
如果磁性体不是椭球形状,即使在均匀外场中,磁化
也是不均匀的,这时退磁场的大小和方向随位置而变,很
2难021/用3/7 退磁因子来表C示HEN。LI
23
旋转椭球的极限情况:
abc
Na
Nb
Nc
1 3
易轴
2021/3/7
CHENLI
20
三.形状各向异性
一、退磁场
当铁磁体由于磁化,在表面具有面磁极( 荷 )或体磁极( 荷 )时,在铁磁
体内将产生与磁化强度方向相反的退磁场 Hd 。若磁性体磁化是均匀的,则
退磁场也是均匀的,且与磁化强度成比例而方向相反,因此:
H d N M
N 称作退磁因子,它的大小与M无关,只依赖于样品的几 何形状及所选取的坐标,一般情况下它是一个二阶张量。
• 自发磁化:在未加外磁场时,铁磁金 属内部的自旋磁矩已经自发地排向 了同一方向的现象.
2021/3/7
CHENLI
2
磁畴
磁畴
铁磁性材料所以能使磁化强度显著增大, 在于其中存在着磁畴(Domain)结构
在未受到磁场作用时,磁畴方向是无规的, 因而在整体上净磁化强度为零
每个磁矩方向一致的区域就称为一个磁畴。 不同的磁畴方向不同,两磁畴间的区域就
A<0时,反平行排列。
2021/3/7
CHENLI
6
铁磁性的起源----直接交换相互作用
原子间距离太远,表现孤立原子特性
磁晶各向异性

Thank you!
现设镍的浓度很小(远远小于1),无序时就没有 Ni - Ni 近邻如图(a),若磁场热处理时,铁镍原子的位置互换 如图(b)增加了一个铁铁对和一个镍镍对,同时减少了两个 铁镍对。
lo lNi Ni lFeFe 2lFe Ni
⑵ 逆磁致伸缩效应
是指磁性体在受到形变时将发生 偶极子互作用能的变化和弹性能的变化, 这两种能量的平衡又决定了磁致伸缩所 产生的形变大小,所以磁体受到形变时 将产生磁各向异性现象。
2ቤተ መጻሕፍቲ ባይዱ2 分类
1 2 3
生长感生磁向异性 应力感生磁向异性
磁场感生磁向异性
生长感生各向异性大多发生于磁性薄 膜中,由于生长过程的特殊条件,使各个 磁性离子沿着特定的方向形成有序化,导 致呈现出生长感生各向异性。 应力感生磁各向异性的出现是由于应 力或形变通过磁弹性相互作用影响磁化强 度的从优取向。
(4.19)
⑵ 转矩曲线为 sin 形式。
这表明它是一种单向各向异 性,不同于单轴各向异性—即自
发磁化的稳定方向(或易磁化 方向)平行于一特殊晶轴 。其
产生的各向异性能可 表示为:
Ea Kd cos
(4.20)
Kd为交换各向异性常数,它 取决于颗粒的总表面积。
3.3 Co-CoO在磁场中的自由能
3.2 对Co-CoO的热处理
CoO是反铁磁性,在冷却过程 中,反铁磁自旋结构在奈尔点( 低于 室温 )形成时,由于在外场作用下, 表面处的Co2+的自旋与颗粒中Co 的自旋必定平行排列。 图(4.19)和(4.20)为样品的磁场 热处理的磁滞回线和转矩曲线。热 处理的条件是:
107 1 从300K在 H 4 A m
2K0 Kd 0 M 0 M
磁晶各向异性和磁致伸缩

6 2
6
3
,
222
1 2 3,
24 24 24 42 42 42 12 23 31 12 23 31
1 6 2 6 3 6 1 22 2 2 23 2 3 2 1 2 3 1 22 23 2
第三项
3 2 2 222 2 222 2 22 22 22 22 1 2 122 3 233 1 31 12 23 31
[100]:1=1,2=0,3=0
EA=0
y
[110]: 10,231/ 2 EA=K1/4
[110]
[111]:1231/ 3 EA=K1/3+K2/27
x
立方晶系各向异性
Fe: K1=4.72x104Jm-3 K2=-0.075x104Jm-3
Ni: K1=-5.7x103Jm-3 K2=-2.3x103Jm-3
b. (110)面测定
1=0,2=sin,3=cos
E A2 23 2sin2cos2
sin 2 2 sin c o s
cos22cos21
T K 1 ( 2 s2 i n 3 s4 i) n K 2 (s 2 i4 s n 4 i n 3 s6 i)n
8
64
极大 =25031‘, -0.561K1 ,极小 =70021‘,+0.210K1
EA wi
i
i表示自旋对。由于远处自旋对的相互作用很小,仅考虑近邻,最多
到次近邻之间的相互作用。设(1,2,3 )为平行自旋对的方向余弦, 对原子連线方向与x-轴平行的自旋对,cos可以用1代替,对平行y-,z轴的自旋对,cos可分别用2和3替代。
E A N l(1 2 1 3 ) q (1 4 7 6 1 2 3 3 5 ) .... l (2 2 1 3 ) q (2 4 .....
磁学学习题集

1. 顺磁性、抗磁性、铁磁性、反磁性的物理特征及代表性材料一、两种,它们的磁化率的温度关系。
金属导电电子的顺磁性(泡利顺磁性)磁化率FB E n 232μχ=的推导、各种抗磁性的来源。
顺磁性:一种弱磁性,呈现正的磁化率,数量级为10-5-10-2,磁性离子之间不存在明显的相互作用。
代表材料:FeCl2,CoCl2。
磁化率与温度的关系:居里定律和居里-外斯定律。
抗磁性:一种弱磁性,呈现负的磁化率,数量级为10-5,磁性离子之间不存在明显的相互作用,主要分为正常抗磁性和反常抗磁性(Bi )。
代表材料:Ag,Ag,Cu 。
磁化率与温度的关系:正常抗磁性磁化率基本不随温度和磁场变化;反常抗磁性与温度和磁场有明显的依赖关系,在极低温下出现德哈斯-范阿尔芬效应。
正常抗磁性:电磁感应;反常抗磁性:导电电子受周期性晶格场的作用而引起的。
铁磁性:一种强磁性,在居里温度以下,存在自发磁化现象和分畴现象,近邻磁矩排列平行。
代表材料:Fe ,Co ,Ni,Fe3O4,Fe2O3。
磁化率与温度的关系:在居里温度以上,满足居里-外斯定律。
反铁磁性:一种强磁性,在居里温度以下,存在自发磁化现象和分畴现象,近邻磁矩排列反平行。
代表材料:MnO ,FeO 。
磁化率与温度的关系:在居里温度以上,满足居里-外斯定律。
金属导电电子的顺磁性推导:《铁磁学上》P57 2. 孤立原子的磁矩的组成。
用洪德法则分析单个离子(d 电子和f 电子)的磁矩。
原子组成晶体时轨道角动量冻结现象的理解、轨道角动量冻结的本质及其对磁矩的影响。
组成:轨道磁矩与自旋磁矩的耦合。
上P24分析例子:上P25。
轨道冻结:上P73。
3. 铁磁性的基本特征。
从唯象理论和交换作用理论的角度理解铁磁性物质的自发磁化和居里温度(包括反铁磁和亚铁磁情况)。
居里—外斯定律的推导、分子场的本质。
自旋波的理解与低温下铁磁体的磁化强度与温度的关系。
铁磁性基本特征:一种强磁性,在居里温度以下,存在自发磁化现象和分畴现象,近邻磁矩排列平行。
磁性材料的磁畴结构与磁各向异性

磁性材料的磁畴结构与磁各向异性磁性材料是一类能够产生磁性的物质,其磁畴结构与磁各向异性对其磁性能起着关键作用。
本文将详细探讨磁性材料的磁畴结构以及磁各向异性的形成机制,并分析其在磁性材料应用中的重要性。
一、磁畴结构磁畴是指一个区域内的磁性原子或磁性离子的磁矩方向相互一致。
磁性材料中由于各种微观相互作用的影响,磁畴的大小和方向并不均匀。
磁畴结构的形成取决于磁性材料的晶格、磁矩以及温度等因素。
1. 磁畴墙磁畴墙是相邻磁畴之间具有磁矩变化的区域,它是磁畴结构中的重要界面。
磁畴墙可以分为两类:位错型和磁矩旋转型。
位错型磁畴墙是由于晶格缺陷引起的,而磁矩旋转型磁畴墙是由于磁矩方向变化引起的。
位错型磁畴墙在垂直于磁化方向的平面内有垂直的位错线,而磁矩旋转型磁畴墙是由于晶格中磁矩方向发生旋转形成。
2. 磁畴结构的演化磁性材料中的磁畴结构是动态演化的,其演化过程受到外部磁场、温度以及时间等环境条件的影响。
当外部磁场作用于磁性材料时,磁畴结构会发生变化。
例如,在无外场时,磁畴结构可能是无序的或者随机分布的;而在有外场时,磁畴结构会趋于有序化,磁畴的数量和大小也会发生变化。
二、磁各向异性磁各向异性是指磁性材料在不同方向上的磁性能不同。
磁各向异性是由于磁性材料的晶格结构、化学成分以及磁畴结构等因素的相互作用而产生的。
1. 形式各向异性形式各向异性是由于磁性材料的晶格结构对磁化方向的偏好而产生的。
晶格结构中存在着非等向性,从而导致磁性材料在某些方向上的磁化更容易发生。
形式各向异性可以通过优化晶格结构来改善磁性材料的性能。
2. 磁畴各向异性磁畴各向异性是由于磁畴结构中的磁畴墙形状和排列方式不同而产生的。
磁畴的大小和方向对磁性材料的性能有着重要影响。
通过调控磁畴结构,可以改变磁性材料的磁性能。
三、磁畴结构与磁各向异性的应用磁畴结构与磁各向异性在磁性材料的应用中起着重要作用。
例如,在信息存储器件中,磁性材料的磁畴结构和磁各向异性可以影响磁头的读写性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复习题练习填空题1. 、铁氧体材料按其晶体结构分为_尖晶石铁氧体_、_石榴石铁氧体_ 和_磁铅石(或六角晶系)铁氧体。
2.. 永磁材料的一个重要的性能指标为磁能积,其单位为MGOe。
3. 六角铁氧体有三种磁晶各向异性:、和。
(主轴型、平面型、锥面型)4. 目前金属纳米晶磁性材料已得到广泛的应用,其中三种牌号的纳米晶磁性材料为:________、________和________ 。
(FINEMET、NANOPERM、HITPERM) 5、磁化曲线随晶轴方向的不同而有所差别,即磁性随晶轴方向显示各向异性,这种现象称为__磁晶各向异性______,它存在于所有铁磁性晶体中,在__非晶磁性材料___ 中不存在。
6、金属永磁材料高矫顽力机理主要有高应力型、__单畴型__、___成核型___和__钉扎型___。
7. 尖晶石铁氧体在单位晶胞中,A位置共有__64__个,B位置共有___32___个,但实际占有金离子的A位置只有___8___个,B位置只有___16___个,其余空着,这些空位对配方不准造成的成分偏离正分并对___掺杂_____有利。
8、磁性材料材料在交变磁场中产生能量损耗,称为__磁损耗___。
磁损耗包括三个方面__涡流损耗__、___磁滞损耗__和__剩余损耗___。
9. 一般来讲,技术磁化过程存在两种磁化机制,分别为_畴壁运动__ 和__磁畴转动___ 。
10. 一般来讲,铁氧体材料其磁饱和磁化强度远小于金属软磁材料,其应用频率远高于金属软磁材料。
金属软磁材料低电阻率的特性导致涡流效应,涡流损耗限制了其在高频段的应用。
11. 品质因数是反映软磁材料在交变磁化时能量的_贮能___和_损耗__的性能。
名词解释:1. 金属间化合物答:金属与金属、或金属与非金属之间常按一定比例和一定顺序,共同组成一个新的、不同于其任一组元的新点阵的化合物,这类化合物统称为金属间化合物。
2. 磁相变答:磁性有序结构向有序结构转变(如反铁磁与铁磁结构之间的转变)或磁性无序结构与有序结构间的转变过程,称为磁相变。
3. 结晶织构在材料结构一定的情况下,其晶粒在一个方向上成规则排列的状态,称为结晶织构。
4. 失稳分解5. 叵姆合金是指35~80%Ni-Fe系二元合金和添加Mo, Cu, Cr等元素的多元合金。
常称做坡莫合金或叵姆合金6. 磁性织构在材料结构一定的情况下,其磁畴在一个方向上成规则排列的状态。
7. 氧参数:描述尖晶石铁氧体单位晶胞中氧离子真实位置的一个参数,是指氧离子与小立方(又名子晶格)中最远一个面的距离。
8. 饱和磁化强度磁体在饱和磁化状态(磁矩平行排列)时,定义单位体积内磁体的磁矩矢量和为饱和磁化强度。
9. 磁性矫顽力该磁学参数描述的是磁性材料磁化过程的难易的量,数值越大表示材料越难磁化。
在M-H磁滞回线上, 矫顽力为使磁矩为零所需磁场大小。
辨析题:1、现有两种磁性材料:FeNi合金和LiFeCr尖晶石铁氧体,分别测得它们的M-T 曲线如下图所示,请问:(1)图中的(1)和(2)分别是属于哪一个材料?(2)它们有哪些不同之处?(3)图中的A、B、C分别是什么温度?(4)如在昼夜温差大的环境下使用,我们该选择哪一材料来开发磁性器件(假设不计成本)?若用于开发高频器件,我们应该选择哪种器件?2. 磁晶各向异性常数K1为磁性材料的内禀磁特性,只与材料的成分有关。
故对Fe-Ni合金,只要其成分相同,其K1值都相同。
请判断上面说法的对错,同时说明原因。
答:不对,磁晶各向异性常数K1为材料的内禀磁特性,除与材料的成分相关外,还与其结构相关。
对成分相同Fe-Ni合金,当热处理工艺不同时,其结构、显微组织将会不同,所以其K1值就有可能不相同。
)问答题:1、简述金属软磁材料磁化机制,同时说明提高其超始磁导率的方法和措施。
磁化机制(磁畴转动,畴壁位移)。
畴壁位移主要受到各种形式的钉扎作用,如内应力的钉扎,非磁性第二相的阻碍,晶界对畴壁位移的阻碍(也即晶粒大小对软磁性能的影响)。
提高其起始磁导率的方法和措施:①提高饱和磁化强度Ms;②有效方法,使K1→0,λs→0;③高温退火、真空热处理、氢气热处理;④使材料杂质相对集中;⑤真空熔炼、精炼;⑥进行织构。
⑦。
2. 简述晶粒大小对常规磁性材料和纳米晶磁性材料矫顽力的影响规律,并说明为什么。
答:对于常规磁性材料而言,晶粒直径越小,矫顽力越大,一般成Hc ∝ 1/D 的关系(D 为晶粒直径)。
这是因为晶粒越小,相同体积内的材料含有的晶界数目越多。
而晶界是畴壁位移所受阻力来源之一,晶界越多,畴壁位移过程将受到更多的阻力,从而导致矫顽力增大;对纳米晶而言,晶粒越小,矫顽力越小。
根据随机各向异性理论,纳米晶材料的等效磁晶各向异性常数<K>可以表述如下:c K <>=,其中Kc 为常规晶粒尺度下的磁晶各向异性常数,N 为晶粒临界尺度(小于该尺度矫顽力不再遵循上述规律)内纳米晶的数目。
晶粒越小,临界尺度内的纳米晶数目越多,N 值越大,从而使矫顽力越小,从而使得矫顽力一般遵循Hc ∝ D 6 的关系。
3. 简述Fe 、Ni 、Co (常温、常压下)的晶体结构(要求画出示意图)和磁性。
4. 请画出典型的磁性材料的磁滞回线(M-H )和磁化曲线,并在图中标出下Ms 、Hc 、最大磁导率μmax 和起始磁导率μi ,并指出哪些是内禀磁参数?同时说明磁性材料的磁化机制。
5. 简要说明永磁材料AlNiCo系列和NdFeB系列的矫顽力机理,试(主要从磁性能方面)比较两类材料的优缺点?答:AlNiCo系列合金的高矫顽力来源于合金冷却过程中通过失稳分解沉淀(析出)近似单畴大小的伸长形成磁性相弥散分布在弱磁性相中,利用磁性相的形状各向异性获得的。
目前普遍认为NdFeB系列合金的高矫顽力机制为畴壁位移钉扎型。
通过在合金晶界处的富Nd相钉扎磁畴壁的运动而实现。
优缺点比较:NdFeB材料的最大磁能积、矫顽力要大于AlNiCo永磁材料。
但是AlNiCo永磁材料的居里温度要高于NdFeB材料;AlNiCo永磁性能的温度稳定性要好于NdFeB永磁材料。
6. 简要说明单畴型铁氧体永磁材料(如SrFe12O19)系列和NdFeB系列的矫顽力机理,试(主要从工艺和经济性方面)比较两类材料的优缺点?答:单畴型铁氧体永磁材料(如SrFe12O19)系列的矫顽力机理属于单畴型,反磁化过程需要克服单畴颗粒的各向异性场对磁畴转动的束缚。
目前普遍认为NdFeB系列合金的高矫顽力机制为畴壁位移钉扎型。
通过在合金晶界处的富Nd相钉扎磁畴壁的运动而实现。
优缺点比较:1). 单畴型铁氧体永磁材料的制备工艺简单,通常采用烧结工艺加球磨工艺即可实现,所以制备成本低;NdFeB系列合金则需要通过合金熔炼工艺获得,对设备要求高,对原料的纯度要求高,成本高;2). NdFeB系列合金的最大磁能积要远大于单畴型铁氧体永磁材料;NdFeB系列合金的矫顽力和剩余磁感应强度均要大于单畴型铁氧体永磁材料;3). 单畴型铁氧体永磁材料耐腐蚀性能好,NdFeB系列合金不耐腐蚀;7. 请问下列材料中,哪些是硬磁材料,哪些是软磁材料。
区分它们的主要磁性能参数是什么?。
(1)SrFe12O19;(2) Fe22Ni78; (3) Sm2Co17;(4) Fe-Si;(5) MnZn尖晶石铁氧体;(6) Fe86Zr7B6Cu1(NANOPERM);8. 请问什么是Snoek定理?请简要说明一下(画图表示也可以)。
答:Snoek 定理描述的是软磁材料在高频下起始磁导率与截止频率的关系。
若磁化过程只考虑畴转机制,则起始磁导率和截止频率的乘积可表示为:在等式右边,γ是一个常数,Ms 都是材料的内禀参数,只与材料的成分有关。
所以在选定材料时,(μi-1)和f r的乘积为一常数。
高的截止频率,就会导致小的磁导率。
反之亦然。
9. 简述永磁材料材料的特性要求。
①、对永磁特性参数的要求–剩余磁感应强度高–矫顽力HCJ和HCB高–(BH)max要大–曲线的退磁凸出系数趋于γ→1,γ=(B·H)m/(Br·Hc);–稳定性好。
温度稳定性、磁场稳定性、时间稳定性②、将永磁体选用在最佳工作点,即最大磁能积点附近。
③、经济性好10. 如何提高永磁材料的Hc?永磁材料的矫顽力是磁感应强度B=0所需的磁场值称为B Hc;使磁感应强度M=0所需的磁场值称为M Hc。
如果Hc是由壁移机制决定的,可在合金内增加应力梯度及非磁性相来增加Hc;若Hc是由畴转过程决定的,则磁畴在不可逆转动过程中受到的阻力就是Hc值的度量。
这时依赖于造成单畴粒子或弥散的单畴脱溶相及其三种各向异性(磁晶、应力及形状)来增加畴转的阻力,从而获得高的Hc值。
计算题:1、有两种Ni-Zn铁氧体软磁材料分别为Ni0.6Zn0.4Fe2O4和Ni0.5Zn0.5Fe2O4,(注:①分子量:Fe2O3=159.7, NiO=74.7 CoO=75, ZnO=81.4;②离子磁矩:Ni2+=2.3μB, Fe3+=5μB, Fe2+=4μB③常量:N×μB×103=5585)请计算及分析:1)写出两种材料的占位结构分布式;)2)计算两种材料0K时的比饱和磁化强度;3)比较两种材料的起始磁导率,截止频率和居里温度的高低(不考虑微观形貌的影响),同时简要说明原因。
2. 有两种Ni-Zn铁氧体软磁材料分别为Ni0.7Zn0.3Fe2O4和Ni0.6Zn0.4Fe2O4,(注:①分子量:Fe2O3=159.7, NiO = 74.7 CoO =75, ZnO = 81.4;②离子磁矩:Ni2+=2.3μB, Fe3+=5μB, Fe2+=4μB③常量:N×μB×103=5585)请计算及分析:1)写出两种材料的占位结构分布式;2)计算两种材料0K时的比饱和磁化强度;3)比较两种材料的起始磁导率,截止频率和居里温度的高低(不考虑微观形貌的影响),同时简要说明原因。
补充一、名词解释失稳分解当均匀的固溶体满足。
时,固溶体会失去稳定性,出现幅度越来越大的成分起伏,并最终分解成两相,这种现象叫失稳分解磁性织构在材料成分一定的情况下,磁畴在一个方向上成一定规则的排列的状态,称为。
固态相变当外界条件(T、P)作连续变化时,固体物质在确定的条件下,其化学成分、浓度、结构、晶体组织、形状、体积、有序度、物理特性的一项或多项发生突变的现象叵姆合金指35%-80%的fe-ni二元系合金和加入mo,cu,co的多元系合金氧参数是描述单位晶胞中氧离子真实位置的一个参数,指氧离子与小立方中最远一个面的距离织构化(磁性织构、结晶织构)在材料成分一定的情况下,晶粒/磁畴在一个方向上成一定规律排列的状态截止频率在磁谱中,复磁导率的实部达到一半时,或虚部达到极大值时,所对应的频率为截止频率金属间化合物金属与金属间、金属与非金属间按一定比例、一定顺序重新组合,形成的新的、不同于任一组分的新点阵的化合物固溶体铁电陶瓷在一定温度范围内具有自发极化,且自发极化在外场作用下可为之转移的陶瓷,称为。