浅谈射频同轴电缆

浅谈射频同轴电缆
浅谈射频同轴电缆

射频同轴电缆是用于传输射频和微波信号能量的。它是一种分布参数电路,其电长度是物理长度和传输速度的函数,这一点和低频电路有着本质的区别。

射频同轴电缆分为半刚,半柔和柔性电缆三种,不同的应用场合应选择不同类型的电缆。半刚和半柔电缆一般用于设备内部的互联;而在测试和测量领域,应采用柔性电缆。

半刚性电缆

顾名思义,这种电缆不容易被轻易弯曲成型,其外导体是采用铝管或者铜管制成,其射频泄漏非常小(小于-120dB),在系统中造成的信号串扰可以忽略不计。这种电缆的无源互调特性也是非常理想的。如果要弯曲到某种形状,需要专用的成型机或者手工的模具来完成。如此麻烦的加工工艺换来的是非常稳定的性能,半刚性电缆采用固态的聚四氟乙烯材料作为填充介质,这种材料具有非常稳定的温度特性,尤其在高温条件下,具有非常良好的相位稳定性。

半刚性电缆的成本高于半柔性电缆,大量应用于各种射频和微波系统中。

半柔性电缆

半柔性电缆是半刚性电缆的替代品,这种电缆的性能指标接近于半刚性电缆,而且可以手工成型。但是其稳定性比半刚性电缆略差些,由于其可以很容易的成型,同样的也容易变形,尤其在长期使用的情况下。

柔性(编织)电缆

柔性电缆是一种“测试级”的电缆。相对于半刚性和半柔性的电缆,柔性电缆的成本十分昂贵,这是因为柔性电缆在设计时要顾及的因素更多。柔性电缆要易于多次弯曲而且还能保持性能,这是作为测试电缆的最基本要求。柔软和良好的电指标是一对矛盾,也是导致造价昂贵的主要原因。

柔性射频电缆组件的选择要同时考虑各种因素,而这些因素之间有些的相互矛盾的,如单股内导体的同轴电缆比多股的具有更低的插入损耗和弯曲时的幅度稳定性,但是相位稳定性能就不如后者。所以一条电缆组件的选择,除了频率范围,驻波比,插入损耗等因素外,还应考虑电缆的机械特性,使用环境和应用要求,另外,成本也是一个永远不变的因素。

在本节中,详细讨论了射频同轴电缆的各种指标和性能,了解电缆的性能对于选择一条最佳的射频电缆组件是十分有益的。

特性阻抗

射频同轴电缆由内导体,介质,外导体和护套组成。

“特性阻抗”是射频电缆,接头和射频电缆组件中最常提到的指标。最大功率传输,最小信号反射都取决于电缆的特性阻抗和系统中其它部件的匹配。如果阻抗完全匹配,则电缆的损耗只有传输线的衰减,而不存在反射损耗。电缆的特性阻抗(Zo)与其内外导体的尺寸之比有关,同时也和填充介质的介电常数有关。由于射频能量传输的“趋肤效应”,与阻抗相关的重要尺寸是电缆内导体的外径(d)和外导体的内径(D):

Zo(?)=138√ε×logDd

常见的射频同轴电缆绝大部分是50?特性阻抗的,这是为什么呢?

通常认为导体的截面积越大损耗就越低,但事实并非完全如此。同轴电缆的每单位长度的损耗是logDd的函数,也就是说和电缆的特性阻抗有关。经过计算可以发现,当同轴电缆的特性阻抗为77?时,单位长度的损耗最低。

对于同轴电缆的最大承受功率,通常认为内外导体的间距越大,则同轴电缆可承受电压越高,即承受功率越大,但实际上也不完全准确。同轴电缆的最大承受功率同样与其特性阻抗有关。可以计算出当同轴电缆的特性阻抗为30?时,其承受的功率最大。

为了兼顾最小的损耗和最大的功率容量,应该在77?和30?之间找一个适当的数值。二者的算术平均值为53.5?,而几何平均值为48.06?;选取50?的特性阻抗可以做到二者兼顾。此外,50?阻抗的连接器也更加容易设计和加工。

绝大部分应用于通信领域的射频电缆的特性阻抗是50?;在广播电视中则用到75?的电缆。

大部分的测试仪器都是50?的阻抗,如果要测量75?阻抗的器件,可以通过一个50~75?的阻

抗变换器来进行阻抗匹配,但是需要注意这种阻抗变换器有约5.7dB的插入损耗。

射频同轴电缆的技术参数

射频同轴电缆的技术参数 一、工程常用同轴电缆类型及性能: 1)SYV75-3、5、7、9…,75欧姆,聚乙烯绝缘实心同轴电缆。近些年有人把它称为“视频电缆”; 2)SYWV75-3、5、7、9…75欧姆,物理发泡聚乙烯绝缘同轴电缆。有人把它称为“射频电缆”; 3)基本性能: l SYV物理结构是100%聚乙烯绝缘;SYWV 是发泡率占70-80%的物理发泡聚乙烯绝缘电缆; l 由于介电损耗原因,SYV实心电缆衰减明显要大于SYWV物理发泡电缆;在常用工程电缆中,目前物理发泡电缆仍然是传输性能最好价格最低的电缆,在视频、射频、微波各个波段都是这样的。厂家给出的测试数据也说明了这一点; l 同轴电缆都可以在直流、射频、微波波段应用。按照“射频”/“视频”来区分电缆,不仅依据不足,还容易产生误导:似乎视频传输必须或只能选择实心电缆(选择衰减大的,价格高的?);从工程应用角度看,还是按“实芯”和“发泡”电缆来区分类型更实用一些; l 高编(128)与低编(64)电缆特性的区别:eie实验室实验研究表明,在200KHz以下频段,高编电缆屏蔽层的“低电阻”起主要作用,所以低频传输衰减小于低编电缆。但在200-300KHz以上的视频、射频、微波波段,由于“高频趋肤效应”起主要作用,高编电缆已失去“低电阻”优势,所以高频衰减两种电缆基本是相同的。 二、了解同轴电缆的视频传输特性——“衰减频率特性” 同轴电缆厂家,一般只给出几十到几百兆赫的几个射频点的衰减数据,都还没有提供视频频段的详细数据和特性;eie实验室对典型的SYWV75-5、7/64编电缆进行了研究测试,结果如下图一: 同轴传输特性基本特点: 1. 电缆越细,衰减越大:如75-7电缆1000米的衰减,与75-5电缆600多米衰减大致相当,或者说1000米的75-7电缆传输效果与75-5电缆600多米电缆传输效果大致相当; 2. 电缆越长,衰减越大:如75-5电缆750米,6M频率衰减的“分贝数”,为1000米衰减“分贝数”的75%,即15db;2000米(1000+1000)衰减为20+20=40db,其他各频率点的计算方法一样。依照上面1000米电缆测试数据,计算不同长度电缆衰减时,请记住“分贝数是加碱关系”或“衰减分贝数可以按照长度变化的百分比关系计算”,就可以灵活运用了; 3. 频率失真特性:低频衰减少,高频衰减大。高/低边频衰减量之差,可叫做“边频差值”,这是一个十分重要参数。电缆越长,“边频差值”越大;充分认识和掌握同轴电缆的这种“频率失真特性”,这在工程上具有十分重要的意义;这是影响图像质量最关键的特性,也是工程中最容易被忽视的问题; 三、工程应用设计要点 网上技术论坛里经常有人问:75-5电缆能传多远?回答有300米,500米,600米,还有说1000多米也可以的。为什么会有这么多答案呢?原因是没有一个统一的标准。既然工程中同轴电缆是用来传输视频信号的,而视频传输最后又体现为图像,所以谈同轴电缆和同轴视频传输技术应用,就离不开图像质量,离不开决定图像质量的“视频传输质量”和标准。 1. 视频传输标准的参数很多,这里仅举一个十分重要的“频率特性”例子来理解。视频图像信号是由0-6M不同频率分量组成的。低频成分主要影响亮度和对比度,高频分量主要影响色度、清晰度和分辨率。显然,对视频传输的基本要求,不是只恢复摄像机原信号亮度、对比度就行了,而且还必须恢复摄像机原信号中各种频率份量的相对比例关系。“恢复”不可能

射频电缆的参数理论

射频电缆的参数理论 第一节 特性阻抗 特性阻抗是选用电缆的首先要考虑的参数,它是电缆本身的参数,它取决于导体的直径以及绝缘结构的等效介电常数。 特性阻抗对于电缆的使用有很大的影响。例如在选择射频电缆作为发射天线馈线时,其特性阻抗应尽可能和天线的阻抗一致,否则会在电缆和天线的连接处造成信号反射,使得天线得到的功率减少,电缆的传输效率也会下降,更为严重的是,反射的存在会使电缆沿线出现驻波,有些地方会出现电压和电流的过载,从而造成电缆的热击穿或热损伤而影响电缆的正常运行。电缆内部反射的存在,还会造成传输信号的畸变,使传输信号出现重影,严重影响信号传输质量。 为了便于使用,射频电缆的阻抗已经标准化了。因此在选用电缆时应尽可能选用标准阻抗值。对于射频同轴电缆有以下三中标准阻抗: 50±2ohm 推荐使用于射频及微波,用于测试仪表以及同轴-波导转换器等; 75±3ohm 用于视频或者脉冲数据传输,用于大长度例如CA TV 电缆传输系统; 100±5ohm 用于低电容电缆以及其它特种电缆。 以下是同轴电缆特性阻抗计算的各种公式。 §1.1同轴电缆阻抗公式 根据传输理论,特性阻抗公式为: Zc =)/()(C j G L j R ωω++ 式中,R 、L 、G 、C 、代表该传输线的一次参数,而ω=2πf 代表信号的角频率。 对于射频同轴电缆传输高频信号,通常都有R <<ωL ,G <<ωC ,此时特性阻抗公式可以简化为:

Zc =C L/=60?ln(D/d)/ε=138?l g(D/d)/ε(ohm) 式中,D为外导体内直径(mm) d为内导体外直径(mm) ε为绝缘相对介电常数 表1给出了常用绝缘材料的相对介电常数。 表1常用介质材料的特性 §1.2皱纹外导体同轴电缆阻抗公式 皱纹外导体已经获得广泛应用,阻抗尚无标准的方法计算,可以利用电容电感参考方法进行计算。 测量出L和C后可以计算阻抗: Zc =C L/ §1.4特性阻抗与电容的关系 同轴电缆的特性阻抗与电容有如下简单的关系,即 Zc=104/3·ε/ C 式中,C为电缆电容(pF/m) 第二节电容 电容是射频电缆的一个重要参数,同轴电缆的电容按照下式计算: C=1000ε/(18lnD/d)=24.13ε/(lgD/d)(pF/m)

射频电缆概述

射频电缆概述 射频电缆组件的正确选择除了频率范围,驻波比,插入损耗等因素外,还应考虑电缆的机械特性,使用环境和应用要求,另外,成本也是一个永远不变的因素。在本文中,详细讨论了射频电缆的各种指标和性能,了解电缆的性能对于选择一条最佳的射频电缆组件是十分有益的。射频电缆组件的基本选择原则 射频同轴电缆是用于传输射频和微波信号能量的。它是一种分布参数电路,其电长度是物理长度和传输速度的函数,这一点和低频电路有着本质的区别。射频同轴电缆大致可分为半刚和半柔电缆、柔性编织电缆和物理发泡电缆等几大类,不同的应用场合应选择不同类型的电缆。半刚和半柔电缆一般用于设备内部的互联;在测试和测量领域,应采用柔性电缆;发泡电缆常用于基站天馈系统。 半刚性电缆顾名思义,这种电缆不容易被轻易弯曲成型,其外导体是采用铝管或者铜管制成,其射频泄漏非常小(小于-120dB),在系统中造成的信号串扰可以忽略不计。 这种电缆的无源互调特性也是非常理想的。如果要弯曲到某种形状,需要专用的成型机或者手工的模具来完成。如此麻烦的加工工艺换来的是非常稳定的性能,半刚性电缆采用固态的聚四氟乙烯材料作为填充介质,这种材料具有非常稳定

的温度特性,尤其在高温条件下,具有非常良好的相位稳定性。半刚性电缆的成本高于半柔性电缆,大量应用于各种射频和微波系统中。 图1. 半刚性电缆半柔性电缆半柔性电缆是半刚性电缆的替代品,这种电缆的性能指标接近于半刚性电缆,而且可以手工成型。但是其稳定性比半刚性电缆略差些,由于其可以很容易的成型,同样的也容易变形,尤其在长期使用的情况下。图2. 半柔性电缆柔性编织电缆柔性电缆是一种“测试级”的 电缆。相对于半刚性和半柔性的电缆,柔性电缆的成本十分昂贵,这是因为柔性电缆在设计时要顾及的因素更多。柔性电缆要易于多次弯曲而且还能保持性能,这是作为测试电缆的最基本要求。柔软和良好的电指标是一对矛盾,也是导致造价昂贵的主要原因。柔性射频电缆组件的选择要同时考虑各种因素,而这些因素之间有些的相互矛盾的,如单股内导体的同轴电缆比多股的具有更低的插入损耗和弯曲时的幅 度稳定性,但是相位稳定性能就不如后者。所以一条电缆组件的选择,除了频率范围,驻波比,插入损耗等因素外,还应考虑电缆的机械特性,使用环境和应用要求,另外,成本也是一个永远不变的因素。 图3. 柔性编织电缆特性阻抗 射频同轴电缆由内导体,介质,外导体和护套组成,见下图4。“特性阻抗”是射频电缆,接头和射频电缆组件中最常提到

对几种射频同轴电缆的介绍

对几种射频同轴电缆的介绍 (1)SYWV-50Ω系列物理发泡射频同轴电缆 该产品适用于地面移动通讯或其他高频领域中作信号传输线。 (2)MSLYF(Y)VZ-50-9 、MSLYF(Y)VZ-75-9煤矿用漏泄同轴电缆 MSL YF(Y)VZ-50-9物理发泡PE绝缘编织外导体漏泄同轴电缆兼有信号传输线和天线的双重功能,并采用阻燃聚氯乙烯作外导体而生产的双层护套电缆,从而增强了电缆的机械强度及防潮防火性能。 本产品适用于煤矿用漏泄同轴电缆。该系列电缆可用作在30MHz-150MHz频段里的信号传输连接馈线,该电缆在煤矿里必须单独敷设使用。 安装敷设最低气温-15℃;最小弯曲半径150mm;敷设电缆应悬挂在离壁面或地面15c m以上的空间。 电缆连接器的安装:电缆两端安装连接器时,连接要牢固,不得虚设,或接触不良,电缆切口处要清洁,不得有油污或金属屑沫吸附在切口截面上,影响绝缘性能;内导体和外导体间要严格分开,不得碰接。 MSL YF(Y)VZ-75-9煤矿用漏泄同轴电缆,该产品适用于煤矿坑道,隧道,地下室内的75Ω,60-150MHZ频段里的信号传输的连接馈线。 安装敷设最低气温-15℃;最小弯曲半径150mm;敷设电缆应悬挂在离壁面或地面15c m以上的空间 电缆连接器的安装:电缆两端安装连接器时,连接要牢固,不得虚设,或接触不良,电缆切口处要清洁,不得有油污或金属屑沫吸附在切口截面上,影响绝缘性能;内导体和外导体间要严格分开,不得碰接。 (3)SFF聚四氟乙烯绝缘射频同轴电缆--(执行标准SJ1563)——美军标RG系列同轴电缆(MIL-C-17) 适用于无线电通讯设备,固定敷设的高频、超高频传输线及类似的高频电子装置中,作设备内外射频信号的传输。 该系列产品符合欧盟RoHS要求,具备SGS测试报告

国内常用同轴电缆尺寸表

国内常用同轴电缆尺寸表(RG系列) 电缆型号标称阻抗 Ω 直径尺寸Φ(mm) 内导体 绝缘层屏蔽层护套外径构成外径 软电缆和半刚电缆(MIL-C-17-F) RG-5A/U50单芯 1.29 4.60 6.30D8.33 RG-6A/U75单芯0.72 4.70 6.30D8.43 RG-8/U527×0.7 2 2.177.248.20S10.29 RG-9/U517×0.7 2 2.177.118.70D10.67 RG-10/U527×0.7 2 2.177.248.20S12.07* RG-11/U757×0.4 1.217.248.20S1029 RG-12/U757×0.4 1.217.248.20S12.07* RG-21/U53单芯 1.29 4.70 6.30D8.43 RG-55/U53.5单芯0.81 2.95 4.20D 5.23 RG-58/U53.5单芯0.81 2.95 3.60S 4.95 RG-59B/U75单芯0.58 3.71 4.85S 6.15 RG-140/U75单芯0.64 3.71 4.47S 5.92 RG-141A/ U 50单芯0.99 2.95 3.71S 4.83 RG-142B/ U 50单芯0.99 2.95 4.34D 4.95 RG-144/U757×0.4 5 1.357.258.38S10.40 RG-165/U507×0.8 2.407.258.64S10.40 RG-174/U507×0.1 6 0.48 1.52 2.24S 2.54 RG-178B/ U 507×0.10.300.91 1.37S 2.01 RG-179B/ U 757×0.10.30 1.60 2.13S 2.54 RG-187/U757×0.10.30 1.52 2.13S 2.79 RG-188A/ U 50 7×0.1 8 0.51 1.52 2.06S 2.79 RG-196/U507×0.10.300.86 1.37S 2.03 RG-212/U50单芯 1.44 4.70 6.30D8.43 RG-213/U507×0.75 2.267.258.64S10.29 RG-214/U507×0.7 2.267.259.14D10.80

射频同轴电缆一览表

SDY-50-40(15/8”)±1 SDY-75-23-3 SDY-75-37-310 泡沫聚乙烯绝缘皱纹导体电缆 SYFY3/8”线波纹管 SYFY1/2”线波纹管 SYFY7/8”管波纹管 SYFY11/4”皱纹管皱纹管 更多内容请看网络传输介质、同轴电缆知识专题,或进入讨论 三、规格型号 同轴电缆可分为两种基本类型,基带同轴电缆和宽带同轴电缆。目前基带常用的电缆,其屏蔽线是用铜做成的网状的,特征阻抗为50(如RG-8、RG-58等);宽带同轴电缆常用的电缆的屏蔽层通常是用铝冲压成的,特征阻抗为75(如RG-59等)。 粗同轴电缆与细同轴电缆是指同轴电缆的直径大还是小。粗缆适用于比较大型的局部网络,它的标准距离长、可靠性高。由于安装时不需要切断电缆,因此可以根据需要灵活调整计算机的入网位置。但粗缆网络必须安装收发器和收发器电缆,安装难度大,所以总体造价高。相反,细缆安装则比较简单,造价低,但由于安装过程要切断电缆,两头须装上基本网络连接头(BNC),然后接在T型连接器两端,所以当接头多时容易产生接触不良的隐患,这是目前运行中的以太网所发生的最常见故障之一。 为了保持同轴电缆的正确电气特性,电缆屏蔽层必须接地。同时两头要有终端器来削弱信号反射作用。

无论是粗缆还是细缆均为总线拓扑结构,即一根缆上接多部机器,这种拓扑适用于机器密集的环境。但是当一触点发生故障时,故障会串联影响到整根缆上的所有机器,故障的诊断和修复都很麻烦,因此,将逐步被非屏蔽双绞线或光缆取代。 最常用的同轴电缆有下列几种: ·RG-8或RG-11 50Ω ·RG-58 50Ω ·RG-59 75Ω ·RG-62 93Ω 计算机网络一般选用RG-8以太网粗缆和RG-58以太网细缆。RG-59 用于电视系统。RG-62 用于ARCnet网络和IBM3270网络。 公司专业从事射频信号电缆的技术研发、生产和销售,神宇通信秉承“矢志创造最优价值”理念,致力于打造国内、国际一流的特种电缆品牌。本公司位于长江之滨,成立 于2003年,一期投资2800万,主要生产的产品有:射频同轴电缆SFF/RG系列,极细 微同轴射频电缆,AF高温安装电缆,半柔射频同轴电缆,半钢射频同轴电缆,各类高频低损耗稳相电缆及其组件,低损耗柔软微波馈线,低损耗柔软微波射频同轴电缆等。本公司产品经2004年中国质量体系认证中心(CQC)颁发的ISO9001:2000和2005年新 时代认证中心颁发的国军标GJB9001A-2001质量管理体系的双重认证,使产品的性能达到行业较高水平。本公司通过了国防科工委颁发的:武器装备生产许可证,06年公司被评为江苏省高新技术企业,并拥有几项高频低损耗电缆的专利,公司的几款电缆已在0 6年取得高新技术产品证书。 本公司竭诚希望与贵公司合作,共同发展! 主营产品或服务:

浅谈射频同轴电缆

射频同轴电缆是用于传输射频和微波信号能量的。它是一种分布参数电路,其电长度是物理长度和传输速度的函数,这一点和低频电路有着本质的区别。 射频同轴电缆分为半刚,半柔和柔性电缆三种,不同的应用场合应选择不同类型的电缆。半刚和半柔电缆一般用于设备内部的互联;而在测试和测量领域,应采用柔性电缆。 半刚性电缆 顾名思义,这种电缆不容易被轻易弯曲成型,其外导体是采用铝管或者铜管制成,其射频泄漏非常小(小于-120dB),在系统中造成的信号串扰可以忽略不计。这种电缆的无源互调特性也是非常理想的。如果要弯曲到某种形状,需要专用的成型机或者手工的模具来完成。如此麻烦的加工工艺换来的是非常稳定的性能,半刚性电缆采用固态的聚四氟乙烯材料作为填充介质,这种材料具有非常稳定的温度特性,尤其在高温条件下,具有非常良好的相位稳定性。 半刚性电缆的成本高于半柔性电缆,大量应用于各种射频和微波系统中。 半柔性电缆 半柔性电缆是半刚性电缆的替代品,这种电缆的性能指标接近于半刚性电缆,而且可以手工成型。但是其稳定性比半刚性电缆略差些,由于其可以很容易的成型,同样的也容易变形,尤其在长期使用的情况下。 柔性(编织)电缆 柔性电缆是一种“测试级”的电缆。相对于半刚性和半柔性的电缆,柔性电缆的成本十分昂贵,这是因为柔性电缆在设计时要顾及的因素更多。柔性电缆要易于多次弯曲而且还能保持性能,这是作为测试电缆的最基本要求。柔软和良好的电指标是一对矛盾,也是导致造价昂贵的主要原因。 柔性射频电缆组件的选择要同时考虑各种因素,而这些因素之间有些的相互矛盾的,如单股内导体的同轴电缆比多股的具有更低的插入损耗和弯曲时的幅度稳定性,但是相位稳定性能就不如后者。所以一条电缆组件的选择,除了频率范围,驻波比,插入损耗等因素外,还应考虑电缆的机械特性,使用环境和应用要求,另外,成本也是一个永远不变的因素。 在本节中,详细讨论了射频同轴电缆的各种指标和性能,了解电缆的性能对于选择一条最佳的射频电缆组件是十分有益的。 特性阻抗 射频同轴电缆由内导体,介质,外导体和护套组成。 “特性阻抗”是射频电缆,接头和射频电缆组件中最常提到的指标。最大功率传输,最小信号反射都取决于电缆的特性阻抗和系统中其它部件的匹配。如果阻抗完全匹配,则电缆的损耗只有传输线的衰减,而不存在反射损耗。电缆的特性阻抗(Zo)与其内外导体的尺寸之比有关,同时也和填充介质的介电常数有关。由于射频能量传输的“趋肤效应”,与阻抗相关的重要尺寸是电缆内导体的外径(d)和外导体的内径(D): Zo(?)=138√ε×logDd 常见的射频同轴电缆绝大部分是50?特性阻抗的,这是为什么呢? 通常认为导体的截面积越大损耗就越低,但事实并非完全如此。同轴电缆的每单位长度的损耗是logDd的函数,也就是说和电缆的特性阻抗有关。经过计算可以发现,当同轴电缆的特性阻抗为77?时,单位长度的损耗最低。 对于同轴电缆的最大承受功率,通常认为内外导体的间距越大,则同轴电缆可承受电压越高,即承受功率越大,但实际上也不完全准确。同轴电缆的最大承受功率同样与其特性阻抗有关。可以计算出当同轴电缆的特性阻抗为30?时,其承受的功率最大。 为了兼顾最小的损耗和最大的功率容量,应该在77?和30?之间找一个适当的数值。二者的算术平均值为53.5?,而几何平均值为48.06?;选取50?的特性阻抗可以做到二者兼顾。此外,50?阻抗的连接器也更加容易设计和加工。 绝大部分应用于通信领域的射频电缆的特性阻抗是50?;在广播电视中则用到75?的电缆。 大部分的测试仪器都是50?的阻抗,如果要测量75?阻抗的器件,可以通过一个50~75?的阻

同轴电缆的电气参数计算

同轴电缆的一个回路是同轴对,它是对地不对称的.在金属圆管(称为外导体)配置另一圆形导体(称为导体),用绝缘介质使两者相互绝缘并保持轴心重合,这样所构成的线对称同轴对。同轴电缆可用于开通多路栽波通信或传输电视节目,也可用同轴电缆传输高数码的数据信息(如UL2919屏幕线) 1.一次传输参数: 同轴电缆的一次传输参数主要随电流的频率及电缆结构尺寸D/d变化而变化. (1).有效电阻,随频率的增大而增大.而与外导体直径比没直接的关系. (2).电感随频率的增大而减小,随外导体直径比增大而增大. (3).电容与频率无关,随直径比的增大而减小. (4).电导与频率基本上成正比,随直径的增大而减小. 具体计算公式如下: 1.1.有效电阻: 同轴电缆的有效电阻包括导体的有效电阻及外导体的有效电阻,当外导体都是铜导体时,总的有效电阻为: 1.2有效电感: 同轴回路的电感由.外导体的电感和外导体之间的外电感组成,当外导体都是铜时,回路的电感为: 1.3同轴电缆电容﹕ 同于同轴电缆无外部电场,所以同轴对的工作电容就等于同轴对外导体间的部分电容,电容计算可按圆柱形电容器的电容公式来计算:

Dw-外导体结构的修正系数(理想外导体Dw=0,非理想外导体Dw=编织外导体中的单线直径) K1-导体结构的修正系数, D1-同轴线外导体径(mm) 1.4绝缘电导: 同轴对的绝缘导体G由两部分组成: 一是由绝缘介质极化作用引起的交流电导G~,另一个部分是由于绝缘不完善而引起的直流电导G0: G=G0+G~ 2.二次传输参数: 二次传输参数是用以表征传输线的特性参数,它包括特性阻抗ZC,衰减常数α,及相移常数. 2.1.同轴电缆特性阻抗﹕ 2.1.1.对于斜包,铝箔纵包可近似看作是理想外导体,计算如下:

射频电缆的参数理论资料

射频电缆的参数理论 第一节特性阻抗 特性阻抗是选用电缆的首先要考虑的参数,它是电缆本身的参数,它 取决于导体的直径以及绝缘结构的等效介电常数。 特性阻抗对于电缆的使用有很大的影响。例如在选择射频电缆作为发 射天线馈线时,其特性阻抗应尽可能和天线的阻抗一致,否则会在电缆和天线的连接处造成信号反射,使得天线得到的功率减少,电缆的传输效率也会下降,更为严重的是,反射的存在会使电缆沿线岀现驻波,有些地方会岀现电压和电流的过载,从而造成电缆的热击穿或热损伤而影响电缆的正常运行。电缆内部反射的存在,还会造成传输信号的畸变,使传输信号岀现重影,严重影响信号传输质量。 为了便于使用,射频电缆的阻抗已经标准化了。因此在选用电缆时应 尽可能选用标准阻抗值。对于射频同轴电缆有以下三中标准阻抗: 50±2ohm推荐使用于射频及微波,用于测试仪表以及同轴-波导转换器等; 75 ± 3ohm用于视频或者脉冲数据传输,用于大长度例如CATV电缆传输系统; 100土5ohm用于低电容电缆以及其它特种电缆。 以下是同轴电缆特性阻抗计算的各种公式。 §.1同轴电缆阻抗公式 根据传输理论,特性阻抗公式为: Zc= (R j L)/(G j C) 式中,R、L、G、C、代表该传输线的一次参数,而 3 =2n f代表信 号的角频率。 对于射频同轴电缆传输高频信号,通常都有R VV 3 L,G<< 3 C,此 时特性阻抗公式可以简化为: Zc = . L/C = 60?ln(D/d) / - = 138?l g(D/d)/ ;(ohm) 式中,D为外导体内直径(mn) d为内导体外直径(mn)

£为绝缘相对介电常数 表1给岀了常用绝缘材料的相对介电常数。 表1常用介质材料的特性 §.2皱纹外导体同轴电缆阻抗公式 皱纹外导体已经获得广泛应用,阻抗尚无标准的方法计算,可以利用电容电感参考方法进行计算。 测量岀L和C后可以计算阻抗: Zc = -? L / C §.4特性阻抗与电容的关系 同轴电缆的特性阻抗与电容有如下简单的关系,即 Zc= 104/3 ? . ;/ C 式中,C为电缆电容(pF/m) 第二节电容 电容是射频电缆的一个重要参数,同轴电缆的电容按照下式计算: C= 1000 £ / (18lnD/d )= 24.13 £/ (lgD/d ) (pF/m) 第三节衰减 衰减是射频电缆的重要参数之一,它反映了电磁能量沿电缆传输时的损耗的大小。 电缆的衰减表示电缆在行波状态下工作时传输功率或者电压的损耗的程度,即

射频同轴电缆选择指南

射频同轴电缆选择指南 对一项新的应用来说,选择最适合的同轴电缆需要了解这项应用,并且了解可选择的电缆种类。在为应用选择最合适的同轴电缆的过程中,下列的电缆特性需要被考虑。接下来的章节就详细地讨论了下列每种特性。 A:VSWR和阻抗一致性 B:衰减 衰减一致性 衰减稳定性 C:额定功率 D:屏蔽性 E:截止频率 F:工作温度范围 G:柔韧性 H:电长度稳定性 I: 互调 J: 环境适应性 A:信号反射:VSWR和阻抗一致性 当射频信号输入到同轴电缆组件中时,有三种情况发生:(1)信号被传输到电缆的另一端,正如期望的那样;(2)信号沿着电缆传播时,被转换成热量或从电缆中泄露出去,以这两种形式损失掉;(3)朝着电缆输入的一端反射回来。信号沿着电缆输入的方向反射回来,这是由于沿着电缆长度方向上阻抗的变化引起的。这些变化就包括电缆和其相连的设备阻抗的不同。通常连接器和连接器与电缆的接口是反射的主要因素。另外,电缆本身也可引起反射,电缆反射的一种来源就是来自阻抗周期性的变化。而这种变化是在生产过程中,被加到一个特定的频率上时所产生的。当用一组频率扫描并观察,就会出现一个尖峰。图1就显示了一个尖峰的例子。

反射的大小可以用几种方式表示。可能最熟悉的就是VSWR了。反射也可表示成回损,就是反射功率与入射功率的比。通常用dB表示。 低反射功率或低电压驻波比通常作为同轴部件的指标,包括电缆,连接器,和电缆组件。它表明了电缆的一致性沿着其长度保持得有多好,连接器是否恰当的被设计和被装接;也反映了连接器的尺寸和电缆线径过渡段的匹配有多好。它通常是频率的函数,当频率增大时,反射也增加。 在很多应用方面,低反射功率对于实现好的系统性能是关键的因素。在这种情况下,选择电缆和连接器是关键。另外,为了得到好的结果,还必须小心地将连接器连接到电缆上。购买电缆组件的时候应该考虑VSWR关键的应用。 要注意,在一个特定的频率下,实际的输入阻抗可能和电缆的特性阻抗有很大不同,这是线路中存在反射引起的。一段特定长度电缆的VSWR是电缆实际输入阻抗与它平均特性阻抗差别大小的指针。 B.衰减 衰减是信号沿着电缆传播的损耗,当射频信号穿过电缆,一部分转变成热,一部分通过外导体泄露出去。信号损耗通常用单位长度的dB数表示,而且是在某一特定频率时,因为衰减随频率增加而增加。 对于大多数应用来说,目的是要减少电缆中的损耗或者是在损耗预计范围内保持不变。对于同一结构类型的电缆,损耗随着直径的增加而减小,因此,欲使电缆损耗减小意味着可

射频参数解析

盛年不重来,一日难再晨。及时宜自勉,岁月不待人。 射频参数 1.回波损耗 又称反射损耗,是电缆线路由于阻抗不匹配所产生的反射,是一对线自身的反射。 不匹配主要发生在连接器的地方,但也可能发生于电缆中特性阻抗发生变化的地方。 回波损耗是传输线端口的反射功率与入射波功率之比,以对数形式来表示,单位是dB,一般是负值,其绝对值可以成为反射损耗。 回波损耗= -10 lg [(反射功率)/(入射功率)] 2.反射系数 反射波和入射波电压之比 回波损耗= 20|lg(反射系数Γ)| 3.驻波比 全称电压驻波比,又名VSWR或SWR,英文Voltage Standing Wave Ratio的简写。指驻波波腹电压与波谷电压幅度之比,又称驻波系数、驻波比。驻波比为1时,表示馈线和天线的阻抗完全匹配,此时高频能量全部被天线辐射出去,没有能量的反射损耗;驻波比为无穷大时表示全反射,能量完全没有辐射出去。 驻波比会随着频率而改变 在入射波和反射波相位相同的地方,电压振幅相加为最大电压振幅Vmax ,形成波腹;在入射波和反射波相位相反的地方电压振幅相减为最小电压振幅Vmin ,形成波谷。 其它各点的振幅值则介于波腹与波谷之间。这种合成波称为行驻波。驻波比是驻波波腹处的电压幅值Vmax与波谷处的电压幅值Vmin之比 驻波比就是一个数值,用来表示天线和电波发射台是否匹配。如果SWR 的值等于

1,则表示发射传输给天线的电波没有任何反射,全部发射出去,这是最理想的情况。 如果SWR 值大于1,则表示有一部分电波被反射回来,最终变成热量,使得馈线升温 驻波比反射率: 1.00.00% 1.10.23% 1.20.83% 1.3 1.70% 1.5 4.00% 1.7 6.72% 1.88.16% 2.011.11% 2.518.37% 3.025.00% 4.036.00% 5.044.44% 7.056.25% 1066.94% 1576.56% 2081.86% 4.天线增益 天线增益是指:在输入功率相等的条件下,实际天线与理想的辐射单元在空间同一点处所产生的信号的功率密度之比。它定量地描述一个天线把输入功率集中辐射的程度。 增益与天线方向图有密切的关系,方向图主瓣越窄,副瓣越小,增益越高。天线增益是用来衡量天线朝一个特定方向收发信号的能力,它是选择基站天线最重要的参数之一。 一般来说,增益的提高主要依靠减小垂直面向辐射的波瓣宽度,而在水平面上保持全向的辐射性能。 表示天线增益的参数有dBd和dBi,dBi是相对于点源天线的增益,在各方向上的辐射是均匀的;dBd相对于对称阵子天线的增益dBi=dBd+2.15。相同条件下,增益越高,电波传播的距离越远

射频同轴电缆行业分析报告

射频同轴电缆行业分析报告

目录 一、所属行业及行业管理体制 (4) 1、所属行业情况 (4) (1)电线电缆行业近年整体呈现快速增长趋势 (5) (2)电线电缆各分支产业发展速度不均衡 (6) (3)企业数量多、规模小,电线电缆行业产业集中度低,但正逐步提高 (6) (4)主要竞争手段由目前的价格竞争正逐步向品牌竞争和技术竞争转变 (6) (5)特种电缆逐渐成为行业内发展的重点领域 (7) 2、行业监管体制 (7) 二、射频同轴电缆的定义、用途、结构及分类 (9) 1、射频同轴电缆的定义及用途 (9) 2、射频同轴电缆的基本结构及分类 (9) (1)射频同轴电缆的基本结构 (9) (2)射频同轴电缆的分类 (11) 三、行业发展概况 (13) 四、行业的主要法律法规及产业政策 (14) 五、行业竞争情况 (16) 1、行业竞争格局 (16) (1)全球竞争格局 (16) (2)国内竞争格局 (16) 2、市场容量、发展前景及市场供求状况 (17) (1)行业市场容量及未来几年的增长趋势 (17) (2)市场前景分析 (18) (3)市场供求情况 (22) 3、行业内的主要企业及其市场份额 (22) (1)行业内主要企业 (22) (2)行业内主要企业的市场份额 (24)

4、行业利润水平的变动趋势及变动原因 (24) 5、进入本行业的主要壁垒 (25) (1)技术壁垒 (25) (2)资金壁垒 (26) (3)客户关系壁垒 (26) 六、影响行业发展的有利因素和不利因素 (27) 1、有利因素 (27) (1)国内宏观经济复苏 (27) (2)国家产业政策支持 (27) (3)全球通信设备制造业采购中心向中国转移 (28) (4)发达国家需求稳定,发展中国家和地区需求快速增长 (28) 2、不利因素 (29) (1)行业自主创新意识和能力不强,知识产权保护不力导致行业竞争无序 (29) (2)原材料价格波动加大行业经营风险 (29) 七、行业技术水平及发展趋势 (29) 1、行业技术水平 (29) 2、行业技术发展趋势 (30) (1)降低衰减和驻波比 (30) (2)提高电缆的特殊性能 (31) (3)研发高端绝缘介质 (31) (4)提高电缆的环保特性 (31) 3、行业的周期性、区域性 (32) (1)行业的周期性 (32) (2)行业的区域性 (32) 八、上下游行业发展状况及其对本行业的影响 (33) 1、上游行业 (33) 2、下游行业 (34)

射频电缆分类

射频电缆分类 来源:特种电缆 https://www.360docs.net/doc/2411625170.html, 射频电缆的结构是多种多样的,可以根据不同的方式和型式来分类。 按电缆结构分类 (1)同轴射频电缆 同轴射频电缆是最常用的结构型式。由于其内外导体处于同心位置,电磁能量局限在内外导体之间的介质内传播,因此具有衰减小,屏蔽性能高,使用频带宽及性能稳定等显著优点。通常用来传输500千赫到18千兆赫的射频能量。 目前,常用的射频同轴电缆有两类:50Ω和75Ω的射频同轴电缆。特性阻抗75Ω射频同轴电缆常用于CATV网,故称为CATV 电缆,传输带宽可达1GHz,目前常用CATV电缆的传输带宽:750MHz。 (2)对称射频电缆 对称射频电缆回路其电磁场是开放型的,由于在高频下有辐射电磁能,因而使衰减增大,并导致屏蔽性能差,再加上大气条件的影响,通常较少采用。对称射频电缆主要用在低射频或对称馈电的情况中。 (3)螺旋射频电缆 同轴或对称电缆中的导体,有时可做成螺旋线圈状,借以增大电缆的电感,从而增大了电缆的波阻抗及延迟电磁能的传输时间,前者称为高阻电缆,后者称为延迟电缆。如果螺旋线圈沿长度方向卷绕的密度不同,则可制成变阻电缆。 按绝缘型式分类 (1)实体绝缘电缆 在这种电缆的内外导体之间全部填满实体高频电介质,大多数

软同轴射频电缆都是采用这种绝缘型式。(2)空气绝缘电缆 电缆的绝缘层中,除了支撑内外导体的一部分固体介质外,其余大部分体积均是空气。其结构特点是从一个导体到另一个导体可以不通过介质层。空气绝缘电缆具有很低的衰减,是超高频下常用的结构型式。 (3)半空气绝缘电缆 这种结构型式是介于上述两种之间的一种绝缘型式,其绝缘也是由空气和固体介质组合而成,但从一个导体到另一个导体需要通过固体介质层。 此外,按绝缘材料的分类可分为:塑料绝缘电缆、橡皮绝缘电缆及无机矿物绝缘电缆;按柔软性可分为:柔软电缆、平软电缆及刚性电缆等;按传输功率大小分为:0.5千瓦以下的低功率、0.5—5千瓦中功率、5千瓦以上的大功率电缆等;按产品的用途特点分为:低衰减、低噪音、微小型及搞稳相电缆等。

射频电缆规格

射频电缆规格

————————————————————————————————作者:————————————————————————————————日期:

电缆组别对应 组别代号电缆组别常用-50-型号 00 2/50S SFF-50-1,SYV-50-1;RG-178/U,196/U 01 2/50D RD-178 02 2.6/50S SFF-50-1.5--1,RG-174/U,188/U,316/U;LMR-100A 03 2.6/50D RG-316DT;RG-316 04 3/50S SYV-50-2-1 05 3/50D SFF-50-1.5--2 06 4/50S SFF-50-2-1,SYV-50-2-2;RG-303/U 07 4/50D SFF-50-2-2 08 5/50S SFF-50-3-1,SYV-50-3;RG-58/U,141A/U,303/U;LMR-195 09 5/50D SFF-50-2-2;RG-55/U,142B/U,223/U,400/U 10 7/50S SYV-50-5-1 11 8/50D SYV-50-5-2;RG-5A/U,RG-21/U,RG-212/U,RG-222/U 12 10/50S SYV-50-7-1;RG-8/U,10/U,165/U,213/U,215/U 13 11/50D SYV-50-7-2;RG-9/U,214/U,225/U 14 085 SFT-50-2-1;RG-405/U 15 141 SFT-50-3-1;RG-402/U 16 250 SFT-50-5.2;RG-401/U 17 2/75S SFF-75-1 18 2.6/75S SFF-75-1.5-1;SYFV-75-2-1;RG-179B/U,187/U 19 2.6/75D RD-179 20 3/75S SYV-75-2,SFF-75-2 21 3/75D SFF-75-1.5-2 22 4/75S SYV-75-1 23 4/75D SYV-75-2 24 5/75S SFF-75-3-1,SYV-75-3 25 5/75D SFF-75-3-2;RD-302 26 6/75S RG-59B/U,140/U,210/U 27 7/75S SYV-75-5 28 8/75D RG-6A/U 29 10/75S SYV-75-7;RG-11/U,12/U,144/U 30 11/75D RG-216/U 31 1/4"皱纹铜管Heliax LDF1-50 32 3/8"皱纹铜管SYFY-50-9-3;Heliax LDF2-50 33 1/2"皱纹铜管SYFY-50-12-3;Heliax LDF4-50A;Sucofeed 1/2" 34 5/8"皱纹铜管Heliax HJ4.5-50 35 7/8"皱纹铜管SYFY-50-12-3;Heliax LDF5-50A;Sucofeed 7/8" 36 1/4"螺旋铜管Heliax FSJ1-50A;Sucofeed 1/4" HF-FR 37 3/8"螺旋铜管SDY-50-7-3;Heliax FSJ2-50;Sucofeed 3/8" HF-FR

射频电缆性能指标及设计准则

射频电缆性能指标及设计准则 该文详细讨论了射频电缆及测试电缆组件的各项指标和性能,为广大测试工程人员在选用高性能高可靠性射频测试电缆组件时所应关注的几个方面提出了专业建议。 概述—射频电缆的通用设计准则 射频电缆组件的正确选择除了频率范围,驻波比,插入损耗等因素外,还应考虑电缆的机械特性,使用环境和应用要求,另外,成本也是一个永远不变的因素。 在本文中,详细讨论了射频电缆的各种指标和性能,了解电缆的性能对于选择最佳的射频电缆组件是十分有益的。 射频同轴电缆是用于传输射频和微波信号能量的。它是一种分布参数电路,其电长度是物理长度和传输速度的函数,这一点和低频电路有着本质的区别。射频同轴电缆分为半刚,半柔和柔性电缆三种,不同的应用场合应选择不同类型的电缆。半刚和半柔电缆一般用于设备内部的互联;而在测试和测量领域,应采用柔性电缆。 半刚性电缆 顾名思义,这种电缆不容易被轻易弯曲成型,其外导体是采用铝管或者铜管制成的,其射频泄露非常小 (<-120dB),在系统中造成的信号串扰可以忽略不计。这种电缆的无源互调特性也是非常理想的。如果要弯曲到某种形状,需要专用的成型机或者手工的磨具来完成。如此麻烦的加工工艺换来的是非常稳定的性能,半刚性电缆采用固态聚四氟乙烯材料作为填充介质,这种材料具有非常稳定的温度特性,尤其在高温条件下,具有非常良好的相位稳定性。半刚性电缆的成本高于半柔性电缆,大量应用于各种射频和微波系统中。 半柔性电缆 半柔性电缆是半刚性电缆的替代品,这种电缆的性能指标接近于半刚性电缆,而且可以手工成型。但是其稳定性比半刚性电缆略差些,由于其可以很容易的成型,同样的也容易变形,尤其在长期使用的情况下。 柔性(编织)电缆 柔性电缆是一种“测试级”的电缆。相对于半刚性和半柔性的电缆,柔性电缆的成本十分昂贵,这是因为柔性电缆在设计时要顾及的因素更多。柔性电缆要易于多次弯曲而且还能保持性能,这是作为测试电缆的最基本要求。柔软和良好的电指标是一对矛盾,也是导致造价昂贵的主要原因。柔性射频电缆组件的选择要同时考虑各种因素,而这些因素之间有些的相互矛盾的,如单股内导体的同轴电缆要比多股的具有更低的插入损耗和弯曲时的幅度稳定性,但是相位稳定性能就不如后者。所以一条电缆组件的选择,除了频率范围,驻波比,插入损耗等因素外,还应考虑电缆的机械特性,使用环境和应用要求,另外,成本也是一个永远不变的因素。 特性阻抗 射频同轴电缆由导体,介质,外导体和护套组成。 “特性阻抗”是射频电缆,接头和射频电缆组件中最常提到的指标。最大功率传输,最小信号反射都取决于电缆的特性阻抗和系统中其它部件的匹配。如果阻抗完全匹配,则电缆的损耗只有传输线的衰减,而不存在反射损耗。电缆的特性阻抗(Zo)与其内外导体的尺寸之比有关。由于射频能量传输的“趋肤效应”,与阻抗相关的重要尺寸是电缆内导体的外径(d)和外导体的内径(D):Zo(Ω)= (138/√ε)x(logD/d)绝大部分应用于通信领域的射频电缆的特性阻抗是50Ω;在广播电视中则用到75Ω的电缆。 驻波比(VSWR)/回波损耗 在射频和微波系统中,最大功率传输和最小信号反射取决于射频电缆的特性阻抗和系统

常用同轴电缆的主要技术参数

常用同轴电缆的主要技术参数-2 国产同轴电缆的同一型号和含义分类代号绝缘材料护套材料派生特征符号含义 符号含义符号含义符号含义S通轴射频电缆Y聚乙烯V聚氯乙烯P屏蔽SE对称 射频电缆W稳定聚乙烯Y聚乙烯Z综合SJ强力射频电缆F氟塑料F氟塑料SG高压 射频电缆X橡皮B玻璃丝编制侵硅有机漆ST特性射频电缆I聚乙烯空气绝缘H橡皮 SS电视电缆D稳定聚乙烯空气绝缘M棉纱编织例如:SYV-75-3-1型电缆表示同轴射频电缆,用聚乙烯绝缘,用聚氯乙烯做护套,特性阻抗为75Ω,芯线绝缘外经为3mm,结构序号为1。常用同轴电缆型号的规格和主要参数电缆型号绝缘形式芯线外经 mm 绝缘外经 mm 电缆外经 mm 特性阻抗 Ω 衰减常数(dB/100m) 30(MHz) 200(MHz) 800(MHz) SYKV-75-5藕芯式 1.10 4.7 7.3 75±3 4.1 11 22 SYKV-75-9藕芯式 1.90 9.0 12.4 75±2.5 2.4 6 12 SYKV-75-12藕芯式 2.60 11.5 15.0 75±2.5 1.6 4.5 10 SSYKV-75-5藕芯式 1.00 4.8 7.3 75±3 4.2 11.5 23 SSYKV-75-9藕芯式 1.90 9.0 13.0 75±3 2.1 5.1 11 SIOV-75-5藕芯式 1.13 5.0 7.4 75±3 3.5 8.5 17 SIZV-75-5竹节式 1.20 5.0 7.3 75±3 4.5 11 22 SYDV-75-9竹节式 2.20 9.0 11.4 75±3 1.7 4.5 9.2 SYDV-75-12竹节式 3.00 11.5 14.4 75±2 1.2 3.4 7.1 SDVC-75-5藕芯式 1.00 4.8 6.8 75±3 4 10.8 22.5 SDVC-75-7藕芯式 1.60 7.3 10.0 75±2.5 2.6 7.1 15.2 SDVC-75-9藕芯式 2.00 9.0 12.0 75±2.5 2.1 5.7 12.5 SDVC-75-12藕芯式 2.60 11.5 14.4 75±2.5 1.7 4.5 10 同轴电缆型号从左至右的字母分别代表电缆由内至外的材质,具体此问题试解如下:S--射频Y--聚乙烯绝缘W--编镀锡铜网L--氩弧焊铝管V--聚氯乙烯护套75--阻抗75欧姆9--线径9MM 这样看sywly-75-9比sywv-75-9多了一层铝管和外绝缘层(没有护套?),屏蔽能力应该比后者更好。

RF同轴电缆的结构与传输特性

1 RF同轴电缆的结构与传输特性 1.1结构 RF同轴电缆由内导体、绝缘体、外导体和护套4部分组成,绝缘体使内、外导体绝 缘且保持轴心重合,这就是同轴电缆。内外导体由电介质(绝缘材料)隔开,电介质在很大程度上决定着同轴电缆的传输速度和损耗特性,常使用的绝缘材料是干燥空气、聚乙烯、聚丙烯、聚氯乙烯等材料的混合物。物理发泡电缆因损耗小、频率特性好、不易进水得到优选应用。 1.2传输特性 (1)同轴电缆内的电磁场分布 电场强度按正弦分布,在同轴电缆中传输的电波不会泄漏到电缆之外,在应用中,外导体通常是接地的,故具有良好的屏蔽作用,传输的电视信号不受外界杂波的干扰,里面的信号也不会辐射出去。 (2 )趋肤效应 高频信号的电流流过电缆时,电流集中于导体表面而使导体有效横截面积减少、电阻值加大的现象称之为趋肤效应。因为有趋肤效应,同轴电缆中的电流只沿内导体的外侧和外导体的内侧流动,因此,电缆的许多性质取决于内导体的外径和外导体的内径,电缆内、外部的电磁场也不相互干扰。趋肤深度与频率 f (MHz )的平方根成反比, 因此,同轴电缆的导体损耗与频率的平方根成正比。 1.3同轴电缆性能 (1 )特性阻抗 特性阻抗Z c定义为在同轴电缆终端匹配的情况下,电缆上任意点电压与电流的比值。同轴电缆的特性阻抗由导体的直径和导体间介质决定,与电缆长度无关。在CATV 系统中,同轴电缆的特性阻抗均为75 a (2 )衰减常数3与温度系数 RF信号在同轴电缆中传输时的衰减量与电缆的尺寸、介电常数、工作频率有关。同轴电缆信号的衰减程度,以衰减常数( 3 )表示单位长度(如100 m)电缆对信号衰 减的dB数。衰减常数与信号频率的平方根成正比,即在同一段电缆,信号频率越高,衰减常数越大;信号频率越低,衰减常数越小。温度系数表示温度变化对电缆损耗值的影响,温度上升,电缆的损耗值增大;温度下降,电缆的损耗值减小。温度系数定义为温度升高或降低1C,电缆对信号衰减量增大或减小的百分数。表1是根据和平县有线电视 台的频道配置选出8个频道,在33C和13C两个常温下,对汉胜RF同轴电缆-5型和-7 型进行测量的结果。 表1两种常温下的汉胜电缆-7与-5型的衰减常数(3 )频道图像载频(MHz) 33 C dB/100 m13 C dB/100 m -7型-5 型-7 型-5 型

相关文档
最新文档