传热大作业——服装中的传热学和建筑环境学

传热大作业——服装中的传热学和建筑环境学
传热大作业——服装中的传热学和建筑环境学

服装中的传热学和建筑环境学

一、服装中的传热学

传热学是一门应用性极强的基础学科,是研究由温差引起的热量传递规律的科学。热量传递是自然界和生产技术中一种非常普遍的现象。在能源动力、化学工业、建筑工程、纺织服装等行业中存在着大量的热量传递问题,而且常常起着关键作用。传热学已经成为现代科学技术中充满活力的主要基础学科之一。

人体始终处于新陈代谢过程中,只要人的生命在运转就需要不断的能量输入和代谢产物的排出。皮肤是代谢产物排到外界环境的一个重要路径,人体通过皮肤排出的代谢废物有油脂、汗(显汗、潜汗)、废气,以及不可见的热量散发等。织物制成服装覆盖在人体皮肤的表面,对于代谢产物的排出就形成了一道天然屏障,较之裸露的皮肤而言,在一定程度上阻碍了代谢产物及热量从皮肤表面排到外界环境中,其中影响最显著的就是汗,废气及热量的传递与排出。由此可见,传热学对于研究分析热量与水汽在织物或服装的传递具有十分重要的基础理论意义。

热量传递有三种基本形式:导热、对流和热辐射。下面分别对它们在服装舒适性理论研究中的应用思路及设想进行阐述。

1导热

导热是指同一物体内部,或两个相互接触的物体之间无相对位移时,由于存在温度差Δt,而依靠分子、原子、自由电子等微观粒子的

热运动产生的热量传递过程。

导热是日常生活中经常可以看到和感觉到的现象。人体内部组织与皮肤之间的热能传递(不括血流传热,血液流动传热属于对流散热),皮肤与衣服及座椅之间的热交换,人体表面与其周围边界层空气之间的热交换等都是导热。

1.1 导热系数

导热系数是指单位温度梯度作用下,物体内所产生的热流密度。习惯上把导热系数小的材料称为保温材料。多孔性结构的材料由于内含导热系数相对较小的气体,所以常有较好的保温效果。服装是由纤维、纱线以及织物组成的多重意义上的多孔材料,如果设计合理的导热系数,将会对人体着装舒适性有重要意义。另外,多孔材料的λ受湿度影响较大,水的导热系数明显大于空气的导热系数,如果人体运动出汗时,面料由于吸水变湿,人体散发的热量不易导出将会导致人体感觉热而不适。

1.2稳态导热

稳态导热指物体的温度不随时间变化而变化的导热过程。服装覆盖在人体皮肤的表面,不可避免地与皮肤之间形成一定的空气层,既便是紧紧地贴伏在皮肤上,由于服装是多孔介质,表面凹凸不平,名义上互相接触的皮肤与织物表面实际接触仅发生在一些离散的面积元上。在未接触的界面之间的间隙充满了空气,热量以导热及辐射的方式穿过这些空气及织物层。在某一定环境条件下,人体皮肤维持在33℃的恒温,热量的传递是不变的,亦即在人体皮肤到服装之间的微

气候的温度梯度是恒定的,从织物接触皮肤的一侧到织物接触外界一侧的温度梯度也是恒定的,整个导热过程处于稳态。由于空气和织物热性能之间存在着较大的差异,利用导热原理分析透过服装的热量传递就必须分为对微气候和织物两个部分的分析。

1.3非稳态导热

非稳态导热指物体的温度随时间变化而变化的导热过程。根据物体温度随着时间的推移而变化的特性分为两类:物体的温度随时间的推移逐渐趋近于恒定的值及物体的温度随时间而作周期性的变化。当人从一个温度环境到另一个温度环境后,在一定的时间范围内,从皮肤到外界环境的导热为非稳态导热。人体透过服装热量的传递在外界环境无对流、无辐射的前提下基本上可认为是一维传递。这个传递过程最终达到平衡即稳态导热。在寒冷的冬天人们从气温极低的室外进入温暖的室内,或者在炎热的夏季从高温的室外进入凉爽的空调房间,都会引起环境温度的骤变。因此,分析环境温度骤变的情况下,在人体———环境———服装系统中,温度梯度在微气候及织物中的变化具有实际意义。

2 对流换热

对流是指由于流体的宏观运动,从而流体各部分之间发生相对位移、冷热流体相互掺混所引

起的热量传递过程。工程上特别感兴趣的是流体流过一个物体表面时的热量传递过程,并称之为对流换热。对流换热过程的热量传递由两种作用(对流、导热)复合而成。

2.1 温度边界层

温度边界层即在固体表面附近流体温度发生剧烈变化的薄层。穿着服装的表面也有边界层。在外界环境无风或风速较小的状态下,边界层稍厚。在风速达到一定程度后,边界层随着风速的提高逐渐变薄。尽管边界层很薄,但织物外表面的温度必须经过边界层温度梯度的变化才能达到真正的外界环境温度。边界层的提出对于对流换热问题的分析求解也起到很大的作用。因此,要综合分析热量在人体———环境———服装整个系统中的传递,就必须考虑边界层在热量传递中的作用。

2.2自然对流换热

不依靠外力推动,由流体自身温度场的不均匀所引起的流动称为自然对流。自然对流换热包括有限空间和无限空间这两种形式。处于自然对流状态的空气因流速较低,所以,传热量较小。人体与服装之间以及服装夹层中微气候的对流换热问题均可视为有限空间自然对流换热来分析。夹层内流体的流动,主要取决于以夹层厚度为特征长度的格拉晓夫数Gr(是浮升力与粘性力的一种度量)。当Gr 极低时,换热依靠纯导热。随着Gr 的提高,会依次出现向层流特征过渡的流动(环流)、层流特征的流动、湍流特征的流动。此外,除了自然对流以外,夹层的热量传递有时还有辐射换热,此时通过夹层的换热量应是两者之和。

2.3强制对流换热

由于有外力的作用,强制对流的流速一般都比较高,传热速度高,

传热量大。对于人体运动或在有风的条件下产生的强制对流现象,可采用流体横掠圆管的分析方法进行分析。所谓横掠圆管,就是流体沿着垂直于管子轴线的方向流过管子表面。流体横掠圆管,除了具有边界层特征外,还要发生绕流脱体,而产生回流、漩涡、涡束。脱体起点位置,取决于雷诺数Re的大小。

我们可把着装的人体抽象为五个圆管(躯干和四肢)。对于人体运动或在有风条件下的舒适性研究,就可看作横掠圆管的外部强制对流换热。

2.4 相变换热

蒸汽遇冷凝结、汗液受热蒸发也属于对流换热的范围。与单相流体的对流换热相比,它们有一个新特点,即都是伴随有相变的对流换热。

服装微气候中的水蒸汽在向外界环境扩散的过程中,若外部环境温度低于水蒸汽的饱和温度,便会在服装的内表面以及服装中纱线和纤维上产生凝结,由于服装面料为多孔介质,凝结液体不可能在壁面铺展成膜,形成珠状凝结。凝结放出相变热,同时形成的珠状凝结在一定程度上阻碍了热量的传递。

皮肤表面积聚液态汗时,汗液一部分以液态的形式通过接触传输传递到外界环境中,另一部分则蒸发以气态的形式透过纤维和纱线的孔隙传递到大气中。汗液由液态转变为气态,蒸发吸收相变热。因此,水分蒸发可以起到散发体热、降低体温的作用。

3 辐射换热

当原子内部电子受激和振动时,产生交替变化的电场和磁场,发出电磁波向空间传播,这种以电磁波的形式传递能量的过程,称为辐射。由于热的原因而产生的电磁波辐射称为热辐射。当热辐射的能量投射到物体表面上时,发生吸收、反射和穿透现象。热辐射对服装材料的投射作用结果有三种:热辐射的一部分从材料表面被反射掉;一部分被吸收到材料内部中去;剩余部分透过。我们可以根据不同的环境,通过改变材料的性质来加强或减弱某种作用。例如从防暑角度来说,应尽量加大热反射,减少吸收及透过。热的反射与服装材料的表面状态有密切关系,表面光滑则反射较大;吸热程度与服装材料的颜色有很大关系,通常染色布比白色布吸热量多。在夏天,人们喜欢穿白色或浅色衣服的原理也在此。另外,空腔与内包壁面间的辐射换热,可用来模拟说明人体着装时,外层服装通过微气候与人体皮肤间的辐射换热情况。

二、服装中的建筑环境学

人体对热湿环境的反应理论是建筑环境学中的一个知识模块,目前,对于服装舒适性的研究主要集中在热湿舒适性方面,下面就来看看服装热湿舒适性评价方法研究。

1织物舒适性客观评价方法的研究现状

1.1织物热阻值和透气率对服装舒适性的影响

织物的热阻值和透气率对服装的穿着舒适性是有一定影响的,好的热绝缘体具有高的热阻值,能够起到较好的保温作用。而透气率高的面料透气性好,能够加速外界与服装内气候的气体交换。

1.2吸湿性芯吸能力干燥速度及延伸性

所谓吸湿性是指织物表面对液态水的吸收速率,人体出汗时汗液如果不能被织物及时吸收,人体会感到不适,因此吸湿性是评价织物热湿舒适性的重要指标之一。芯吸能力是指所吸入的液态水在织物表面的扩散速度,一般来说芯吸力高的织物干燥速度快,织物将汗液从皮肤表面排到外界的速度快。延伸性是衡量服装舒适性的又一重要因素。延伸性好的织物可以有效地减小服装与人体的阻力,使衣物更具随意性和柔顺性,增加穿着的舒适感。

1.3保暖性

服装材料的保暖性是指材料阻止空气通过的能力,也就是阻止材料两面空气热交换的能力。冬装(包括严寒地区穿的服装)要有较强的保暖性,以防止人体被冻伤。服装材料的保暖性取决于纤维、纱线的结构,面料的厚度、疏密等,也就是取决于它们所含静止(不能流动的)空气的多少。例如:棉纤维有中腔,其中含有较多的静止空气;而羊毛纤维外面有较多的鳞片层,在鳞片层和皮质层之间含有较多的静止空气;腈纶纤维卷曲,富含静止空气;以及近几年开发出来的多孔棉,都是通过增加含气性来提高保暖性的,因此它们都有较好的保暖性。

1.4透气性

透气性是指气体透过织物的能力。因为人体皮肤每时每刻在进行呼吸,和外界进行气体的交换,时刻都有皮屑脱落、汗脂排出。从卫生学角度来说,服装材料的透气性,有利于面料内外气体的交换,有利于人体皮肤的新陈代谢。

1.5柔软、光滑度

柔软、光滑度是指服装面料对人体皮肤的触觉舒适性。面料越柔软光滑,人体感觉越舒适。尤其是内衣、睡衣以及其他紧贴肌肤的服装,柔软感是非常重要的。织物的柔软度与纤维品种、纱线的捻度、织物的组织和后整理等都有关系。如棉、丝天然织物,纱线的捻度越小,织物的组织越疏松,织物也就越柔软。经过起毛(绒)整理和柔软整理的织物也都较柔软。纤维刚性强,纱线捻度过大等都会使服装材料表面粗糙不光滑,容易造成皮肤的刺痒感,服装舒适性就降低。

1.6伸缩性

织物受外力作用后被拉伸,去除外力后能够恢复到原状态的能力称为伸缩性。服用织物应该具有一定的伸缩性,以有利于人体的基本活动。为了提高伸缩性,运动装、内衣等多采用氨纶弹力织物。氨纶在织物中大多是以包芯纱的形式出现的。利用特殊方式制成的化纤高弹织物也具有较好的伸缩性,使服装具有最佳的人体舒适弹性。

1.7化学性能因素

化学纤维与天然纤维相比,对人体舒适性的影响较大。不同的纤维纺成纱线,织成织物后,还需

经一定的后处理及服装加工后才能到消费者手里,其间要使用一定的化学物质,经过染色、印花、后整理等过程。这些化学物质中有些对人体健康有一定的影响。服装材料应尽量选择天然纤维材料,特别是“绿色”纺织产品(如天然彩棉,不需染色,从而避免与化学染料的接触;罗布麻是绿色卫生保健的天然纤维材料),尽量选择不含或较少

含化学物质和较少经过化学整理的材料。有时人体排泄出的汗液与染料作用,也会对人体皮肤产生一定的影响,而使服装的舒适性降低。

1.8面料热量水分子移动特性对面料穿着舒适性的影响

服装的保暖性能随着风速、服装内湿度的变化而变化。也就是说面料的热量及水分子移动方式对服装穿着时的凉爽度、温暖度有很大影响。日本有关专家通过KES-F7装置对面料的热量、水分子移动方式特性进行研究,主要测试接触冷暖感、定长热导率及保温性能,以此来评价面料性能。

1. 9服装微气候评价法

原田隆司等人指出了服装小气候的概念,他认为在环境-衣服-人体系统中,把视点放在实际生活中各种环境条件下衣服的状况上,与此对应进行体温、耗氧量、出汗量等生理学方面的研究,其重点是人体之调节功能。在原田的这一理论基础上,许多学者把服装微气候作为研究热湿舒适性的基础,通过微气候仪等工具测量织物与模拟皮肤之间气候区的温度、湿度变化来反映织物对人体舒适感的影响。

2服装热湿舒适性主观评价方法研究现状

2.1生理学评价法

服装生理学评价法是指通过人体在特定的活动水平和环境下,以穿着不同类型的服装对人体生理参数变化来评价服装舒适性的一种客观方法,是服装功效学的主要手段之一。其评价指标主要有:体温、代谢热量、出汗量、心率、血压等等。目前对人体出汗量方面的研究已经取得了一些进展。但是有人认为生理学方法可重复性差。

2.2心理学评价方法

心理学评价法即主观感觉评价法,在服装热湿舒适性的评价中,实验室服装穿着实验是直接将服装与人体主观感受联系的一种测试方法。此种测量方法通过制定调查问卷、舒适性等级分级方法,记录受测试者的主观感受,并通过统计的分析方法予以分析,从而得出结果的方法。但是由于受测试者在评价服装时个体间存在一定的感觉差异,前期研究认为个体间的感觉差异很大,对于服装舒适性评价会有明显的影响。但是从目前看来,这种方法的应用还是十分广泛的,大部分的研究都会用到。然而,调查问卷的问题设置很可能会对受测试者产生心理暗示,影响试验数据。舒适性等级分级主观标尺怎样才最科学,人体感觉的灵敏度到底是怎样的程度都有待研究。因此,它只是对客观评价方法的补充及检验。

传热学数值计算大作业2014011673

数值计算大作业 一、用数值方法求解尺度为100mm×100mm 的二维矩形物体的稳态导热问题。物体的导热系数λ为1.0w/m·K。边界条件分别为: 1、上壁恒热流q=1000w/m2; 2、下壁温度t1=100℃; 3、右侧壁温度t2=0℃; 4、左侧壁与流体对流换热,流体温度tf=0℃,表面传热系数 h 分别为1w/m2·K、10 w/m2·K、100w/m2·K 和1000 w/m2·K; 要求: 1、写出问题的数学描述; 2、写出内部节点和边界节点的差分方程; 3、给出求解方法; 4、编写计算程序(自选程序语言); 5、画出4个工况下的温度分布图及左、右、下三个边界的热流密度分布图; 6、就一个工况下(自选)对不同网格数下的计算结果进行讨论; 7、就一个工况下(自选)分别采用高斯迭代、高斯——赛德尔迭代及松弛法(亚松弛和超松弛)求解的收敛性(cpu 时间,迭代次数)进行讨论; 8、对4个不同表面传热系数的计算结果进行分析和讨论。 9、自选一种商业软件(fluent 、ansys 等)对问题进行分析,并与自己编程计算结果进行比较验证(一个工况)。(自选项) 1、写出问题的数学描述 设H=0.1m 微分方程 22220t t x y ??+=?? x=0,0

y=H ,0

高等传热学作业

1-4、试写出各向异性介质在球坐标系)(?θ、、r 中的非稳态导热方程,已知坐标为导热系数主轴。 解:球坐标微元控制体如图所示: 热流密度矢量和傅里叶定律通用表达式为: →→→??+??+??-=?-=k T r k j T r k i r T k T k q r ? θθ?θsin 11' ' (1-1) 根据能量守恒:st out g in E E E E ? ???=-+ ?θθρ?θθ??θθ?θd drd r t T c d drd r q d q d q dr r q p r sin sin 2 2??=+??-??-??-? (1-2) 导热速率可根据傅里叶定律计算: ?θθd r rd t T k q r r sin ???-= ?θθθθd r dr T r k q sin ???-= (1-3) θ? θ? ?rd dr T r k q ???- =sin 将上述式子代入(1-4-3)可得到 ) 51(sin sin )sin ()sin (sin )(222-??=+??????+??????+?????????θθρ?θθ?θ?θ??θθθθ?θθ?θd drd r t T c d drd r q d rd dr T r k rd d dr T r k d d dr r T r k r p r 对于各向异性材料,化简整理后可得到: t T c q T r k T r k r T r r r k p r ??=+??+????+?????ρ?θθθθθ?θ2 222222sin )(sin sin )( (1-6)

2-3、一长方柱体的上下表面(x=0,x=δ)的温度分别保持为1t 和2t ,两侧面(L y ±=)向温度为1t 的周围介质散热,表面传热系数为h 。试用分离变量法求解长方柱体中的稳态温度场。 解:根据题意画出示意图: (1)设f f f t t t t t t -=-=-=2211,,θθθ,根据题意写出下列方程组 ????? ??? ?? ?=+??==??======??+??00 000212222θθ λθθθδθθθ θh y L y y y x x y x (2-1) 解上述方程可以把θ分解成两部分I θ和∏θ两部分分别求解,然后运用叠加原理∏+=θθθI 得出最终温度场,一下为分解的I θ和∏θ两部分:

哈工程传热学数值计算大作业

传热学 二维稳态导热问题的数值解法 杨达文2011151419 赵树明2011151427 杨文晓2011151421 吴鸿毅2011151416

第一题: a=linspace(0,0.6,121); t1=[60+20*sin(pi*a/0.6)]; t2=repmat(60,[80 121]); s=[t1;t2]; %构造矩阵 for k=1:10000000 %理论最大迭代次数,想多大就设置多大S=s; for j=2:120 for i=2:80 S(i,j)=0.25*(S(i-1,j)+S(i+1,j)+S(i,j-1)+S(i,j+1)); end end if norm(S-s)<0.0001 break; %如果符合精度要求,提前结束迭代else s=S; end end S %输出数值解 数值解数据量太大,这里就不打印出来,只画出温度分布。 画出温度分布: figure(1) xx=linspace(0,0.6,121); yy=linspace(0.4,0,81); [x,y]=meshgrid(xx,yy); surf(x,y,S) axis([0 0.6 0 0.4 60 80]) grid on xlabel('L1') ylabel('L2') zlabel('t(温度)')

.60.66666777778L 1 L 2t (温度)

A0=[S(:,61)]; for k=1:81 B1(k)=A0(81-k+1); end B1 %x=L1/2时y方向的温度 A1=[S(41,:)] %y=L2/2时x方向的温度 x=0:0.005:0.6; y=0:0.005:0.4; A2=60+20*sin(pi*x/0.6)*((exp(pi*0.2/0.6)-exp(-pi*0.2/0.6))/2)/((exp(pi*0.4/0.6)-exp(-pi*0.4/0.6) )/2) %计算y=L2/2时x方向的解析温度 B2=60+20*sin(pi*0.3/0.6)*((exp(pi*y/0.6)-exp(-pi*y/0.6))/2)/((exp(pi*0.4/0.6)-exp(-pi*0.4/0.6))/ 2) %计算x=L1/2时y方向的解析温度 figure(2) subplot(2,2,1); plot(x,A1,'g-.',x,A2,'k:x'); %画出x=L1/2时y方向的温度场、画出x=L1/2时y方向的解析温度场曲线 xlabel('L1');ylabel('t温度'); title('y=L2/2'); legend('数值解','解析解'); subplot(2,2,2); plot(x,A1-A2); %画出具体温度场与解析温度场的差值曲线 xlabel('L1');ylabel('差值'); title('y=L2/2时,比较=数值解-解析解'); subplot(2,2,3); plot(y,B1,'g-.',y,B2,'k:x'); %画出y=L2/2时x方向的温度场、画出y=L2/2时x方向的解析温度场曲线 xlabel('L2');ylabel('t温度'); title('x=L1/2'); legend('数值解','解析解'); subplot(2,2,4); plot(y,B1-B2); %画出具体温度场与解析温度场的差值曲线 xlabel('L2');ylabel('差值'); title('x=L1/2时,比较=数值解-解析解'); y=L2/2时x方向的温度: 60 60.1635347276130 60.3269574318083 60.4901561107239 60.6530189159961 60.8154342294146 60.9772907394204 61.1384775173935 61.2988840936779 61.4584005332920 61.6169175112734 61.7743263876045 61.9305192816696 62.0853891461909 62.2388298405943 62.3907362037523 62.5410041260577 62.6895306207746 62.8362138946214 62.9809534175351 63.1236499915702 63.2642058188844 63.4025245687647 63.5385114436490 63.6720732440951 63.8031184326565 63.9315571966177 64.0573015095482 64.1802651916318 64.3003639687311 64.4175155301449 64.5316395850212 64.6426579173846 64.7504944397430 64.8550752452343 64.9563286582797 65.0541852837075

传热学大作业报告 二维稳态导热

传热学大作业报告二维稳态计算 院系:能源与环境学院 专业:核工程与核技术 姓名:杨予琪 学号:03311507

一、原始题目及要求 计算要求: 1. 写出各未知温度节点的代数方程 2. 分别给出G-S 迭代和Jacobi 迭代程序 3. 程序中给出两种自动判定收敛的方法 4. 考察三种不同初值时的收敛快慢 5. 上下边界的热流量(λ=1W/(m ℃)) 6. 绘出最终结果的等值线 报告要求: 1. 原始题目及要求 2. 各节点的离散化的代数方程 3. 源程序 4. 不同初值时的收敛快慢 5. 上下边界的热流量(λ=1W/(m ℃)) 6. 计算结果的等温线图 7. 计算小结 二、各节点的离散化的代数方程 左上角节点 )(21 1,22,11,1t t t +=

右上角节点 )(2 15,24,15,1t t t += 左下角节点 C t ?=1001,5 右下角节点 )2(211,24,55,5λ λ x h t t x h t ?++?+= 左边界节点 C t i ?=1001,,42≤≤i 上边界节点 C t j ?=200,1,42≤≤j 右边界节点 )2(415,15,14,5,+-++= i i i i t t t t ,42≤≤i 下边界节点 )42()2(211,51,5,4,5∞+-?+++?+=t x h t t t x h t j j j j λλ ,42≤≤j 内部节点 )(2 1,1,11,1,,j i j i j i j i j i t t t t t +-+-+++= ,4,2≤≤j i 三、源程序 1、G-S 迭代法 t=zeros(5,5); t0=zeros(5,5); dteps=0.0001; for i=2:5 %左边界节点 t(i,1)=100; end for j=2:4 %上边界节点 t(1,j)=200; end t(1,1)=(t(1,2)+t(2,1))/2; t for k=1:100 for i=2:4 %内部节点 for j=2:4 t(i,j)=(t(i-1,j)+t(i+1,j)+t(i,j-1)+t(i,j+1))/4; end end t(1,5)=(t(1,4)+t(2,5))/2;%右上角节点 for i=2:4;%右边界节点 t(i,5)=(2*t(i,4)+t(i-1,5)+t(i+1,5))/4; end for j=2:4; %下边界节点

传热学作业

沈阳航空航天大学 预测燃气涡轮燃烧室出口温度场 沈阳航空航天大学 2013年6月28日

计算传热学 图1模型结构和尺寸图 1.传热过程简述 计算任务是用计算流体力学/计算传热学软件Fluent求解通有烟气的法兰弯管包括管内烟气流体和管壁固体在内的温度分布,其中管壁分别采用薄壁和实体壁两种方法处理。在进行分析时要同时考虑导热、对流、辐射三种传热方式。 (1) 直角弯管内外壁面间的热传导。注意:如果壁面按薄壁处理时,则不用考虑此项,因为此时管壁厚度忽略不计,内壁和外壁温度相差几乎为零。 (2) 管道外壁面与外界环境发生的自然对流换热。由于流体浮生力与粘性力对自然对流的影响,横管与竖管对流换热系数略有不同的。计算公式也不一样。同时,管道内壁面同烟气发生的强制对流换热。 (3) 管道外壁和大空间(环境)发生辐射换热 通过烟气温度和流量,我们可以推断出管道内烟气为湍流流动。这在随后的模

沈阳航空航天大学 拟计算中可以得到证实。 2.计算方案分析 2.1 控制方程及简化 2.1.1质量守恒方程: 任何流动问题都要满足质量守恒方程,即连续方程。其积分形式为: 0vol A dxdydz dA t ρρ?+=?????? 式中,vol 表示控制体;A 表示控制面。第一项表示控制体内部质量的增量,第二项表示通 过控制面的净通量。 直角坐标系中的微分形式如下: ()()()0u v w t x y z ρρρρ????+++=???? 上式表示单位时间内流体微元体中质量的增加,等于同一时间段内流入该微元体的净增量。 对于定常不可压缩流动,密度ρ为常数,该方程可简化为 0u v w x y z ???++=??? 2.1.2动量守恒方程: 动量守恒方程也是任何流动系数都必须满足的基本定律。数学式表示为: F m dv dt δδ= 流体的粘性本构方程得到直角坐标系下的动量守恒方程,即N-S 方程: ()()()u u p div Uu div gradu S t x ρρμ??+=+-?? ()()()v v p div Uv div gradv S t y ρρμ??+=+-?? ()()()w w p div Uw div gradw S t z ρρμ??+=+-?? 该方程是依据微元体中的流体的动量对时间的变化率等于外界作用在该微元体上的各种力之和。式中u S 、v S 、w S 是动量方程中的广义源项。和前面方程一样上式

传热学第五版课后习题答案(1)

传热学习题_建工版V 0-14 一大平板,高3m ,宽2m ,厚,导热系数为45W/, 两侧表面温度分别为 w1t 150C =?及w1t 285C =? ,试求热流密度计热流量。 解:根据付立叶定律热流密度为: 2 w2w121t t 285150q gradt=-4530375(w/m )x x 0.2λλ??--??=-=-=- ? ?-???? 负号表示传热方向与x 轴的方向相反。 通过整个导热面的热流量为: q A 30375(32)182250(W)Φ=?=-??= 0-15 空气在一根内经50mm ,长米的管子内流动并被加热,已知空气的平均温度为85℃,管壁对空气的h=73(W/m 2.k),热流密度q=5110w/ m 2, 是确定管壁温度及热流量?。 解:热流量 qA=q(dl)=5110(3.140.05 2.5) =2005.675(W) πΦ=?? 又根据牛顿冷却公式 w f hA t=h A(t t )qA Φ=??-= 管内壁温度为:

w f q5110 t t85155(C) h73 =+=+=? 1-1.按20℃时,铜、碳钢(%C)、铝和黄铜导热系数的大小,排列它们的顺序;隔热保温材料导热系数的数值最大为多少列举膨胀珍珠岩散料、矿渣棉和软泡沫塑料导热系数的数值。 解: (1)由附录7可知,在温度为20℃的情况下, λ铜=398 W/(m·K),λ碳钢=36W/(m·K), λ铝=237W/(m·K),λ黄铜=109W/(m·K). 所以,按导热系数大小排列为: λ铜>λ铝>λ黄铜>λ钢 (2) 隔热保温材料定义为导热系数最大不超过 W/(m·K). (3) 由附录8得知,当材料的平均温度为20℃时的导热系数为: 膨胀珍珠岩散料:λ=+ W/(m·K) =+×20= W/(m·K); 矿渣棉: λ=+ W/(m·K) =+×20= W/(m·K);

生活中的传热学(问答题整理答案)

硕士研究生《高等工程热力学与传热学》作业 查阅相关资料,回答以下问题: 1、一滴水滴到120度和400度的板上,哪个先干?试从传热学的角度分析? 答:在大气压下发生沸腾换热时,上述两滴水的过热度分别是△ t=tw–ts=20℃和△t=300℃,由大容器饱和沸腾曲线,前者表面发生的是泡态沸腾,后者发生膜态沸腾。虽然前者传热温差小,但其表面传热系数大,从而表面热流反而大于后者。所以水滴滴在120℃的铁板上先被烧干。 2、锅铲、汤勺、漏勺、铝锅等炊具的柄用木料制成,为什么? 答:是因为木料是热的不良导体,以便在烹任过程中不烫手。 3、滚烫的砂锅放在湿地上易破裂。为什么? 答:这是因为砂锅是热的不良导体, 如果把烧得滚热的砂锅,突然放到潮湿或冷的地方,砂锅外壁的热就很快地被传掉,而壁的热又一下子传不出来,外壁冷却很快的收缩,壁却还很热,没什么收缩,加以瓷特别脆,所以往往裂开。 或者:烫砂锅放在湿地上时,砂锅外壁迅速放热收缩而壁温度降低慢,砂锅外收缩不均匀,故易破裂。 4、往保温瓶灌开水时,不灌满能更好地保温。为什么? 答:因为未灌满时,瓶口有一层空气,是热的不良导体,能更好地防止热量散失。

5、煮熟后滚烫的鸡蛋放入冷水中浸一会儿,容易剥壳。为什么? 答:因为滚烫的鸡蛋壳与蛋白遇冷会收缩,但它们收缩的程度不一样,从而使两者脱离。 6、用焊锡的铁壶烧水,壶烧不坏,若不装水,把它放在火上一会儿就烧坏了。为什么? 答:这是因为水的沸点在1标准大气压下是100℃,锡的熔点是232℃,装水烧时,只要水不干,壶的温度不会明显超过100℃,达不到锡的熔点,更达不到铁的熔点,故壶烧不坏.若不装水在火上烧,不一会儿壶的温度就会达到锡的熔点,焊锡熔化,壶就烧坏了。 7、冬壶里的水烧开后,在离壶嘴一定距离才能看见“白气”,而紧靠壶嘴的地方看不见“白气”。这是因为紧靠壶嘴的地方温度高,壶嘴出来的水蒸气不能液化,而距壶嘴一定距离的地方温度低;壶嘴出来的水蒸气放热液化成小水滴,即“白气”。 答:这是因为紧靠壶嘴的地方温度高,壶嘴出来的水蒸气不能液化,而距壶嘴一定距离的地方温度低;壶嘴出来的水蒸气放热液化成小水滴,即“白气”。 8、某些表演者赤脚踩过炽热的木炭,从传热学角度解释为何不会烫伤?不会烫伤的基本条件是什么? 答:因为热量的传递和温度的升高需要一个过程,而表演者赤脚接触炽热木炭的时间极短,因此在这个极短的时间传递的温度有限,不足以达到令人烫伤的温度,所以不会烫伤。 基本条件:表演者接触炽热木炭的时间必须极短,以至于在这段时间所传递的热量不至于达到灼伤人的温度

西安交通大学传热学大作业二维温度场热电比拟实验1

二维导热物体温度场的数值模拟

一、物理问题 有一个用砖砌成的长方形截面的冷空气通道, 于纸面方向上用冷空气及砖墙的温度变化很小, 可以近似地予以忽略。 在下列两种情况下试计算: 砖墙横截面上的温度分布;垂直于纸面方向的每 米长度上通过砖墙的导热量。 第一种情况:内外壁分别均匀维持在 0℃及 30℃; 第二种情况:内外壁均为第三类边界条 件, 且已知: t 1 30 C,h 1 10.35W / m 2 K 2 t 2 10 C, h 2 3.93W / m 2 K 砖墙导热系数 0.35/ m K 二、数学描写 由对称的界面必是绝热面, 态、无内热源的导热问题。 控制方程: 22 tt 22 xy 边界条件: 第一种情况: 由对称性知边界 1 绝热: 边界 2 为等温边界,满足第一类边界条件: t w 0 C ; 边界 3 为等温边界,满足第一类边界条件: t w 30 C 。 第一种情况: 由对称性知边界 1 绝热: q w 0; 边界 2 为对流边界,满足第三类边界条件: q w ( t )w h 2(t w 可取左上方的四分之一墙角为研究对象, 该问题为二维、 稳 图1-

t f ); n t 边界3 为对流边界,满足第三类边界条件:q w ( ) w h 2 (t w t f )。 w n w 2 w f

0,m 6,n 1~ 7;m 7 ~ 16,n 7 30,m 1,n 1~12;m 2 ~ 16,n 12 三、方程离散 用一系列与坐标轴平行的间隔 0.1m 的二维网格线 将温度区域划分为若干子区域,如图 1-3 所示。 采用热平衡法, 利用傅里叶导热定律和能量守恒定 律,按照以导入元体( m,n )方向的热流量为正,列写 每个节点代表的元体的代数方程, 第一种情况: 边界点: 1 边界 绝热边界) : 边界 图1-3 t m ,1 t 16,n 等温内边界) : 14 (2t m,2 1 4 (2t 15,n t m 1,1 t m 1,1),m 2 ~ 5 t 16,n 1 t 16,n 1), n 8 ~ 11 边界 等温外边界) : 内节 点: 1 (t t t t ) 4 m 1,n m 1,n m ,n 1 m,n 1 m 2 ~ 5,n 2 ~11;m 6 ~ 15,n 8 ~ 11 t m,n 第二种情况 边界点: 边界 1(绝热边界) : t m ,1 1 4 (2t m,2 t m 1,1 t m 1,1),m 2 ~ 5 t 16,n 1 4 (2t 15,n t 16,n 1 t 16,n 1), n 8 ~11 4 边界 2(内对流边界) : t6,n 2t 5,n t 6,n 1 t 6,n 1 2Bi 1t 1 ,n 1~ 6 6,n 2(Bi 2) t m,n t m,n

计算传热学中国石油大学(华东)第四章大作业

取步长δx=0.02。已知x=0,Φ=0;x=1,Φ=1.令k=ρu/Γ计算结果图表: 程序及数据结果: 追赶法: #include #include #include #define N 49 void tdma(float a[],float b[],float c[],float f[],float x[]); void main(void) { int i; float x[49]; float k; printf("请输入k值:\n",k); scanf("%f",&k); static float a[N],b[N],c[N],f[N]; a[0]=0; a[48]=2+0.02*k; b[0]=4; b[48]=4; c[0]=2-0.02*k; c[48]=0; f[0]=0; f[48]=2-0.02*k; for(i=1;i

a[i]=2+0.02*k; b[i]=4; c[i]=2-0.02*k; f[i]=0; } tdma(a,b,c,f,x); for(i=0;i=0;i--) x[i]=P[i]*x[i+1]+Q[i]; return; } 结果: (1)k=-5 请输入k值: -5 x[0]=0.095880 x[1]=0.182628 x[2]=0.261114 x[3]=0.332126 x[4]=0.396375 x[5]=0.454504 x[6]=0.507098 x[7]=0.554683 x[8]=0.597736 x[9]=0.636688 x[10]=0.671931 x[11]=0.703818 x[12]=0.732667 x[13]=0.758770

传热学习题及参考答案

《传热学》复习题 一、判断题 1.稳态导热没有初始条件。() 2.面积为A的平壁导热热阻是面积为1的平壁导热热阻的A倍。() 3.复合平壁各种不同材料的导热系数相差不是很大时可以当做一维导热问题来处理() 4.肋片应该加在换热系数较小的那一端。() 5.当管道外径大于临界绝缘直径时,覆盖保温层才起到减少热损失的作用。() 6.所谓集总参数法就是忽略物体的内部热阻的近视处理方法。() 7.影响温度波衰减的主要因素有物体的热扩散系数,波动周期和深度。() 8.普朗特准则反映了流体物性对换热的影响。() 9. 傅里叶定律既适用于稳态导热过程,也适用于非稳态导热过程。() 10.相同的流动和换热壁面条件下,导热系数较大的流体,对流换热系数就较小。() 11、导热微分方程是导热普遍规律的数学描写,它对任意形状物体内部和边界都适用。( ) 12、给出了边界面上的绝热条件相当于给出了第二类边界条件。 ( ) 13、温度不高于350℃,导热系数不小于0.12w/(m.k)的材料称为保温材料。 ( ) 14、在相同的进出口温度下,逆流比顺流的传热平均温差大。 ( ) 15、接触面的粗糙度是影响接触热阻的主要因素。 ( ) 16、非稳态导热温度对时间导数的向前差分叫做隐式格式,是无条件稳定的。 ( ) 17、边界层理论中,主流区沿着垂直于流体流动的方向的速度梯度零。 ( ) 18、无限大平壁冷却时,若Bi→∞,则可以采用集总参数法。 ( ) 19、加速凝结液的排出有利于增强凝结换热。 ( ) 20、普朗特准则反映了流体物性对换热的影响。( ) 二、填空题 1.流体横向冲刷n排外径为d的管束时,定性尺寸是。 2.热扩散率(导温系数)是材料指标,大小等于。 3.一个半径为R的半球形空腔,空腔表面对外界的辐射角系数为。 4.某表面的辐射特性,除了与方向无关外,还与波长无关,表面叫做表面。 5.物体表面的发射率是ε,面积是A,则表面的辐射表面热阻是。 6.影响膜状冷凝换热的热阻主要是。

西安交通大学传热学大作业

《传热学》上机大作业 二维导热物体温度场的数值模拟 学校:西安交通大学 姓名:张晓璐 学号:10031133 班级:能动A06

一.问题(4-23) 有一个用砖砌成的长方形截面的冷空气通道,形状和截面尺寸如下图所示,假设在垂直纸面方向冷空气和砖墙的温度变化很小,差别可以近似的予以忽略。在下列两种情况下计算:砖墙横截面上的温度分布;垂直于纸面方向上的每米长度上通过墙砖上的导热量。 第一种情况:内外壁分别维持在10C ?和30C ? 第二种情况:内外壁与流体发生对流传热,且有C t f ?=101, )/(2021k m W h ?=,C t f ?=302,)/(422k m W h ?=,K m W ?=/53.0λ

二.问题分析 1.控制方程 02222=??+??y t x t 2.边界条件 所研究物体关于横轴和纵轴对称,所以只研究四分之一即可,如下图: 对上图所示各边界: 边界1:由对称性可知:此边界绝热,0=w q 。 边界2:情况一:第一类边界条件 C t w ?=10 情况二:第三类边界条件

)()( 11f w w w t t h n t q -=??-=λ 边界3:情况一:第一类边界条件 C t w ?=30 情况二:第三类边界条件 )()( 22f w w w t t h n t q -=??-=λ 三:区域离散化及公式推导 如下图所示,用一系列和坐标抽平行的相互间隔cm 10的网格线将所示区域离散化,每个交点可以看做节点,该节点的温度近似看做节点所在区域的平均温度。利用热平衡法列出各个节点温度的代数方程。 第一种情况: 内部角点:

传热学第五版课后习题答案

如对你有帮助,请购买下载打赏,谢谢! 传热学习题_建工版V 0-14 一大平板,高3m ,宽2m ,厚0.2m ,导热系数为45W/(m.K), 两侧表面温度分别为w1t 150C =?及w1t 285C =? ,试求热流密度计热流量。 解:根据付立叶定律热流密度为: 负号表示传热方向与x 轴的方向相反。 通过整个导热面的热流量为: 0-15 空气在一根内经50mm ,长2.5米的管子内流动并被加热,已知空气的平均温度为85℃,管壁对空气的h=73(W/m2.k),热流密度q=5110w/ m2, 是确定管壁温度及热流量?。 解:热流量 又根据牛顿冷却公式 管内壁温度为: 1-1.按20℃时,铜、碳钢(1.5%C )、铝和黄铜导热系数的大小,排列它们的顺序;隔热保温材料导热系数的数值最大为多少?列举膨胀珍珠岩散料、矿渣棉和软泡沫塑料导热系数的数值。 解: (1)由附录7可知,在温度为20℃的情况下, λ铜=398 W/(m·K),λ碳钢=36W/(m·K), λ铝=237W/(m·K),λ黄铜=109W/(m·K). 所以,按导热系数大小排列为: λ铜>λ铝>λ黄铜>λ钢 (2) 隔热保温材料定义为导热系数最大不超过0.12 W/(m·K). (3) 由附录8得知,当材料的平均温度为20℃时的导热系数为: 膨胀珍珠岩散料:λ=0.0424+0.000137t W/(m·K) =0.0424+0.000137×20=0.04514 W/(m·K); 矿渣棉: λ=0.0674+0.000215t W/(m·K) =0.0674+0.000215×20=0.0717 W/(m·K); 由附录7知聚乙烯泡沫塑料在常温下, λ=0.035~0. 038W/(m·K)。由上可知金属是良好的导热材料,而其它三种是好的保温材料。 1-5厚度δ为0.1m 的无限大平壁,其材料的导热系数λ=100W/(m·K),在给定的直角坐标系中,分别画出稳态导热时如下两种情形的温度分布并分析x 方向温度梯度的分量和热流密度数值的正或负。 (1)t|x=0=400K, t|x=δ=600K; (2) t|x=δ=600K, t|x=0=400K; 解:根据付立叶定律 无限大平壁在无内热源稳态导热时温度曲线为直线,并且 x x 02121t t t t t dt x dx x x 0 δ δ==--?===?-- x x 0x t t q δλ δ==-=- (a ) (1) t|x=0=400K, t|x=δ=600K 时 温度分布如图2-5(1)所示 图2-5(1)

高等传热学作业修订版

高等传热学作业修订版 IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】

第一章 1-4、试写出各向异性介质在球坐标系)(?θ、、r 中的非稳态导热方程,已知坐标为导热系数主轴。 解:球坐标微元控制体如图所示: 热流密度矢量和傅里叶定律通用表达式为: → →→??+??+??-=?-=k T r k j T r k i r T k T k q r ? θθ?θsin 11' ' (1-1) 根据能量守恒:st out g in E E E E ? ???=-+ ?θθρ?θθ??θθ?θd drd r t T c d drd r q d q d q dr r q p r sin sin 2 2??=+??-??-??-? (1-2) 导热速率可根据傅里叶定律计算: ?θθ θθd r dr T r k q sin ???- = (1-3) 将上述式子代入(1-4-3)可得到 ) 51(sin sin )sin ()sin (sin )(222-??=+??????+??????+?????????θθρ?θθ? θ? θ??θθθθ?θθ?θd drd r t T c d drd r q d rd dr T r k rd d dr T r k d d dr r T r k r p r 对于各 向异性材料,化简整理后可得到: t T c q T r k T r k r T r r r k p r ??=+??+????+?????ρ?θθθθθ?θ2222222sin )(sin sin )( (1-6)

《传热学》第四版课后习题答案

《传热学》 第一章 思考题 1. 试用简练的语言说明导热、对流换热及辐射换热三种热传递方式之间的联系和区别。 答:导热和对流的区别在于:物体内部依靠微观粒子的热运动而产生的热量传递现象,称为导热;对流则是流体各部分之间发生宏观相对位移及冷热流体的相互掺混。联系是:在发生对流换热的同时必然伴生有导热。 导热、对流这两种热量传递方式,只有在物质存在的条件下才能实现,而辐射可以在真空中传播,辐射换热时不仅有能 量的转移还伴有能量形式的转换。 2. 以热流密度表示的傅立叶定律、牛顿冷却公式及斯忒藩-玻耳兹曼定律是应当熟记的传热学公式。试写 出这三个公式并说明其中每一个符号及其意义。 答:① 傅立叶定律: dx dt q λ -=,其中,q -热流密度;λ-导热系数;dx dt -沿x 方向的温度变化率, “-”表示热量传递的方向是沿着温度降低的方向。 ② 牛顿冷却公式: ) (f w t t h q -=,其中,q -热流密度;h -表面传热系数;w t -固体表面温度; f t -流体的温度。 ③ 斯忒藩-玻耳兹曼定律:4 T q σ=,其中,q -热流密度;σ-斯忒藩-玻耳兹曼常数;T -辐 射物体的热力学温度。 3. 导热系数、表面传热系数及传热系数的单位各是什么?哪些是物性参数,哪些与过程有关? 答:① 导热系数的单位是:W/(m.K);② 表面传热系数的单位是:W/(m 2.K);③ 传热系数的单位是:W/(m 2.K)。这三个参数中,只有导热系数是物性参数,其它均与过程有关。 4. 当热量从壁面一侧的流体穿过壁面传给另一侧的流体时,冷、热流体之间的换热量可以通过其中任何一 个环节来计算(过程是稳态的),但本章中又引入了传热方程式,并说它是“换热器热工计算的基本公式”。试分析引入传热方程式的工程实用意义。 答:因为在许多工业换热设备中,进行热量交换的冷、热流体也常处于固体壁面的两侧,是工程技术中经常遇到的一种典型热量传递过程。 5. 用铝制的水壶烧开水时,尽管炉火很旺,但水壶仍然安然无恙。而一旦壶内的水烧干后,水壶很快就烧 坏。试从传热学的观点分析这一现象。 答:当壶内有水时,可以对壶底进行很好的冷却(水对壶底的对流换热系数大),壶底的热量被很快传走而不至于温度升得很高;当没有水时,和壶底发生对流换热的是气体,因为气体发生对流换热的表面换

2011年《高等传热学》结课作业

2011年《高等传热学》结课作业 ———放假前提交作业 一、【15分】无内热源物体内的稳态导热,材料为常物性。请选择合适的坐标系,写出其导 热微分方程及边界条件。 (1) 巨型薄板(0≤x≤L1,0≤y≤L2,0≤z≤L3),L3< 0时,x = 0处的边界维持0℃,试求温度场的表达式。 四、【15分】转速为500r/min的二冲程柴油机,气缸壁为铸铁,热扩散率为1.65×10-5m2/s, 导热系数为33W/(m.℃),气缸壁内侧的综合表面传热系数为100 W/(m2.℃),气缸内燃气温度在20℃至2000℃间波动,假定这种波动按简谐规律进行。气缸套壁厚5mm,缸套由水冷却,水温70℃,表面传热系数为4000 W/(m2.℃)。试求气缸套壁内的温度分布及单位面积散热量。 五、【10分】两块相同材料的半无限大物体,温度分别为t i1和t i2,τ= 0时,两物体界面紧 密接触,试求τ> 0时,两物体内的温度场t(x,τ)。 六、【10分】水在一内径为0.2m的圆管内流动,平均流速为3m/s。假定流动已充分发展, 水的密度为998.2kg/m3,运动粘度为1.006×10-6m2/s。试确定平均阻力系数C f、每米管长的压降及摩擦系数f。 七、【10分】飞机的油冷器装在机翼的夹层中,利用空气掠过进行冷却。机翼表面可理性化 为一平壁。71kPa、-4℃的空气以61m/s的速度掠过。油冷器位于离导边0.9m处,假定其壁面为定壁温,温度为54℃。油冷器的壁面尺寸为60×60cm,问散热量是多少?八、【20分】一无限长的正方柱体,两相邻面维持200℃,另两相邻面维持100℃,试用蒙 特卡洛法编程计算正方柱体中心线的温度。给出源程序,并测试随机试验次数、网格剖分粗细对计算结果的影响。

传热学大作业

课程编号:13SD02010340 课程名称:传热学 上课时间:2014年春季 电子元器件散热方法研究 姓名: 学号: 班级: 所在学院: 任课教师:

摘要:随着电子器件的高频、高速以及集成电路技术的迅速发展和技术的进步,电子元器件的总功率密度大幅度增长而物理尺寸却越来越小,热流密度也随之增加,所以高温的 温度环境势必会影响电子元器件的性能,这就要求对其进行更加高效的热控制。因此,有 效解决电子元器件的散热问题已成为当前电子元器件和电子设备制造的关键技术。本文针 对电子元器件的散热与冷却问题,综述了当前应用研究中不同的散热和冷却方法,并进行 了适当的分析。 关键词热管理; 冷却; 电子器件 近些年来,电子技术的快速发展。电子器件的高频、高速以及集成电路的密集和小型化,使得单位容积电子器件的总功率密度和发热量大幅度地增长,从而使电子器件的冷却问题 变得越来越突出。如: 大型计算机的芯片热流量已达到了60 W/ cm2,到2000 年已经超过了,目前最高已达到200 W/ cm2。特别是由于MEMS技术突飞猛进,使得电子元器件的尺寸越来越小,已经从微米量级进入到了亚微米量级。尽管随着器件或系统尺寸的减小, 消耗功率也会有所减小, 但为了完成一定的任务,可减小的余地非常有限,这使得为系统内的热流密度非 常大, 据报道可达, 远远高出航天飞行器回归地球与大气摩擦时产生的惊人的高热流密度。在微系统中可能出现的高热流密度对于电子器件是致命的, 然而使用传统的冷却技术要使 如此高的热流密度在短时间内散去几乎是不现实的; 另一方面, 电子器件工作的可靠性对 温度十分敏感, 器件温度在70~80 水平上每增加1, 可靠性就会下降5%。因而电子产品的 开发、研制中必须要充分考虑到良好的散热手段, 才能保证产品的可靠性和表观。由于电 子元器件的小型化、微型化和集成化,所采用的散热和冷却手段必须要求具有紧凑性、可靠性、灵活性、高散热效率等特点。 1 电子元器件的散热或冷却方法 电子元器件的高效散热问题与传热学、流体力学等原理的应用密切相关。电子器件散 热的目的是对电子设备的运行温度进行控制,以保证其工作的稳定性和可靠性。这其中涉及了与传热有关的散热或冷却方式、材料等多方面内容。从应用的角度看,常用的方法主要有: 自然散热或冷却、强制散热或冷却、液体冷却、制冷方式、疏导方式、热隔离方式和PCM 温度控制方法等。 1.1 自然散热或冷却方法 自然散热或冷却方法是指不使用任何外部辅助能量的情况下,实现局部发热器件向周 围环境散热达到温度控制的目的,这其中通常都包含了导热、对流和辐射三种主要传热方式, 其中对流以自然对流方式为主。自然散热或冷却往往适用对温度控制要求不高、器件发热 的热流密度不大的低功耗器件和部件,以及密封或密集组装的器件不宜采用其它冷却技术 的情况下。有时,在对散热能力要求不高时也常常利用电子器件自身特点增强与邻近热沉的导热或辐射、通过结构设计强化自然对流,在一定程度上提高系统向环境散热能力。

传热学大作业

传热学大作业——二维物体热传导 问题的数值解法

1.二维热传导问题的物理描述: 本次需要解决的问题是结合给定的边界条件,通过二维导热物体的数值解法,求解出某建筑物墙角稳态下的温度分布t以及单位长度壁面上的热流量φ。 1.1关于边界条件和研究对象选取的物理描述:如图所示为本次作业需要求解的 建筑物墙壁的截面。尺寸如图中所标注。 1.2由于墙角的对称性,A-A,B-B截面都是绝热面,并且由于对称性,我们只需 要研究墙角的1/4即可(图中阴影部分)。假设在垂直纸面方向上不存在热量 的传递,我们只需要对墙角进行二维问题的研究即可。 1.3 关于导热量计算截面的物理描述:本次大作业需要解决对流边界条件和等温 边界条件下两类边界条件的问题。由于对称性,我们只需研究1/4墙角外表面和内表面的导热量再乘4,即是墙壁的总导热量。 2.二维热传导问题的数学描写: 本次实验的墙角满足二维,稳态无内热源的条件,因此: 壁面内满足导热微分方程: ?2t ?x2+?2t ?y2 =0。

在绝热面处,满足边界条件: ?λ(?t ?n )=0。在对流边界处满足边界条件: ?λ?t ?n w =?(t w?t f) 3.二维热传导问题离散方程的建立: 本次作业中墙角的温度场是一个稳态的连续的场。本次作业中将1/4墙角的温度场离散化,划分成若干小的网格,每个网格的节点看成以它为中心的一个小区域的代表。 通过这些节点,采用“热平衡法”,建立起相应的离散方程,通过高斯-赛德尔迭代法,得到最终收敛的温度场,从而完成对墙角温度场的数值解。 对1/4墙角的网格划分如下: 选取步长Δx=Δy=0.1m,为了方便研究,对导热物体的网格节点进行编码,编码规则如下: x,y坐标轴的方向如图所示,x,y轴的单位长度为步长Δx,取左下角点为(1,1)点,其他点的标号为其在x,y轴上的坐标。以此进行编码,进行离散方程的建立。 建立离散方程,要对导热物体中的节点根据其边界条件进行分类(特殊节点用阴影标出):首先以对流边界条件下的墙角为例

相关文档
最新文档