火焰矫正工艺处理的基本基础知识
火焰校正

三角形加热
加热区为三角形,常用于矫正厚度较大、刚 性较强的焊接构件的变形,也可矫正板料 旁弯。三角形加热一般用于扭曲变形的校 正。
火焰校正概述
火焰校正,这种方法与焊接息息相关,尤其是一些从 事大型结构件焊接的同行们肯定深有感触。由于大 型结构件的焊缝长度、焊缝尺寸等数据都较大,其 焊接后的变形量相对也很大,这样对于焊后尺寸的 保证有很大难度。如薄板件焊后一般会产生波浪变 形、凸起等,细长结构件容易弯曲等等。还有些结 构件由于尺寸较大在装配中测量时容易产生误差, 这些误差累计后就可能会对最终的结构件尺寸影响 较大。我们一般情况下不会轻易将一件大型结构件 报废,只能通过校正、或让步处理等方法来使用。 这就不可避免的要使用到火焰校正(当然有些变形 可以采用压力机等方法校正),在校正时最重要的 是我们要知道在什么位置加热、加热形状、达到多 高的温度、采用什么样的冷却方法等才能达到我们 最终要求的效果。
火焰加热方式及校正温度
火焰加热方式有:圆点加热、线状加热和三角状 加热等三种。
• 低温矫正 500度~600度 冷却方式:水 • 中温矫正(推荐) 600度~700度 冷却方
式:空气和水 ห้องสมุดไป่ตู้ 高温矫正 700度~800度 冷却方式:空气
圆点加热(校正波浪变形)
板厚与加热圆点直径关系 板材 1 2 3 4 5 6 8 10 12 14 16 18 20 22
火焰校正
洪新华
校正方法分类
1. 手工矫正:一般用于尺寸较小的局部变形,手工 矫正的主要设备是大锤和平台。
2. 机械矫正:常用的设备为板料校平机、卷板机和 油压机。
3. 火焰校正:利用金属热胀冷缩的物理特性,采用 火焰局部加热金属,热膨胀部分受周围冷金属 的制约,不能自由变形,而产生压缩塑性变形, 冷却后压缩塑性变形残留下来,引起局部收缩, 即在被加热处产生聚结力,使金属构件变形获 得矫正。
钢结构焊接变形的火焰矫正施工方法范文

钢结构焊接变形的火焰矫正施工方法范文钢结构焊接变形是在焊接过程中产生的一个普遍问题,它会导致焊缝破裂、强度降低、外观不美观等一系列问题。
为了解决这个问题,火焰矫正施工方法被广泛应用于钢结构焊接变形的修正。
本文将介绍火焰矫正施工方法的原理、步骤以及注意事项,并结合实际案例进行详细讲解。
一、火焰矫正施工方法的原理火焰矫正施工方法是通过局部热加工的方式来矫正焊接变形。
它利用焊接时产生的热量来使焊接变形处重新达到原来的形状和位置,从而修正焊接变形。
火焰矫正施工方法的原理主要有以下几点:1.热应力原理:通过加热焊接变形处,使焊接变形处的温度升高,从而产生热应力。
当焊接变形处的热应力达到和焊接应力相等时,焊接变形处就会重新达到原来的形状和位置。
2.弥散原理:焊接变形主要是由于焊接所产生的热影响区域的收缩引起的。
如果能够弥散焊接所产生的热影响区域,就可以减少焊接变形。
而火焰矫正施工方法正是通过加热焊接变形处,使其周围的材料也加热到一定温度,从而实现热影响区域的弥散,减少焊接变形。
3.压力控制原理:在火焰矫正施工方法中,加热焊接变形处的同时,还需要施加压力。
这是因为焊接变形是由焊接应力引起的,只有施加足够的压力才能抵消焊接应力,从而使焊接变形处重新达到原来的形状和位置。
二、火焰矫正施工方法的步骤下面将介绍火焰矫正施工方法的具体步骤:1.确定焊接变形的位置和形状:首先需要确定焊接变形的位置和形状。
可以通过测量、观察、分析等方式来确定焊接变形的具体情况。
2.制定施工方案:根据焊接变形的具体情况,制定相应的施工方案,包括矫正的具体方法、加热的位置和温度、施加的压力等。
3.准备设备和材料:根据施工方案,准备相应的设备和材料,包括焊接机、加热器、焊接材料、压力装置等。
4.加热焊接变形处:将加热器放置在焊接变形处的需要矫正的位置上,开始加热。
加热时需要控制加热的时间和温度,以防过热对材料产生影响。
5.施加压力:在加热的同时,使用压力装置施加压力,以抵消焊接应力。
火焰矫正工艺

火焰矫正工艺1. 火焰矫正基本参数1.1 火焰选择火焰矫正一般采用的是氧—乙炔比为 1.1~1.2的中性焰或氧—乙炔比不大于1.25的氧化焰,为防渗碳等不良影响,尽量避免使用碳化焰。
1.2 加热温度及冷却介质火焰矫正的加热温度可分为低温(500~600oC)、中温(600~700o C)、高温(700~850o C)。
进行低温矫正时,可用水直接冷却;中温矫正时,用水或在空气中冷却;高温矫正时,在空气中冷却。
钢材矫形加热温度不允许超过850o C,严禁过热。
钢材表面的颜色与加热温度的关系见下表:2. 火焰加热方法2.1 点状加热法加热区域为一定直径的圆状点形。
按工件变形情况可采用一点或多点加热,圆点直径一般为30mm左右,加热点距离为50--100mm。
2.2 线状加热法加热时火焰沿直线方向移动,同时在宽度方向上作一定的横向摆动;一般加热宽度为20—90mm,板厚小时取窄一些。
2.3 三角形加热法加热区域为三角形,根据变形量的大小,确定三角形的形状和面积。
3. 火焰矫正的工艺过程3.1 正确的测量变形值,并在其部位划好记号。
3.2 根据具体变形情况和加热区域来选择火焰矫正的操作方法(点状、线状、三角、梯形、矩形等),确定是否需加支撑、重铊、千斤顶等工具,估计需几把烤具同时进行等。
3.3 火焰矫正过程要分几次(批)进行。
首次(批)加热区的数量要小于预计的总数。
每次加热后必须冷却至室温,测量变形大小,再确定下次(批)加热区的位置和数量。
4 火焰矫正的注意事项4.1 火焰矫正的效果如何主要有三个因素:加热位置、加热温度、加热区的形状。
)4.2 加热温度不宜过高甚至烧化金属。
矫正时要随时注意观察金属的颜色,当达到要求温度时要立刻将火焰抬高或移开。
4.3 火焰矫正时,不允许在300oC~500o C时锤击,主梁腹板、上下盖板尽量避免火焰加热后正锤打方法矫正变形。
4.4 火焰矫正加热区应远离梁中心和在主梁的最大应力截面处(如焊缝区域等)。
钢结构加工变形火焰矫正

钢结构加工变形火焰矫正火焰矫正是利用火焰所产生的高温对矫正件变形的局部进行加热,使加热部位的钢材热膨胀受阻,冷却时收缩,从而使被矫正部位纤维收缩,以使矫正件达到平直或一定几何形状并符合技术范围的工艺方法。
1、点状加热加热区域为一个或多个一定直径的圆点称为点状加热。
根据矫正时点的分布情况有:一点形、多点直线形,多点展开形及一点为中心多点梅花形等。
点状加热一般用于矫正中板、薄板的中间组织疏松(凸变形)或管子、圆钢的弯曲变形。
特别对油箱、框架等薄板焊接件矫正更能显示其优点。
进行点状加热应注意以下几点:(1)加热温度选择要适当,一般在300℃-800℃之间。
(2)加热圆点的大小(直径)一般是:材料厚圆点大,材料薄圆点小,其直径以选择为板厚6倍加10mm为宜,用公式表示即:D=6t+10 (3)进行点状加热后采用锤击或浇水冷却,其目的能使钢板纤维收缩加快,锤击时要避免薄板表面留有明显锤印,以保证矫正质量。
(4)加热时动作要迅速,火焰热量要集中,既要使每个点尽量保持圆形,又要不产生过热与过烧现象。
(5)加热点之间的距离应尽量均匀一致。
2、线状加热加热处呈带状形时称为线状加热。
线状加热的特点是宽度方向收缩量大,长度方向收缩量小。
主要用于矫正中厚板的圆弧弯曲及构件角变形等。
线状加热时焊嘴走向形式有直线形、摆动曲线形、环线形等。
采用线状加热要注意加热的温度、宽度、深度之间联系,根据板厚及变形程度采取适当的方法。
一般来说,直线形加热宽度较狭,环线形加热深度较深,摆动曲线形加热宽度较宽,加热深度较环线为浅。
对于钢板圆弧弯曲矫平,此变形特点是上凸面钢材纤维较下凹面纤维长,采用线状加热矫平可将凸面向上,在凸面上等距离划出若干平行线后用焊嘴按线逐条加热,促使凸面纤维收缩而使钢板趋于平整。
采用线状加热一般加热线长度等于工件长度。
如遇特殊情况加热线长度必须小于工件长度时,特别当加热线长度为工件长度80%以下时,线状加热在宽度上对钢材矫平,还会在长度方向引起工件弯曲,必须加以注意。
焊接中火焰矫正的工艺要点

焊接中火焰矫正的工艺要点
对于薄钢板,进行火焰矫正量允许在加热的同时进行浇水。
对于厚度大于8mm的钢板,一般是不允许浇水的。
火焰矫正时浇水,对变形的矫正是不起丝毫作用的,只是为了加速冷却,提高工效而已。
火焰矫正法的工艺要点主要有:
1、加热方式
加热方式有点状加热、线状加热和三角形加热三种。
点状加热用于矫正刚性小的薄件。
线状加热用于矫正中等刚性的焊件,有时也可用于薄件。
三角形加热可用几个气焊炬同时进行,用于矫正刚性大的焊件。
2、加热温度和速度
加热温度一般在500~800℃之间。
低于500℃效果不大,高于800℃会影响金属组织。
加热速度与变形量有关。
矫正变形量大的,一般用中性焰慢烤;矫正变形量小的,一般用氧化焰快烤。
3、加热范围
加热位置总是在变形凸起的部位进行。
;加热长度不超过全长70%,宽度一般为板厚的0.5~2倍,深度一般为板厚的30%~50%。
4、加热火焰
正常情况下,用微氧化焰。
当变形较大或要求加热深度大于5mm时,可采用较小的加热移动速度,用中性焰。
当变形不大或要求加热深度小于5mm时,应采用氧化焰和较大的加热移动速度。
火焰矫正主要适用于各种低碳钢,(如Q235、20g、22g等)和部分普通低合金钢(如16Mn、15MnV、15MnVN、14MnVTiRe、15MnTi、14MnNb半等)。
火焰矫正不适用于铸铁件和淬硬倾向大的合金钢。
火焰矫正工艺

火焰矫正工艺1. 火焰矫正基本参数1.1 火焰选择火焰矫正一般采用的是氧—乙炔比为 1.1~1.2的中性焰或氧—乙炔比不大于1.25的氧化焰,为防渗碳等不良影响,尽量避免使用碳化焰。
1.2 加热温度及冷却介质火焰矫正的加热温度可分为低温(500~600oC)、中温(600~700o C)、高温(700~850o C)。
进行低温矫正时,可用水直接冷却;中温矫正时,用水或在空气中冷却;高温矫正时,在空气中冷却。
钢材矫形加热温度不允许超过850o C,严禁过热。
钢材表面的颜色与加热温度的关系见下表:2. 火焰加热方法2.1 点状加热法加热区域为一定直径的圆状点形。
按工件变形情况可采用一点或多点加热,圆点直径一般为30mm左右,加热点距离为50--100mm。
2.2 线状加热法加热时火焰沿直线方向移动,同时在宽度方向上作一定的横向摆动;一般加热宽度为20—90mm,板厚小时取窄一些。
2.3 三角形加热法加热区域为三角形,根据变形量的大小,确定三角形的形状和面积。
3. 火焰矫正的工艺过程3.1 正确的测量变形值,并在其部位划好记号。
3.2 根据具体变形情况和加热区域来选择火焰矫正的操作方法(点状、线状、三角、梯形、矩形等),确定是否需加支撑、重铊、千斤顶等工具,估计需几把烤具同时进行等。
3.3 火焰矫正过程要分几次(批)进行。
首次(批)加热区的数量要小于预计的总数。
每次加热后必须冷却至室温,测量变形大小,再确定下次(批)加热区的位置和数量。
4 火焰矫正的注意事项4.1 火焰矫正的效果如何主要有三个因素:加热位置、加热温度、加热区的形状。
)4.2 加热温度不宜过高甚至烧化金属。
矫正时要随时注意观察金属的颜色,当达到要求温度时要立刻将火焰抬高或移开。
4.3 火焰矫正时,不允许在300oC~500o C时锤击,主梁腹板、上下盖板尽量避免火焰加热后正锤打方法矫正变形。
4.4 火焰矫正加热区应远离梁中心和在主梁的最大应力截面处(如焊缝区域等)。
火焰矫正工艺

火焰矫正工艺各种材料、型钢和组焊成型的钢结构,由于受外力、焊接、焊缝大小、组对间隙的不均匀、加热范围等因素的影响,往往产生一定的变形,凡变形超过技术规范的必须要进行矫正。
目前轻轨工程钢结构矫正基本上可采用火焰矫正和火焰与千斤顶相结合的方法。
一、火焰矫正是利用氧、乙炔对各种钢材进行加热矫正的一种方法,火焰矫正的实质是利用金属局部受热后,在冷却中产生收缩而引起的新变形去矫正各种已经产生的变形,因此掌握火焰局部加热引起变形的规律是作好火焰矫正工作的关键,现将几种加热方法叙述如下:1、线状加热,主要用于矫正厚板所产生的角变形和弯曲变形,加热时可使用直线、环行、曲线加热手法,直线加热,收缩均匀,矫正准确,环行加热速度快,曲线加热收缩量较大,上述三种加热方法加热线的横向收缩均大于纵向收缩,同时横向收缩又随着加热线宽度的增加而增加,在一般情况下,加热线的宽度为板厚的0.5-2倍,加热深度为板厚的1/2~2/3,加热温度为500~700℃,板颜色为暗褐色、赤褐色和暗樱红,须根据板厚情况而定,加热方向一般采用从头至尾,速度和温度应控制得当,适用范围:钢板的水平对接缝、角焊缝等。
2、三角形加热,它是矫正型材各种变形的一种加热方式,三角形加热时间短、收缩量大,一般型材和H型钢弯曲的变形矫正均三角形加热,不论型钢向哪一个方向弯曲,三角形加热的三角形顶点应在弯曲凹面一侧,三角形加热面的大小可视型钢变形情况而定,在一般情况下三角形加热面的高度与底部宽度为型钢高度的1/5~2/3,加热温度在700℃左右,若第一次加热后拱变形没有完全消除,可进行第二次加热,加热位置应和第一次加热位置错开,避免在原加热处重复加热,T型结构柱梁的变形,有时多种变形不同程度的存在,应先选择变形较严重的一种现象进行矫正,然后再矫正另一种变形,或者按旁弯、拱弯、角变形的顺序进行,或者按旁弯、拱弯、角变形的顺序进行,T形梁或T形连接板焊接变形,若采用线状加热时,加热宽度应小于焊缝两侧加腹板的厚度间距尺寸,以免造成中部低凹现象,如对变形面较大板厚的角焊缝可采用以下方法:二、火焰与千斤顶等附属工具的矫正1、中梁上下弯曲的矫正。
火焰矫正作业指导书

火焰矫正作业指导书1火焰矫正的基本参数火焰矫正基本参数主要有:加热温度、氧气与丙烷火焰燃烧比、加热速度、冷却速度和火焰能率等。
1.1火焰加热温度火焰矫正根据材质、板厚和加热方法等不同情况,选择不同的加热温度。
可分为低温加热、中温加热和高温加热。
1.1.1低温加热低温加热温度为500〜600°C。
适宜加热板厚小于6mm的钢板。
适宜含碳量大于0.25%的碳素钢和低合金高强度钢火焰矫正。
低温加热允许浇水(清水)冷却。
1.1.2中温加热中温加热温度为600〜700C,适宜加热板厚在6〜12mm的钢板。
对于含碳量大于0.35% 的碳素钢和低合金高强度钢加热温度要控制准确,应采用测温笔或测温仪器测量,不得超过723 Co1.1.3高温加热高温加热温度为723〜850C,适于大厚板加热,板厚在14〜16mm加热温度750〜800C,大于20mm厚板加热温度为850C。
含碳量大于0.35%钢和合金高强度钢不能采用高温加热矫正。
火焰矫正加热温度的控制。
对于低碳钢来说,由于加热温度范围较宽。
可近似地凭观察钢材的加热颜色估计加热温度。
1.2加热火焰氧与丙烷燃烧比氧与丙烷燃烧比是指混合气体内氧气体积与丙烷体积的比值a,根据a的大小,把氧丙烷焰分成三种:a=1〜1.2称中性焰,a> 1.2称氧化焰:a v 1为碳化焰。
对于厚度在10mm以下的钢板,采用氧化焰。
若使钢材均匀收缩,一般可采用中性焰。
中性焰适合矫正10〜30mm厚度的钢板。
对于厚度大于30mm以上的钢板,采用碳化焰缓慢加热,以便烤透钢板,避免钢材表面温度较高,而内部温度比较低的现象1.3火焰矫正的加热速度和冷却速度1.3.1火焰矫正加热速度板厚/mm1.3.2冷却速度火焰矫正的冷却速度有两种:一种是空冷(近似于热处理正火);二是喷水冷却(近似于淬火热处理)。
(1)空冷含碳量大于0.25%的钢或合金钢,如果加热超过723C以上,必须空冷。
(2)喷水冷却水冷用于低温矫正和中温矫正,对于含碳量小于0.25%的低碳钢高温矫正也可采用喷水冷却。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[Al Zn1]
EN AW-7020
[Al Zn4,5Mg1]
铜合金
0.018 – 0.019
膨胀系数 α (mm/m K) 0.011 – 0.014 0.012 – 0.015 0.010 – 0.014 0.016 – 0.019
0.020 – 0.024
膨胀量 (mm)
1.3 9.1
1.4 8.8
如何来影响应力? 可以通过外观尺寸的矫正措施例如热处理或机械处理来影响应力。
如何来使用应力? 应力可以用来硬化部件的截面,和/或降低承受载荷时工件的尺寸偏 差。
06
火焰矫正工艺的基础原理
图2:焊接过程中的收缩类型
L
D L
Q
Q
D
L 纵向收缩 Q 横向收缩 D 厚度方向收缩 W 角变形
w
那些在焊接冷却之后没有变形或仅有轻微变形的部件处于高水平的焊 接残余应力之下,这是因为收缩的应力没有导致部件的变形。
膨胀量
工件长度 1,000 mm
100 °C
火焰矫正温度
铝合金 硬材料 软材料
表1:不同种材料的膨胀行为
材料
牌号
碳钢 锅炉用钢 钢轨用钢
细晶粒结构用钢 热作模具钢 镍基合金材料
奥氏体不锈钢
S235JR S355JO P265GH 16Mo3 13CrMo4-5 S355N S890QL S355M S460M 2.4360 [NiCu30Fe] 2.4602 [NiCr21Mo14W] 2.4856 [NiCr22Mo9Nb] 1.4404 [X2CrNiMo17-22-2] 1.4301 [X5CrNi18-10] 1.4541 [X6CrNiTi18-10]
材料 碳钢 锅炉用钢 细晶粒结构钢 热作模具钢 镍基合金材料 奥氏体不锈钢 铝合金
铜合金
纯铝 适用于焊接的非时 效硬化的锻造合金
适用于焊接的时效 硬化的锻造合金
材料技术规范 S235JR S355JO P265GH 16Mo3 13CrMo4-5 S355N S890QL S355M S460M 2.4360 2.4602 2.4856 1.4404 1.4301 1.4541
23
11. 热膨胀的拘束
24
11.1. 对薄型材的膨胀进行拘束的夹具
25
11.2. 对钢板、管材及其他结构的膨胀进行
拘束的夹具
26
12. 火焰矫正之后的冷却
27
13. 针对不同材料的火焰矫正技术
28
13.1. 碳钢、细晶粒结构钢和热作模具钢
28
13.2. 高合金奥氏体不锈钢
28
13.3. 镀锌部件
28
0.1
应变 ¡(%)
0.2
¡= 6l / lo
在关于火焰矫正的讨论中,对”应力”这个术语经常有错误的解释,这 个词在客户中间造成了某种焦虑。在火焰矫正中,位于部件上的应力 是覆盖分布的。调查表明火焰矫正可降低部件中的残余应力。
应力是什么?它们是如何产生的? 如果一个部件置于外力作用下,其每个截面都会产生反作用力。应力 指那些没有变形的截面其单位面积上所承受的那部分力。外力都会产 生应力,无论是可对工件产生巨大冲击的外力或是无法造成塑性变形 的外力。
火焰矫正工艺采用类似的方法来消除这样的变形,即通过将热量传导 到部件上不同于焊接位置的部位。过长的部件需要专门加热。塑性内 部变形得到了拘束,并在冷却时导致尺寸外形的变化。
不同的材料在火焰矫正中的行为方式不同,取决于材料本身的特性以 及其热膨胀行为。具有高膨胀系数的材料倾向于在加热阶段急剧地膨 胀。如果这个膨胀收到拘束的话,就会产生特别严重的压缩塑性内部 变形。而冷却时收缩的性能也是相对不同的。表1中提供了常见材料 的热膨胀特性。
火焰矫正温度 [°C ] 600 … 800
550 … 700
650 … 800
650 … 800
150 … 450 300 … 450 150 … 350 150 … 200 150 … 350 600 … 800
12
火焰矫正工艺的基础原理
06. 应用于火焰矫正的燃烧气体
锲子状加热法
火焰矫正中,必须精准地加热部件的特定部位,并须在极短时间内加 热到火焰矫正温度。而只有依靠对工件表面的局部位置施加以较高的 热流密度才能使之成为可能。氧-乙炔火焰凭借其强烈的一次燃烧可产 生较高的热流密度。而那些使用大面积二次燃烧转移热量才能获得更 大热力学影响的燃烧气体不适用于火焰矫正。这里乙炔有别于那些燃 烧缓慢的气体,如丙烷及天然气(图6a)。
EN AW-3103 EN AW-5754 EN AW-5083 EN AW-6005A EN AW-6082 EN AW-7072 EN AW-7020
其它材料技术规范
NiCu30Fe NiCr21Mo14W NiCr22Mo9Nb X2CrNiMo17-12-2 X5CrNi18-10 X6CrNiTi18-10 AlMn1 AlMg3 AlMg4,5Mn0,7 AlSiMg(A) AlSi1MgMn AlZn1 AlZn4,5Mg1
超过弹性极限之后就会在工件上产生塑性变形,这是不可逆的变形。
03. 工件上的热冲击
火焰矫正工艺的基础原理
07
图3:焊后的T型接头及其火焰矫正
焊缝以及热影响区
火焰矫正后的T型粱
焊后的T型接头
加热线
当部件被焊接在一起时,材料因承受热输入而产生膨胀。而低温区域 会拘束这个膨胀然后材料就产生了塑性压缩内部变形。当焊缝金属冷 却时,焊缝会收缩,母材上的热影响区也会收缩。这些收缩的叠加就 导致了部件变形。
这些收缩应力可能经过之后的动载或机械加工才会释放出来,应力释 放后将导致所不期望的变形。
焊接之后释放的应力导致了变形,这意味着残余焊接应力水平很小, 部件将保持稳定。
焊接过程会有4种收缩应力产生,取决于刚性水平,这4种应力所导致 的扭曲变形都是可见的。
必须综合考虑焊接参数如焊接方法、焊缝数量、以及对单位长度焊缝 所施加的能量,以便来影响残余焊接应力。必须制定并执行焊接之后 的跟进措施。
40
对工件特定几个部位进行加热到其塑性变形的温度区间时,材料会因
膨胀受拘束而产生塑性压缩内部变形。
300
30
不同材料相对应地需要采用不同的火焰矫正温度(表2)。
200
20
100
10
0
0
0
100 200 300
400
500 600 700
温度 (°C)
火焰矫正工艺的基础原理
11
表2:不同种材料对应的火焰矫正温度
这个工艺可以通过图3中所示的一个T型接头来解释:首先,双面角焊 缝焊接,然后腹板以及翼缘上的焊缝和热影响区会收缩,从而导致翼 缘上产生一个角变形。
火焰矫正通过在角焊缝背面采用线状加热法,在那些翼缘需要被缩短 的点上来进行加热。所需加热线的数量取决于变形情况、工件的尺寸 以及其残余应力水平。
08
火焰矫正工艺的基础原理
图4:火焰矫正的原则
加热
压缩塑性内部 变形 收缩
10
火焰矫正工艺的基础原理
05. 可以采用火焰矫正哪些材料呢?
应力 (N/mm2) 应变 (%)
与常见的焊接作业相同,在考虑材料特定性能的前提下,所有适用于 焊接的材料都可以毫无困难地适用于火焰矫正。
随着温度上升,所有金属性材料的弹性模量以及强度都会下降。相应 的,材料的延展性将提升。(见图5)
尽管不同类型的燃料气体都可以用于火焰矫正,但只有氧-乙炔才能实 现最高的火焰温度和火焰密度,从而实现快速加热。
如何选择合适的设备取决于材料的类型和厚度。原则上,针对薄板和 厚度不超过25mm的钢板,可使用在大部分工厂都常见的标准割炬来 进行矫正。针对大面积钢板的火焰矫正例如船甲板和甲板舱,应使用 3只或更多的可调节的单火焰割嘴,装在可在大面积范围内轻易移动 的小轮车上。针对更厚的钢板,请使用LINDOFLAMM®特制割炬。
03
01. 简介
4
02. 应力 – 外力 – 收缩
5
03. 工件上的热冲击
7
04. 火焰矫正的原则
9
05. 火焰矫正可以应用于哪些材料?
10
06. 应用于火焰矫正的燃料气体
12
07. 应用于火焰矫正的割(焊)炬
14
7.1. 火焰矫正用割(焊)炬的设计
14
7.2. 火焰矫正火用割(焊)炬的选型
14
08. 用于矫正操作时的火焰设置和指南
图5:碳钢材料S355的屈服极限以及断裂时的伸长率
断裂强度
屈服极限
母材被拉断时的伸长率
600
60
以S355材料为例,很明显,当该材料被加热到大于650°C时的火焰矫
500
50
正温度基本没有什么意义。从650°C加热到950°C的300°C的温度提升
需要使用双倍的加热时间,但是既没有必要也没有益处。
400
火焰矫正工艺的 基础原理
火焰矫正工艺的基础原理
02
火焰矫正工艺的基础原理
火焰矫正工艺是一种可以迅速消除焊接结 构的变形而不会对材料构成任何损伤的工 艺技术。下文主要关注火焰矫正的基本原 则、所需的设备和气体,以及针对不同种 材料的火焰矫正技术。
LINDOFLAMM® 是林德集团的注册商标。
内容
火焰矫正工艺的基础原理
02. 应力 – 外力 – 收缩
图1:碳钢的应力-应变曲线
σ
火焰矫正工艺的基础原理
05
Rm
σB max.o = F / A
应力 (N/mm2)
Re σs
σE
σP
火焰矫正区间 最大许用工作应力 = σ/1.5
断裂强度极限 抗拉强度极限