1.2.4绝对值——绝对值的定义和性质最新版
人教版七年级数学上册 第一章:有理数_1.2.4:绝对值 学案(含答案)

初中七年级数学上册第一章:有理数——1.2.4:绝对值(解析)一:知识点讲解知识点一:绝对值绝对值:✧ 几何意义:一般地,数a 的绝对值就是数轴上表示数a 的点与原点之间的距离,数a 的绝对值记作a ,读作“a 的绝对值”。
✧ 代数意义:一个正数的绝对值是它本身; 一个负数的绝对值是它的相反数;零的绝对值是零,即对于任何有理数,都有⎪⎩⎪⎨⎧<-=>=0000a a a a a a ,,,。
由绝对值的定义可知,一个数的绝对值是非负数,在数轴上,一个数离原点越近,绝对值越小;离原点越远,绝对值越大。
绝对值是它本身的数是非负数,即若a a =,则0≥a ,即a 为非负数;绝对值是其相反数的数是非正数,即若a a -=,则0≤a ,即a 为非正数。
绝对值是某个正数的数有两个,它们互为相反数,即若a x =(0>a ),则a x ±=,即若2=x ,则2±=x 。
互为相反数的两个数的绝对值相等;绝对值相等的两个数相等或互为相反数。
若几个数的绝对值之和为0,则这几个数同时为0。
求一个数的绝对值,要“先判后去”,即先判断这个数是正数、0、还是负数,再由绝对值的定义去掉绝对值符号。
例1:写出下列各数的绝对值:23-、211、﹣3、0、45、π- 解:23、211、3、0、45、π知识点二:有理数大小的比较有理数大小的比较:✧ 利用数轴比较大小:依据:在数轴上表示有理数,左边的数小于右边的数;具体方法:把要比较大小的有理数在同一条数轴上表示出来,那么有理数从左到右的顺序就是从小到大的顺序。
✧ 利用数的性质比较大小:依据:正数大于0,0大于负数,正数大于负数。
两个正数,绝对值大的数大;两个负数,绝对值大的数反而小; 具体方法:在比较几个数的大小时,步骤如下:先将它们分类成正数、0、负数,再按上面的依据进行比较。
两个正有理数比较大小:1) 比较两个小数大小,先看正数部分,正数部分大的那个数大;2) 两个分数比较大小,同分母分数,分子大的分数大,异分母分数,要先通分,再比较; 3) 比较分数与小数大小,一般先将小数化成分数再比较。
4绝对值——绝对值的定义和性质 公开课课件

2
2
对值是它们的相反数.
解:15 15 ; 0 0; - 3 3 ; -3 1 3 1 ;
44
22 2 2
-4.5 4.5; 5 5.
知1-讲
(来自《点拨》)
总结
知1-讲
求一个数的绝对值的方法:去掉绝对值符号时,必 须按照“先判后去”的原则,先判断这个数是正数、0或 负数,再根据绝对值的意义去掉绝对值符号,总之要确 保其结果为非负数且只有一个.
知识点 1 绝对值的定义
知1-导
两辆汽车从同一处O出发,分别向东、西方向行驶 10 km,到达A,B两处(下图).它们的行驶路线相同吗? 它们的行驶路程相等吗?说说你的想法.
观察下图,回答问题:
知1-导
大象距原点几 个单位长度?
两只小狗分别距原点 几个单位长度?
-3-2 -1 0 1 2 3 4
A.-2 B.-3 C.3
D.5
(来自《典中点》)
(1)正数、负数的绝对值是正数; (2)0的绝对值是0,0是绝对值最小的数; (3)若一个数的绝对值是正数,则这样的数有两个,
它们互为相反数.
1.必做: 完成教材P11练习T1-T3, P14-P15习题1.2T5, T8,T12
2.补充: 请完成《典中点》剩余部分习题
当a为任意有理数时,a ___≥____ 0 .
(来自《典中点》)
知2-练
4 (中考·娄底)若|a-1|=a-1,则a的取值范围是( A ) A.a≥1 B.a≤1 C.a<1 D.a>1
5 (中考·威海)检验4个工件,其中超过标准质量的克数
记作正数,不足标准质量的克数记为负数,从轻重的
角度看,最接近标准的工件是( A )
1.2.4绝对值——绝对值的定义和性质

•
五、一个人要实现自己的梦想,最重要的是要具备以下两个条件:勇气和行动。——俞敏洪
•
六、将相本无主,男儿当自强。——汪洙
•
七、我们活着不能与草木同腐,不能醉生梦死,枉度人生,要有所作为。——方志敏
•
八、当我真心在追寻著我的梦想时,每一天都是缤纷的,因为我知道每一个小时都是在实现梦想的一部分。——佚名
知2-讲
【例5】已知 a-2+b-1=0 ,求a、b的值.
导 引 : 因 为 | a - 2 | 和 | b - 1 | 都 是 非 负 数 , 所 以 | a - 2 | 0 , | b - 1 | 0 , 又 | a - 2 | + | b - 1 | = 0 , 所 以 a - 2 = 0 , b-1=0.
•
三十六、梦想不抛弃苦心追求的人,只要不停止追求,你们会沐浴在梦想的光辉之中。——佚名
•
三十七、一块砖没有什么用,一堆砖也没有什么用,如果你心中没有一个造房子的梦想,拥有天下所有的砖头也是一堆废物;但如果只有造房子的梦想,而没有砖头,梦想也没法实现。——俞敏洪
•
三十八、如意算盘,不一定符合事实。——奥地利
解 : 因 为 x - 4+ y+ 2= 0, 所 以 x - 4 = 0 , y + 2 = 0 , 所 以 x = 4 , y = - 2 . 所 以 x 的 相 反 数 为 - 4 , y 的 相 反 数 为 2 .
总结
知2-讲
本题运用了巧用非负性技巧,考查了非负数的性质, 该性质可巧记为“0+0=0”,可以推广为:如果几个非 负数的和为0,那么这几个非负数均为0.
•
九、很多时候,我们富了口袋,但穷了脑袋;我们有梦想,但缺少了思想。——佚名
人教版数学七年级上册1.2.4《绝对值》教案

人教版数学七年级上册1.2.4《绝对值》教案一. 教材分析《绝对值》是人教版数学七年级上册第1章第2节的内容,本节课主要让学生理解绝对值的概念,掌握绝对值的性质,并能运用绝对值解决一些实际问题。
绝对值是数学中的一个基本概念,它在日常生活和工农业生产中有着广泛的应用。
二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,他们对数学概念的理解和运用已经有了一定的基础。
但同时,学生对新的数学概念的接受和理解还需要一定的引导和培养。
他们对绝对值的概念和性质可能还存在一些模糊的认识,需要通过实例和练习来加深理解。
三. 教学目标1.让学生理解绝对值的概念,掌握绝对值的性质。
2.培养学生运用绝对值解决实际问题的能力。
3.培养学生的抽象思维能力和逻辑思维能力。
四. 教学重难点1.绝对值的概念和性质。
2.运用绝对值解决实际问题。
五. 教学方法采用问题驱动法、实例教学法和小组合作学习法,引导学生通过观察、思考、讨论、操作等活动,掌握绝对值的概念和性质,提高学生的动手操作能力和解决问题的能力。
六. 教学准备1.PPT课件。
2.相关例题和练习题。
3.学生分组合作学习资料。
七. 教学过程1.导入(5分钟)利用PPT展示一些实际问题,如温度、距离等,引导学生思考这些问题的共同特点,从而引出绝对值的概念。
2.呈现(10分钟)介绍绝对值的定义,用PPT展示绝对值的图形表示,让学生直观地理解绝对值的概念。
同时,给出绝对值的性质,让学生通过观察和思考来理解这些性质。
3.操练(10分钟)让学生分组合作,运用绝对值的性质解决一些实际问题,如求距离、计算温度等。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)出示一些练习题,让学生独立完成,检验学生对绝对值概念和性质的掌握程度。
教师选取部分题目进行讲解,分析解题思路。
5.拓展(10分钟)让学生思考绝对值在实际生活中的应用,如地图上的距离、股票的涨跌等。
引导学生运用绝对值的知识解决这些问题,提高学生的应用能力。
人教版七年级数学上册教案 绝对值的定义和性质

(四)归纳小结 师:这节课我们学习了绝对值。 1 一个数的绝对值是在数轴上表示这个数的点到原点的距离; 2求一个数的绝对值必须先判断是正数还是负数。 回 顾反馈:
(出示投影 3)
1.-3 的绝对值是在
3 的绝对值是
。
2.绝对值是 3 的数有
绝对值是 2.7 的数有
绝对值是 0 的数有
绝对值是-2 的,-
个,各是 个,各是 个,是
; ; 。
(总结: a 0 )
3.(1)若 a 0 ,则 a ;
(2)若 a 2 ,则 a 。
【教法说明】教师在总结完本节课的知识要点后,再回头对本节重点内容进 行反馈练习,并且注意把知识进行升华。
八、布置作业 课本第 15 页 1、2。 九、板书设计
师:由此题目你能想到什么规律? 学生活动:讨论得出—互为相反数的两数绝对值相同。 【教法说明】这一环节是对绝对值的几何定义的巩固。这里对于绝对值定义 的理解不能空谈“5 的绝对值、-7 的绝对值是多少”?而是与数轴相结合,始 终利用表示这数的点到原点的距离是这个数的绝对值这一概念。教师先阐明a 这 个字母可表示任意数,再把a 换成一组数,学生自己又把a 换成了一些数,指出 它们的绝对值,这样既理解了数a 所表示的广泛含义,又巩固了绝对值的定义。 然后,通过例题总结出了互为相反数的两数的绝对值相等这一规律,既呼应了前 面内容,又升华了绝对值的概念。 师:观察数轴,在原点右边的点表示的数(正数)的绝对值有什么特点? 在原点左边的点表示的数(负数)的绝对值呢?
人教版初中七年级数学第一单元有理数《1.2.4__第1课时_绝对值》教学设计

人教版初中七年级数学第一单元有理数1.2.4 绝对值第一课时一、教材分析:1.教材的地位和作用绝对值是人教版《义务教育课程标准实验教科书·数学》七年级上册第一章第二节绝对值第一课时的教学内容。
绝对值是有理数的重要概念之一,学习绝对值的概念和意义,不仅可以加深学生对数轴、相反数的认识和运用,也为后面学习两个负数的比较大小及有理数运算作好铺垫,因此起着承上启下的作用.同时通过本节课的学习,可以培养学生数形结合、分类讨论的思想方法,对发展学生数学观察、归纳、探究的能力起着积极有效的作用。
2.教学目标分析新课标指出,教学目标应包括知识与技能、数学思考、解决问题、情感与态度这四个方面,而这些目标又应是紧密联系的一个有机整体,学生学会知识与技能的过程同时成为学会学习,形成正确价值观的过程.这告诉我们,在教学中应以知识与技能为主线,渗透情感态度价值观,并把前面两者充分体现在数学思考与解决问题的过程中。
教学目标:①理解绝对值的概念;了解绝对值的意义;运用绝对值的相关知识解决问题;②经历绝对值概念及意义的探究过程,使学生感受分类讨论思想,增强学生的符号意识;③初步形成反思意识,通过多种学习形式使学生学会合作,并能与他人交流解决绝对值相关问题过程的思维和结果;④通过探究的过程,让学生获得数学活动的经验,并在用数学知识解答问题的活动中获取成功的体验,建立学习的自信。
3.教学重难点:根据以上对教材的地位和作用,以及目标分析,结合新课标对本节课的要求,本节课的重点:绝对值的概念及意义的探究过程;难点:利用绝对值的概念及意义解决实际问题。
二、学情分析:1.认知基础分析:学生在小学已初步形成对数的基本认识,再加上之前学习了数轴、相反数的相关知识,对两点之间距离的概念也有所理解,共同为新课学习奠定了必要的基础.心理及能力分析:学生已初步具备一定的观察、分析、概括的思维能力,但思维的严密性仍相对薄弱。
并且他们天性活泼、求知欲强,愿意同学间合作交流,乐于接受形象生动、形式多样的学习方式。
人教版七年级数学上册:1.2.4《绝对值》说课稿4

人教版七年级数学上册:1.2.4《绝对值》说课稿4一. 教材分析《人教版七年级数学上册:1.2.4《绝对值》》这一节内容,主要介绍了绝对值的概念及其性质。
绝对值是数学中一个重要的概念,它体现了数轴上点到原点的距离,具有鲜明的几何特征。
教材通过简单的例子引入绝对值的概念,再引导学生探究绝对值的性质,从而使学生掌握绝对值的基本概念和运用。
二. 学情分析七年级的学生已经具备了一定的数学基础,对数轴有了初步的认识。
但他们对绝对值的理解还较为模糊,需要在教学中通过具体例子和几何直观来加深对绝对值概念的理解。
此外,学生在这一阶段正处于从小学到初中的过渡,学习方式和方法需要进行一定的调整,因此在教学过程中,教师需要关注学生的学习习惯和思维方式的培养。
三. 说教学目标1.知识与技能目标:通过本节课的学习,使学生理解绝对值的概念,掌握绝对值的性质,并能运用绝对值解决一些实际问题。
2.过程与方法目标:通过观察、思考、探究、交流等过程,培养学生的逻辑思维能力和解决实际问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养他们积极思考、勇于探索的精神。
四. 说教学重难点1.教学重点:绝对值的概念及其性质。
2.教学难点:绝对值性质的推导和运用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等,引导学生主动探究、积极交流。
2.教学手段:利用多媒体课件、数轴模型等辅助教学,增强教学的直观性和趣味性。
六. 说教学过程1.导入新课:通过一个简单的例子,引导学生思考绝对值的概念,激发学生的学习兴趣。
2.讲解绝对值的概念:结合数轴,讲解绝对值的几何意义,使学生理解并掌握绝对值的概念。
3.探究绝对值的性质:引导学生观察、分析、总结绝对值的性质,并通过小组讨论加深理解。
4.运用绝对值解决实际问题:布置一些实际问题,让学生运用绝对值的知识进行解决,巩固所学内容。
5.课堂小结:对本节课的内容进行总结,强调绝对值的概念和性质。
人教版七年级数学上册:1.2.4《绝对值》说课稿1

人教版七年级数学上册:1.2.4《绝对值》说课稿1一. 教材分析《绝对值》是人教版七年级数学上册第一章第二节第四个小节的内容。
绝对值是数学中的一个基本概念,它表示一个数在数轴上所对应的点与原点的距离。
这个概念在初中数学中非常重要,它不仅涉及到实数的概念,还与代数、几何等多个数学领域有着密切的联系。
在后续的学习中,绝对值的概念会不断出现,因此,让学生深刻理解绝对值的意义和应用是非常必要的。
二. 学情分析七年级的学生已经具备了一定的实数基础,对于数轴的概念也有了一定的了解。
但是,他们对于抽象的概念的理解还相对较弱,需要通过具体的实例和实际操作来帮助理解。
同时,七年级的学生正处于青春期,注意力容易分散,因此,在教学过程中,需要通过多种教学手段来吸引他们的注意力,激发他们的学习兴趣。
三. 说教学目标1.知识与技能:让学生理解绝对值的定义,掌握绝对值的性质,能够运用绝对值解决实际问题。
2.过程与方法:通过实例和实际操作,让学生体验绝对值的概念,培养学生的抽象思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的自主学习能力。
四. 说教学重难点1.教学重点:绝对值的定义和性质。
2.教学难点:绝对值在实际问题中的应用。
五. 说教学方法与手段1.教学方法:采用问题驱动法,通过提问引导学生思考,激发学生的学习兴趣。
2.教学手段:利用多媒体课件,结合板书,以实例和实际操作的方式进行教学。
六. 说教学过程1.导入:通过一个实际问题,引出绝对值的概念,激发学生的学习兴趣。
2.新课导入:介绍绝对值的定义和性质,让学生通过实例来体验绝对值的概念。
3.课堂讲解:通过讲解和实际操作,让学生理解绝对值的性质,能够运用绝对值解决实际问题。
4.课堂练习:设计一些练习题,让学生运用绝对值的知识来解决问题,巩固所学的内容。
5.课堂小结:对本节课的内容进行总结,让学生明确学习的重点。
七. 说板书设计板书设计要清晰、简洁,能够突出绝对值的概念和性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
总结
知2-讲
本题运用了巧用非负性技巧,考查了非负数的性质, 该性质可巧记为“0+0=0”,可以推广为:如果几个非 负数的和为0,那么这几个非负数均为0.
A.|-3|是求-3的相反数
B.|-3|表示的意义是数轴上表示-3的点到原点的
距离
C.|-3|的意义是表示-3的点到原点的距离是-3
D.以上都不对
(来自《典中点》)
知识点 2 绝对值的性质
知2-讲
1. 一个正数的绝对值是它本身;一个负数的绝对值是 它的相反数;0的绝对值是0.即
(1)如果a>0,那么 a = a ;
知1-导
数轴上表示-5和5的点到原点的距离分别是多少? 表示 -3和3的点呢?
44
知1-讲
1. 一般地,数轴上表示数a的点与原点的距离叫做数a 的绝对值(absolute value),记作|a | .例如,上图中A, B两点分别表示10和 -10,它们与原点的距离都是10 个单位长度,所以10和-10的绝对值都是10,即|10| = 10,| -10 | = 10.显然|0|=0.
(来自《点拨》)
知1-讲
【例2】〈中考·镇江〉已知一个数的绝对值是4,则这 个数是___±__4___.
导 引 : 因 为 4= 4 , - 4= 4 , 所以绝对值等于4的数有 两个.
(来自《点拨》)
总结
知1-讲
直接求一个数的绝对值是一个解;若已知一个数的 绝对值,反过来求这个数,则有两个解.即如果|x|=a (a>0),则x=±a.
(来自《点拨》)
知1-练
1 (2015·连云港)数轴上表示-2的点与原点的距离是 ________.
2 (2015·恩施州)-5的绝对值是(
A.-5 B.- 1
C. 1
5
5
) D.5
(来自《典中点》)
知1-练
3
(2015·东营)
-
1 3
的相反数是(
1
A. 3
B.- 1
3
C.3
) D.-3
4 下列说法正确的是( )
当a是负数时,a _______ 0 ; 当a为任意有理数时,a _______ 0 .
(来自《典中点》)
2-讲
【例5】已知 a-2+b-1=0 ,求a、b的值.
导 引 : 因 为 | a - 2 | 和 | b - 1 | 都 是 非 负 数 , 所 以 | a - 2 | 0 , | b - 1 | 0 , 又 | a - 2 | + | b - 1 | = 0 , 所 以 a - 2 = 0 , b-1=0.
解 : 根 据 题 意 可 知 : a - 2 = 0 , b - 1 = 0 , 所 以 : a= 2 , b= 1.
(来自《点拨》)
总结
知2-讲
若几个非负数的和为0,则这几个数都为0.
(来自《点拨》)
知2-练
1 绝对值最小的数是________;绝对值最小的负整数 是________.
2 如果 a - 1 +|b-1|=0,那么a+b=( )
知1-讲
解 : 1515;00;- 33;- 3131;
44
22 2 2
- 4.54.5;55.
(来自《点拨》)
总结
知1-讲
求一个数的绝对值的方法:去掉绝对值符号时,必 须按照“先判后去”的原则,先判断这个数是正数、0或 负数,再根据绝对值的意义去掉绝对值符号,总之要确 保其结果为非负数且只有一个.
知1-讲
【例1】写出下列各数的绝对值:
1 5 ,0,- 3 ,- 3 1 ,-4.5,-5.
4
2
2
导引: 1 5 是 正 数 , 它 的 绝 对 值 是 它 本 身 ; 0的 绝 对 值 是 0, 4
- 3 , - 3 1 , - 4 .5 , - 5 都 是 负 数 , 它 们 的 绝 22
对 值 是 它 们 的 相 反 数 .
(2)如果a=0,那么 a = 0 ;
(3)如果a<0,那么 a = - a .
2.非负性:任何有理数的绝对值都是非负数,即 a 0 .
知2-讲
【例3】下列各式中无论m为何值,一定是正数的是
( C) A. m B. m + 1
C. m +1 D.-(-m)
导 引 : 选 项 A 中 当 m = 0 时 , 不 符 合 题 意 ; 选 项 B 中 当 m = -1时, m+1=0,不符合题意;选项D中-(-m)
1.2 有理数
第一章 有理数
第4课时 绝对值——绝对值 的定义和性质
1 课堂讲解 绝对值的定义 绝对值的性质
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
两辆汽车从同一处O出发,分别向东、西方向行驶 10 km,到达A,B两处(下图).它们的行驶路线相同吗? 它们的行驶路程相等吗?说说你的想法.
知识点 1 绝对值的定义
知1-讲
2.几何定义:一般地,数轴上表示数a的点与原点的距
离叫做数a的绝对值,记作 a .
3.代数定义:一个正数的绝对值是它本身;一个负数
的绝对值是它的相反数;0的绝对值是0;任意一个
数的绝对值为唯一非负数.
(a a> 0) ;
用式子表示为:a
(0
a= 0) ;
- (a a< 0).
=m显然不符合题意;选项C中,因为 m 0,
所 以 m + 1 1 , 符 合 题 意 .
(来自《点拨》)
知2-讲
【例4】已知 x-4+y+2=0 ,求x与y的相反数.
解 析 : 任 何 一 个 数 的 绝 对 值 都 是 非 负 数 , 所 以 x - 4 0 , y + 2 0 . 由 题 意 知 x - 4 = 0 , y + 2 = 0 . 解 方 程 求 出 x 与 y 的 值 , 再 求 这 两 个 数 的 相 反 数 即 可 .
2
A.- 1
B. 1
2
2
C. 3
D.1
2
(来自《典中点》)
知2-练
3 写出下列各式的值,并回答问题.
1 15 = ______,2.5 = _____,2 = _____;
3
2 -15 = ______,-2.5 = _____,- 2 = _____;
3
3由以上可以看出:当a 是正数时,a ______ 0 ;