传热学大作业(2)

传热学大作业(2)
传热学大作业(2)

传热学大作业(2)

二维稳态计算练习1、原始题目及要求

二维平壁的节点划分及边界条件如上图所示,计算要求如下:

1. 写出各未知温度节点的代数方程

2. 分别给出G-S迭代和Jacobi迭代程序

3. 程序中给出两种自动判定收敛的方法

4. 考察三种不同初值时的收敛快慢

5. 上下边界的热流量(λ=1W/(m℃))

6. 绘出最终结果的等值线

报告要求如下:

1. 原始题目及要求

2. 各节点的离散化的代数方程

3. 源程序

4. 不同初值时的收敛快慢

5. 上下边界的热流量(λ=1W/(m℃))

6. 计算结果的等温线图

7. 计算小结

2. 各节点的离散化的代数方程

将上图二维平壁的节点编号如下

各节点的离散化代数方程如下:

由于(5,1)为歧义点,现将其近似认为对流边界外部拐点,其节点离散化代数方程为:3.源程序

(1)、G-S迭代算法Matlab源程序:

t=zeros(5,5);

t0=zeros(5,5);

e=0.001;

h=10;

n=1;

tf=10;

for j=1:5 %上边界节点

t(1,j)=200;

end

for i=1:5 %右边界节点

t(i,5)=100;

end

for k=1:100

for i=2:4 %内部节点

for j=2:4

t(i,j)=(t(i-1,j)+t(i+1,j)+t(i,j-1)+t(i,j+1))/4;

end

end

for i=2:4;%左边界节点

t(i,1)=(2*t(i,2)+t(i-1,1)+t(i+1,1)+2*h*tf/n)/(4+2*h/n); end

for j=2:4; %下边界节点

t(5,j)=(t(5,j-1)+t(5,j+1)+2*t(4,j))/4;

end

t(5,1)=(t(4,1)+t(5,2)+2*h*tf/n)/(2+2*h/n); %(5,1)节点dtmax=0;

for i=1:5

for j=1:5

dtmax=max(abs(t(i,j)-t0(i,j)),dtmax);

end

end

contour(t',30);

t0=t;

t

pause;

if dtmax

end

(2)Jacobi迭代Matlab源程序

t=zeros(5,5);

t0=zeros(5,5);

e=0.001;

h=10;

n=1;

tf=10;

Num=0;

for j=1:5 %上边界节点

t(1,j)=200;

end

for i=1:5 %右边界节点

t(i,5)=100;

end

t0=t;

for k=1:100

for i=2:4 %内部节点

for j=2:4

t(i,j)=(t0(i-1,j)+t0(i+1,j)+t0(i,j-1)+t0(i,j+1))/4; end

end

for i=2:4;%左边界节点

t(i,1)=(2*t0(i,2)+t0(i-1,1)+t0(i+1,1)+2*h*tf/n)/(4+2*h/n); end

for j=2:4; %下边界节点

t(5,j)=(t0(5,j-1)+t0(5,j+1)+2*t0(4,j))/4;

end

t(5,1)=(t(4,1)+t(5,2)+2*h*tf/n)/(2+2*h/n); %(5,1)节点dtmax=0;

for i=1:5

for j=1:5

dtmax=max(abs(t(i,j)-t0(i,j)),dtmax);

end

end

contour(t',30);

t0=t;

t

pause;

Num=Num+1;

Num

if dtmax

end

比较两种方法的收敛速度:

G-S法最终输出结果如下:

t =

200.0000 200.0000 200.0000 200.0000 100.0000

26.2727 107.4214 135.1054 135.4873 100.0000

15.7010 68.3085 97.5138 106.8443 100.0000

13.9343 52.5990 79.7981 94.3766 100.0000

13.5242 48.3564 74.7042 90.8644 100.0000

Num =

29

Jacobi法最终结果如下:

t =

200.0000 200.0000 200.0000 200.0000 100.0000

26.2695 107.3899 135.0717 135.4675 100.0000

15.6897 68.2189 97.4308 106.7988 100.0000

13.8464 52.3668 79.6357 94.2985 100.0000

11.8916 47.7681 74.4495 90.7611 100.0000

Num =

53

由此可见,G-S法比Jacobi法收敛速度快,就本题初值为0而言,收敛速度大概为其两倍左右。

4.不同初值时的收敛快慢

讨论不同初值时的收敛快慢问题以G-S法为例,下面分别给出初值从0—200变化时计算次数的曲线:

由上图可以非

常清晰地看出在初

始值取75的时候计算次数最少为15次,也即对于本问题来说,初值取75时收敛速度最快。

5.上下边界的热流量

由于下边界绝热,所以下边界的热流量

上边界的热流量算法如下:

=358.865W

最终结果:?

6.计算结果等温图

7.计算小结

数值分析方法是解决稳态导热的重要解法。数值解是借助于计算方法和计算机对微分方程求解,即数值计算。数值计算首先必须将物理现象发生的区域离散化,每个单元体的物理量用划分节点的物理量代替,常用的方法是有限差分法和有限元法。

利用G-S迭代法或者Jacobi迭代算法都能得到比较良好的计算结果,但从分析来看,G-S 算法比Jacobi算法迭代速度更快,然而有资料显示Jacobi算法比G-S算法更为稳定。

Matlab是一款强大的数学工具,特别是在矩阵计算方面有它的独特之处。从本题计算来看,Matlab计算运行速度较快,并且代码量少,画图简单易行,使稳态导热问题的求解变得更为方便。

传热学数值计算大作业2014011673

数值计算大作业 一、用数值方法求解尺度为100mm×100mm 的二维矩形物体的稳态导热问题。物体的导热系数λ为1.0w/m·K。边界条件分别为: 1、上壁恒热流q=1000w/m2; 2、下壁温度t1=100℃; 3、右侧壁温度t2=0℃; 4、左侧壁与流体对流换热,流体温度tf=0℃,表面传热系数 h 分别为1w/m2·K、10 w/m2·K、100w/m2·K 和1000 w/m2·K; 要求: 1、写出问题的数学描述; 2、写出内部节点和边界节点的差分方程; 3、给出求解方法; 4、编写计算程序(自选程序语言); 5、画出4个工况下的温度分布图及左、右、下三个边界的热流密度分布图; 6、就一个工况下(自选)对不同网格数下的计算结果进行讨论; 7、就一个工况下(自选)分别采用高斯迭代、高斯——赛德尔迭代及松弛法(亚松弛和超松弛)求解的收敛性(cpu 时间,迭代次数)进行讨论; 8、对4个不同表面传热系数的计算结果进行分析和讨论。 9、自选一种商业软件(fluent 、ansys 等)对问题进行分析,并与自己编程计算结果进行比较验证(一个工况)。(自选项) 1、写出问题的数学描述 设H=0.1m 微分方程 22220t t x y ??+=?? x=0,0

y=H ,0

哈工大2008-2009年春季学期传热学试题A

哈工大08/09学年春季学期 一、名词解释(20分) 1、导热系数 2、热边界层 3、辐射强度 4、灰体 二、分析论述与回答问题(30分) 1、写出傅里叶导热定律表达式,并说明式中各量和符号的物理意义。 2、简述在对流传热研究中,引入边界层理论的意义。 3、写出努谢尔数Nu与毕渥数Bi的表达式并比较异同。 4、太阳能集热器采用选择性表面涂层,它对太阳辐射的吸收效率为0.9,它本身的 发射率为0.3,这一现象是否违背基尔霍夫定律?为什么? 5、厚度等于δ的常物性无限大平板,初始温度均为t0,过程开始后,左侧有一定热 流密度q w的热源加热,右侧与低温流体t f相接触(t0>t f),表面传热系数h等于常数,所有物性参数已知,写出改导热问题的数学描写。

三、如图所示的二维稳态导热物体,其导热系数λ为常数,边界面与环境发生对流换热, 环境温度为t F ,边界面对流换热表面传热系数为h ,网格划分如下图所示,试建立数值求解节点温度t 4,t 5,t 6的离散方程。 四、在一个特殊应用中,空气流过一个热的表面,其边界层温度分布可近似为 s s T-T =1-exp(Pr )T -T u y v ∞∞-,其y 是离开表面的垂直距离,普朗特数Pr =0.7u a ∞=是一个无量纲的流体物性。如果来流温度T 400K ∞=,表面温度s T 300K =,且-15000m u v ∞=,求表面热流密度是多少?(10分) (空气导热系数,330K 时,0.0263W/(m K)λ=?;400K 时,0.0339W/(m K)λ=?)

λ=?导热系数的热绝缘层,六、在太空中飞行的宇宙飞船,表面贴有厚0.15m、0.045W/(m K) 而外表面的黑度为0.04,设飞船内空气温度为20℃,空气与内壁间的对流换热系数为6W/(m.K), 试求飞船外表面的温度。(假设宇宙空间温度为0K;忽略飞船壁面的导热热阻)(15分)

哈工程传热学数值计算大作业

传热学 二维稳态导热问题的数值解法 杨达文2011151419 赵树明2011151427 杨文晓2011151421 吴鸿毅2011151416

第一题: a=linspace(0,0.6,121); t1=[60+20*sin(pi*a/0.6)]; t2=repmat(60,[80 121]); s=[t1;t2]; %构造矩阵 for k=1:10000000 %理论最大迭代次数,想多大就设置多大S=s; for j=2:120 for i=2:80 S(i,j)=0.25*(S(i-1,j)+S(i+1,j)+S(i,j-1)+S(i,j+1)); end end if norm(S-s)<0.0001 break; %如果符合精度要求,提前结束迭代else s=S; end end S %输出数值解 数值解数据量太大,这里就不打印出来,只画出温度分布。 画出温度分布: figure(1) xx=linspace(0,0.6,121); yy=linspace(0.4,0,81); [x,y]=meshgrid(xx,yy); surf(x,y,S) axis([0 0.6 0 0.4 60 80]) grid on xlabel('L1') ylabel('L2') zlabel('t(温度)')

.60.66666777778L 1 L 2t (温度)

A0=[S(:,61)]; for k=1:81 B1(k)=A0(81-k+1); end B1 %x=L1/2时y方向的温度 A1=[S(41,:)] %y=L2/2时x方向的温度 x=0:0.005:0.6; y=0:0.005:0.4; A2=60+20*sin(pi*x/0.6)*((exp(pi*0.2/0.6)-exp(-pi*0.2/0.6))/2)/((exp(pi*0.4/0.6)-exp(-pi*0.4/0.6) )/2) %计算y=L2/2时x方向的解析温度 B2=60+20*sin(pi*0.3/0.6)*((exp(pi*y/0.6)-exp(-pi*y/0.6))/2)/((exp(pi*0.4/0.6)-exp(-pi*0.4/0.6))/ 2) %计算x=L1/2时y方向的解析温度 figure(2) subplot(2,2,1); plot(x,A1,'g-.',x,A2,'k:x'); %画出x=L1/2时y方向的温度场、画出x=L1/2时y方向的解析温度场曲线 xlabel('L1');ylabel('t温度'); title('y=L2/2'); legend('数值解','解析解'); subplot(2,2,2); plot(x,A1-A2); %画出具体温度场与解析温度场的差值曲线 xlabel('L1');ylabel('差值'); title('y=L2/2时,比较=数值解-解析解'); subplot(2,2,3); plot(y,B1,'g-.',y,B2,'k:x'); %画出y=L2/2时x方向的温度场、画出y=L2/2时x方向的解析温度场曲线 xlabel('L2');ylabel('t温度'); title('x=L1/2'); legend('数值解','解析解'); subplot(2,2,4); plot(y,B1-B2); %画出具体温度场与解析温度场的差值曲线 xlabel('L2');ylabel('差值'); title('x=L1/2时,比较=数值解-解析解'); y=L2/2时x方向的温度: 60 60.1635347276130 60.3269574318083 60.4901561107239 60.6530189159961 60.8154342294146 60.9772907394204 61.1384775173935 61.2988840936779 61.4584005332920 61.6169175112734 61.7743263876045 61.9305192816696 62.0853891461909 62.2388298405943 62.3907362037523 62.5410041260577 62.6895306207746 62.8362138946214 62.9809534175351 63.1236499915702 63.2642058188844 63.4025245687647 63.5385114436490 63.6720732440951 63.8031184326565 63.9315571966177 64.0573015095482 64.1802651916318 64.3003639687311 64.4175155301449 64.5316395850212 64.6426579173846 64.7504944397430 64.8550752452343 64.9563286582797 65.0541852837075

传热学大作业报告 二维稳态导热

传热学大作业报告二维稳态计算 院系:能源与环境学院 专业:核工程与核技术 姓名:杨予琪 学号:03311507

一、原始题目及要求 计算要求: 1. 写出各未知温度节点的代数方程 2. 分别给出G-S 迭代和Jacobi 迭代程序 3. 程序中给出两种自动判定收敛的方法 4. 考察三种不同初值时的收敛快慢 5. 上下边界的热流量(λ=1W/(m ℃)) 6. 绘出最终结果的等值线 报告要求: 1. 原始题目及要求 2. 各节点的离散化的代数方程 3. 源程序 4. 不同初值时的收敛快慢 5. 上下边界的热流量(λ=1W/(m ℃)) 6. 计算结果的等温线图 7. 计算小结 二、各节点的离散化的代数方程 左上角节点 )(21 1,22,11,1t t t +=

右上角节点 )(2 15,24,15,1t t t += 左下角节点 C t ?=1001,5 右下角节点 )2(211,24,55,5λ λ x h t t x h t ?++?+= 左边界节点 C t i ?=1001,,42≤≤i 上边界节点 C t j ?=200,1,42≤≤j 右边界节点 )2(415,15,14,5,+-++= i i i i t t t t ,42≤≤i 下边界节点 )42()2(211,51,5,4,5∞+-?+++?+=t x h t t t x h t j j j j λλ ,42≤≤j 内部节点 )(2 1,1,11,1,,j i j i j i j i j i t t t t t +-+-+++= ,4,2≤≤j i 三、源程序 1、G-S 迭代法 t=zeros(5,5); t0=zeros(5,5); dteps=0.0001; for i=2:5 %左边界节点 t(i,1)=100; end for j=2:4 %上边界节点 t(1,j)=200; end t(1,1)=(t(1,2)+t(2,1))/2; t for k=1:100 for i=2:4 %内部节点 for j=2:4 t(i,j)=(t(i-1,j)+t(i+1,j)+t(i,j-1)+t(i,j+1))/4; end end t(1,5)=(t(1,4)+t(2,5))/2;%右上角节点 for i=2:4;%右边界节点 t(i,5)=(2*t(i,4)+t(i-1,5)+t(i+1,5))/4; end for j=2:4; %下边界节点

计算传热学中国石油大学(华东)第四章大作业

取步长δx=0.02。已知x=0,Φ=0;x=1,Φ=1.令k=ρu/Γ计算结果图表: 程序及数据结果: 追赶法: #include #include #include #define N 49 void tdma(float a[],float b[],float c[],float f[],float x[]); void main(void) { int i; float x[49]; float k; printf("请输入k值:\n",k); scanf("%f",&k); static float a[N],b[N],c[N],f[N]; a[0]=0; a[48]=2+0.02*k; b[0]=4; b[48]=4; c[0]=2-0.02*k; c[48]=0; f[0]=0; f[48]=2-0.02*k; for(i=1;i

a[i]=2+0.02*k; b[i]=4; c[i]=2-0.02*k; f[i]=0; } tdma(a,b,c,f,x); for(i=0;i=0;i--) x[i]=P[i]*x[i+1]+Q[i]; return; } 结果: (1)k=-5 请输入k值: -5 x[0]=0.095880 x[1]=0.182628 x[2]=0.261114 x[3]=0.332126 x[4]=0.396375 x[5]=0.454504 x[6]=0.507098 x[7]=0.554683 x[8]=0.597736 x[9]=0.636688 x[10]=0.671931 x[11]=0.703818 x[12]=0.732667 x[13]=0.758770

生活中的传热学(问答题整理答案)

硕士研究生《高等工程热力学与传热学》作业 查阅相关资料,回答以下问题: 1、一滴水滴到120度和400度的板上,哪个先干?试从传热学的角度分析? 答:在大气压下发生沸腾换热时,上述两滴水的过热度分别是△ t=tw–ts=20℃和△t=300℃,由大容器饱和沸腾曲线,前者表面发生的是泡态沸腾,后者发生膜态沸腾。虽然前者传热温差小,但其表面传热系数大,从而表面热流反而大于后者。所以水滴滴在120℃的铁板上先被烧干。 2、锅铲、汤勺、漏勺、铝锅等炊具的柄用木料制成,为什么? 答:是因为木料是热的不良导体,以便在烹任过程中不烫手。 3、滚烫的砂锅放在湿地上易破裂。为什么? 答:这是因为砂锅是热的不良导体, 如果把烧得滚热的砂锅,突然放到潮湿或冷的地方,砂锅外壁的热就很快地被传掉,而壁的热又一下子传不出来,外壁冷却很快的收缩,壁却还很热,没什么收缩,加以瓷特别脆,所以往往裂开。 或者:烫砂锅放在湿地上时,砂锅外壁迅速放热收缩而壁温度降低慢,砂锅外收缩不均匀,故易破裂。 4、往保温瓶灌开水时,不灌满能更好地保温。为什么? 答:因为未灌满时,瓶口有一层空气,是热的不良导体,能更好地防止热量散失。

5、煮熟后滚烫的鸡蛋放入冷水中浸一会儿,容易剥壳。为什么? 答:因为滚烫的鸡蛋壳与蛋白遇冷会收缩,但它们收缩的程度不一样,从而使两者脱离。 6、用焊锡的铁壶烧水,壶烧不坏,若不装水,把它放在火上一会儿就烧坏了。为什么? 答:这是因为水的沸点在1标准大气压下是100℃,锡的熔点是232℃,装水烧时,只要水不干,壶的温度不会明显超过100℃,达不到锡的熔点,更达不到铁的熔点,故壶烧不坏.若不装水在火上烧,不一会儿壶的温度就会达到锡的熔点,焊锡熔化,壶就烧坏了。 7、冬壶里的水烧开后,在离壶嘴一定距离才能看见“白气”,而紧靠壶嘴的地方看不见“白气”。这是因为紧靠壶嘴的地方温度高,壶嘴出来的水蒸气不能液化,而距壶嘴一定距离的地方温度低;壶嘴出来的水蒸气放热液化成小水滴,即“白气”。 答:这是因为紧靠壶嘴的地方温度高,壶嘴出来的水蒸气不能液化,而距壶嘴一定距离的地方温度低;壶嘴出来的水蒸气放热液化成小水滴,即“白气”。 8、某些表演者赤脚踩过炽热的木炭,从传热学角度解释为何不会烫伤?不会烫伤的基本条件是什么? 答:因为热量的传递和温度的升高需要一个过程,而表演者赤脚接触炽热木炭的时间极短,因此在这个极短的时间传递的温度有限,不足以达到令人烫伤的温度,所以不会烫伤。 基本条件:表演者接触炽热木炭的时间必须极短,以至于在这段时间所传递的热量不至于达到灼伤人的温度

西安交通大学传热学大作业---二维温度场热电比拟实验

二维导热物体温度场的数值模拟

一、物理问题 有一个用砖砌成的长方形截面的冷空气通道,其截面尺寸如下图1-1所示,假设在垂直于纸面方向上用冷空气及砖墙的温度变化很小,可以近似地予以忽略。在下列两种情况下试计算: 砖墙横截面上的温度分布;垂直于纸面方向的每米长度上通过砖墙的导热量。 第一种情况:内外壁分别均匀维持在0℃及30℃; 第二种情况:内外壁均为第三类边界条件,且已知: K m K m W h C t K m W h C t ?=?=?=?=?=∞∞/35.0/93.3,10/35.10,302 22211λ砖墙导热系数 二、数学描写 由对称的界面必是绝热面,可取左上方的四分之一墙角为研究对象,该问题为二维、稳态、无内热源的导热问题。 控制方程: 02 222=??+??y t x t 边界条件: 第一种情况: 由对称性知边界1绝热: 0=w q ; 边界2为等温边界,满足第一类边界条件: C t w ?=0; 边界3为等温边界,满足第一类边界条件: C t w ?=30。 第一种情况: 由对称性知边界1绝热: 0=w q ; 边界2为对流边界,满足第三类边界条件: )()( 2f w w w t t h n t q -=??-=λ; 边界3为对流边界,满足第三类边界条件: )()(2f w w w t t h n t q -=??-=λ。 1 -1图2 -1图

三、方程离散 用一系列与坐标轴平行的间隔0.1m 的二维网格线将温度区域划分为若干子区域,如图1-3所示。 采用热平衡法,利用傅里叶导热定律和能量守恒定律,按照以导入元体(m,n )方向的热流量为正,列写每个节点代表的元体的代数方程, 第一种情况: 边界点: 边界1(绝热边界): 5~2)2(4 1 1,11,12,1,m =++= +-m t t t t m m m , 11~8)2(4 1 1,161,16,15,16=++=+-n t t t t n n n n , 边界2(等温内边界): 7,16~7;7~1,6,0,=====n m n m t n m 边界3(等温外边界): 12,16~2;12~1,1,30,=====n m n m t n m 内节点: 11 ~8,15~6;11~2,5~2)(41 1,1,,1,1,====+++= -+-+n m n m t t t t t n m n m n m n m n m 第二种情况 边界点: 边界1(绝热边界): 5~2)2(4 1 1,11,12,1 ,m =++=+-m t t t t m m m , 11~8)2(4 1 1,161,16,15,16=++=+-n t t t t n n n n , 边界2(内对流边界): 6~1) 2(2221 11,61,6,5,6=++++= ??-+n Bi t Bi t t t t n n n n , 3 -1图

传热学

镁合金激光-TIG复合热源焊接热源模型 学院:材料学院 专业:材料加工工程 学号: 姓名: 指导教师: 江苏科技大学 2015年4 月11 日

镁合金激光—TIG复合焊接热源模型与热过程 1 前言 镁合金被称为“21世纪绿色工程材料”。镁合金是目前被国内外重新认识并积极开发的一种轻量化材料,具有低密度、高比强度、阻尼减震性好、易机械加工以及良好的可回收性等优点。高效合理的镁合金焊接方法将大大推动镁合金的发展与应用。激光--电弧复合热源焊接具有高速、高效、接头质量优异等特点,目前正在被国内外的研究者日益关注。对这一过程的焊接数值模拟研究有助于更深层次地理解过程的物理机制,从而实现指导焊接工艺、控制焊接质量的目的。目前,YAG激光--TIG复合热源焊接AE31B镁合金已经被证明是一种可行而且高质量的焊接工艺[1], 迫切需要数值模拟工作对这一过程进行指导,并通过数值模拟更深层次的理解复合热源焊接这一过程。 但目前复合热源的数值模拟工作开展的却非常有限。其中一个主要原因是复合热源焊接热源模型一直解决得。首先,高能束激光焊接的热源模型虽然经过线热源、面热源、柱状热源乃至双椭球体热源的变迁,始终没有得到很好的解决; 其次激光、电弧两热源之间存在着一定的物理机制, 需要考虑热源之间的能量影响关系。 在复合热源焊接工艺研究的基础上,结合镁合金材料特点,建立了基于旋转高斯体热源与高斯面热源相结合的复合热源模型:高能束激光热源由旋转高斯体热源描述;TIG电弧则由高斯面热源描述。热源模型的建立充分考虑了过程的物理特点与热源间的能量增强效应。 1.1激光--电弧复合热源焊接概况 激光--TIG电弧复合热源焊接的特点是YAG激光、TIG电弧这两种不同物理性质与能量传输机制的热源同时作用于焊接区。这种方法克服了单独采用激光和单独采用TIG电弧焊接的缺点,并且两种热源相互藕合获得了更大能量形式。其原理如图1.1。其在实践中的优点却是非常明显的:速度快,桥接能力强,焊接变形小,焊接过程稳定,焊接质量和效率高等[2-4]。

西安交通大学传热学大作业

《传热学》上机大作业 二维导热物体温度场的数值模拟 学校:西安交通大学 姓名:张晓璐 学号:10031133 班级:能动A06

一.问题(4-23) 有一个用砖砌成的长方形截面的冷空气通道,形状和截面尺寸如下图所示,假设在垂直纸面方向冷空气和砖墙的温度变化很小,差别可以近似的予以忽略。在下列两种情况下计算:砖墙横截面上的温度分布;垂直于纸面方向上的每米长度上通过墙砖上的导热量。 第一种情况:内外壁分别维持在10C ?和30C ? 第二种情况:内外壁与流体发生对流传热,且有C t f ?=101, )/(2021k m W h ?=,C t f ?=302,)/(422k m W h ?=,K m W ?=/53.0λ

二.问题分析 1.控制方程 02222=??+??y t x t 2.边界条件 所研究物体关于横轴和纵轴对称,所以只研究四分之一即可,如下图: 对上图所示各边界: 边界1:由对称性可知:此边界绝热,0=w q 。 边界2:情况一:第一类边界条件 C t w ?=10 情况二:第三类边界条件

)()( 11f w w w t t h n t q -=??-=λ 边界3:情况一:第一类边界条件 C t w ?=30 情况二:第三类边界条件 )()( 22f w w w t t h n t q -=??-=λ 三:区域离散化及公式推导 如下图所示,用一系列和坐标抽平行的相互间隔cm 10的网格线将所示区域离散化,每个交点可以看做节点,该节点的温度近似看做节点所在区域的平均温度。利用热平衡法列出各个节点温度的代数方程。 第一种情况: 内部角点:

哈工大传热学作业答案

一维非稳态导热计算 4-15、一直径为1cm,长4cm 的钢制圆柱形肋片,初始温度为25℃,其后,肋基温度突然升高到200℃,同时温度为25℃的气流横向掠过该肋片,肋端及两侧的表面传热系数均为 100。试将该肋片等分成两段(见附图),并用有 限差分法显式格式计算从开始加热时刻起相邻4个时刻上的温度分布(以稳定性条件所允许的时间间隔计算依据)。已知=43W/(m.K),。(提示:节点4的离散方程可按端面的对流散热与从节点3到节点4的导热相平衡这一条件列出)。 解:三个节点的离散方程为: 节点2: 节点3: 节点4: 。 以上三式可化简为: 稳定性要求,即 。 ,代入得: , 如取此值为计算步长,则: ,。 于是以上三式化成为: )./(2 K m W λs m a /10333.12 5 -?=()()12223212222/2444k k k k k k k f t t t t t t d d d d x h t t c x x x πππλλπρτ+????????---++?-=?? ? ? ? ???????????? ()()12224323333/2444k k k k k k k f t t t t t t d d d d x h t t c x x x πππλλπρτ+????????---++?-=?? ? ? ? ???????????? () 22344/244k k k f t t d d h t t x ππλ????-=- ? ?????? 12132222 43421k k f a a h a h t t t t t x x cd x cd τττττρρ+????????????? =+++-- ? ? ? ????????????13243222 43421k k f a a h a h t t t t t x x cd x cd τττττρρ+????????????? =+++-- ? ? ? ??????????? ?()4322k k f xh t t xht λλ+?=+?2 3410a h x cd ττ ρ??- -≥?2341/a h x cd τρ???≤+ ????5 54332.25810 1.33310c a λρ-===??5253 1.33310410011/8.898770.020.013 2.258100.0999750.0124s τ-??????≤+== ???+??5221.333108.898770.29660.02a x τ-???==?5441008.898770.110332.258100.01h cd τρ???==??1132 20.29660.29660.1103k k f t t t t +?++=12430.29660.296620.1103k k k f t t t t ++?+=34 0.97730.0227k k f t t t +=

论传热学与本专业的联系

《传热学》课程大作业 题目:____ 论传热学与飞行器制造工程的关系___________ 姓名:____ _ __________ 学号:_____ ________ 授课教师:_______ ___ _ ___ 哈尔滨工业大学 2015年5月4日

论传热学与飞行器制造工程的关系 摘要:本文主要介绍传热学的研究内容,研究简史,飞行器制造工程专业的研究内容与方向。其中重点介绍传热学对飞行器制造工程专业相关研究的影响。 关键词:传热学;飞行器制造工程 一传热学研究简史及研究内容 传热学是研究物体内部或物体与物体之间由温度差引起热量传递过程的学科。飞行器及其推进系统的发展提出了大量的传热学问题。传热的基本方式有导热、对流传热和辐射传热。传热不仅是常见的自然现象,而且广泛存在于工程技术领域。提高锅炉的蒸汽产量,防止燃气轮机燃烧室过热、减小内燃机气缸和曲轴的热应力、确定换热器的传热面积和控制热加工时零件的变形等,都是典型的传热问题。 传热学作为学科形成于19世纪。在热对流方面,英国科学家牛顿于1701 年在估算烧红铁棒的温度时,提出了被后人称为牛顿冷却定律的数学表达式,不过它并没有揭示出对流换热的机理。 对流换热的真正发展是19世纪末叶以后的事情。1904年德国物理学家普朗特的边界层理论和1915年努塞尔的因次分析,为从理论和实验上正确理解和定量研究对流换热奠定了基础。1929年,施密特指出了传质与传热的类同之处。 二飞行器制造工程研究内容 飞行器制造工程专业以一般机械制造工程为基础,广泛吸收各种先进技术和科学理论的成果,针对飞行器的特点研究各种制造方法的机理和应用,探求制造过程的规律,合理利用资源,经济而高效率地制造先进优质飞行器的一门技术科学。 本专业主要以机械设计制造为基础,涉及机械工程、电机工程、电子技术、计算机技术、材料科学、管理工程、控制工程和系统工程等许多科学技术领域。各种新结构、新元件、新材料、新工艺、新方法的应用,正在加速整个飞行器制造工程的发展。设计-结构-材料-工艺技术的最佳配合将是飞行器制造工程中的一个新趋向。 三传热学对飞行器制造工程的影响 本专业涉及到各类制造加工技术,普通加工中切削加工占大多数,加工工件

传热学大作业

课程编号:13SD02010340 课程名称:传热学 上课时间:2014年春季 电子元器件散热方法研究 姓名: 学号: 班级: 所在学院: 任课教师:

摘要:随着电子器件的高频、高速以及集成电路技术的迅速发展和技术的进步,电子元器件的总功率密度大幅度增长而物理尺寸却越来越小,热流密度也随之增加,所以高温的 温度环境势必会影响电子元器件的性能,这就要求对其进行更加高效的热控制。因此,有 效解决电子元器件的散热问题已成为当前电子元器件和电子设备制造的关键技术。本文针 对电子元器件的散热与冷却问题,综述了当前应用研究中不同的散热和冷却方法,并进行 了适当的分析。 关键词热管理; 冷却; 电子器件 近些年来,电子技术的快速发展。电子器件的高频、高速以及集成电路的密集和小型化,使得单位容积电子器件的总功率密度和发热量大幅度地增长,从而使电子器件的冷却问题 变得越来越突出。如: 大型计算机的芯片热流量已达到了60 W/ cm2,到2000 年已经超过了,目前最高已达到200 W/ cm2。特别是由于MEMS技术突飞猛进,使得电子元器件的尺寸越来越小,已经从微米量级进入到了亚微米量级。尽管随着器件或系统尺寸的减小, 消耗功率也会有所减小, 但为了完成一定的任务,可减小的余地非常有限,这使得为系统内的热流密度非 常大, 据报道可达, 远远高出航天飞行器回归地球与大气摩擦时产生的惊人的高热流密度。在微系统中可能出现的高热流密度对于电子器件是致命的, 然而使用传统的冷却技术要使 如此高的热流密度在短时间内散去几乎是不现实的; 另一方面, 电子器件工作的可靠性对 温度十分敏感, 器件温度在70~80 水平上每增加1, 可靠性就会下降5%。因而电子产品的 开发、研制中必须要充分考虑到良好的散热手段, 才能保证产品的可靠性和表观。由于电 子元器件的小型化、微型化和集成化,所采用的散热和冷却手段必须要求具有紧凑性、可靠性、灵活性、高散热效率等特点。 1 电子元器件的散热或冷却方法 电子元器件的高效散热问题与传热学、流体力学等原理的应用密切相关。电子器件散 热的目的是对电子设备的运行温度进行控制,以保证其工作的稳定性和可靠性。这其中涉及了与传热有关的散热或冷却方式、材料等多方面内容。从应用的角度看,常用的方法主要有: 自然散热或冷却、强制散热或冷却、液体冷却、制冷方式、疏导方式、热隔离方式和PCM 温度控制方法等。 1.1 自然散热或冷却方法 自然散热或冷却方法是指不使用任何外部辅助能量的情况下,实现局部发热器件向周 围环境散热达到温度控制的目的,这其中通常都包含了导热、对流和辐射三种主要传热方式, 其中对流以自然对流方式为主。自然散热或冷却往往适用对温度控制要求不高、器件发热 的热流密度不大的低功耗器件和部件,以及密封或密集组装的器件不宜采用其它冷却技术 的情况下。有时,在对散热能力要求不高时也常常利用电子器件自身特点增强与邻近热沉的导热或辐射、通过结构设计强化自然对流,在一定程度上提高系统向环境散热能力。

哈工大-传热学虚拟仿真实验报告

哈工大-传热学虚拟仿真实验报告

Harbin Institute of Technology 传热学虚拟仿真实验报告 院系:能源科学与工程学院 班级:设计者: 学号: 指导教师:董士奎 设计时间:2016.11.7

传热学虚拟仿真实验报告 1 应用背景 数值热分析在核工业、铁道、石油化工、航空航天、机械制造、能源、汽车交通、国防军工、电子、土木工程、造船、生物医学、轻工、地矿、水利、以及日用家电等各个领域都有广泛的应用。 2 二维导热温度场的数值模拟 2.1 二维稳态导热实例 假设一用砖砌成的长方形截面的冷空气通道,其截面如图2.1所示,假设在垂直于纸面方向上冷空气及砖墙的温度变化很小,可以近似地予以忽略。 图2.1一用砖砌成的长方形截面的冷空气通道截面 2.2二维数值模拟 基于模型的对称性,简化为如图所示的四分之一模

型。 图2.2 二维数值模拟 2.3 建立离散方程 此时对于内部节点,如图2.3: ,1,,1,,,1,,1=? ? - +??-+??-+??--++-x y t t x y t t y x t t y x t t j t j i j t j i j t j i j t j i λ λ λ λ 对于平直边界上的节点,如图2.4: 2 22,,1,,1,,,1=?+Φ??+??-+??-+??-? -+-w j i j t j i j t j i j t j i yq y x x y t t x y t t y x t t λλλ 对于外部和内部角点,如图2.5: 2 43220 2422,,,1,1,,1,,,1,,1,,,1=?+?+Φ??+??-+??-+??-+??-=?+?+Φ??+??-+??-?+-+-?--w n m n m n m n m n m n m n m n m n m w n m n m n m n m n m q y x y x y x t t x y t t x y t t y x t t q y x y x x y t t y x t t λλλλλλ

传热学大作业

传热学大作业——二维物体热传导 问题的数值解法

1.二维热传导问题的物理描述: 本次需要解决的问题是结合给定的边界条件,通过二维导热物体的数值解法,求解出某建筑物墙角稳态下的温度分布t以及单位长度壁面上的热流量φ。 1.1关于边界条件和研究对象选取的物理描述:如图所示为本次作业需要求解的 建筑物墙壁的截面。尺寸如图中所标注。 1.2由于墙角的对称性,A-A,B-B截面都是绝热面,并且由于对称性,我们只需 要研究墙角的1/4即可(图中阴影部分)。假设在垂直纸面方向上不存在热量 的传递,我们只需要对墙角进行二维问题的研究即可。 1.3 关于导热量计算截面的物理描述:本次大作业需要解决对流边界条件和等温 边界条件下两类边界条件的问题。由于对称性,我们只需研究1/4墙角外表面和内表面的导热量再乘4,即是墙壁的总导热量。 2.二维热传导问题的数学描写: 本次实验的墙角满足二维,稳态无内热源的条件,因此: 壁面内满足导热微分方程: ?2t ?x2+?2t ?y2 =0。

在绝热面处,满足边界条件: ?λ(?t ?n )=0。在对流边界处满足边界条件: ?λ?t ?n w =?(t w?t f) 3.二维热传导问题离散方程的建立: 本次作业中墙角的温度场是一个稳态的连续的场。本次作业中将1/4墙角的温度场离散化,划分成若干小的网格,每个网格的节点看成以它为中心的一个小区域的代表。 通过这些节点,采用“热平衡法”,建立起相应的离散方程,通过高斯-赛德尔迭代法,得到最终收敛的温度场,从而完成对墙角温度场的数值解。 对1/4墙角的网格划分如下: 选取步长Δx=Δy=0.1m,为了方便研究,对导热物体的网格节点进行编码,编码规则如下: x,y坐标轴的方向如图所示,x,y轴的单位长度为步长Δx,取左下角点为(1,1)点,其他点的标号为其在x,y轴上的坐标。以此进行编码,进行离散方程的建立。 建立离散方程,要对导热物体中的节点根据其边界条件进行分类(特殊节点用阴影标出):首先以对流边界条件下的墙角为例

数值计算大作业

数值计算大作业 题目一、非线性方程求根 1.题目 假设人口随时间和当时人口数目成比例连续增长,在此假设下人口在短期内的增长建立数学模型。 (1)如果令()N t 表示在t 时刻的人口数目,β 表示固定的人口出生率,则人口数目满足微分方程() ()dN t N t dt β=,此方程的解为0()=t N t N e β; (2)如果允许移民移入且速率为恒定的v ,则微分方程变成() ()dN t N t v dt β=+, 此方程的解为 0()=+ (1) t t v N t N e e βββ -; 假设某地区初始有1000000人,在第一年有435000人移入,又假设在第一年年底该地区人口数量1564000人,试通过下面的方程确定人口出生率β,精确到 410-;且通过这个数值来预测第二年年末的人口数,假设移民速度v 保持不变。 435000 1564000=1000000(1) e e βββ + - 2.数学原理 采用牛顿迭代法,牛顿迭代法的数学原理是,对于方程0)(=x f ,如果) (x f 是线性函数,则它的求根是很容易的,牛顿迭代法实质上是一种线性化方法,其基本思想是将非线性方程0)(=x f 逐步归结为某种线性方程来求解。 设已知方程0)(=x f 有近似根k x (假定0)(≠'x f ),将函数)(x f 在点k x 进行泰勒展开,有 . ))(()()(???+-'+≈k k k x x x f x f x f 于是方程0)(=x f 可近似地表示为 ))(()(=-'+k k x x x f x f 这是个线性方程,记其根为1k x +,则1k x +的计算公式为

传热学大作业

传热学大作业 二维稳态 计算练习 东南大学 院系:能源与环境学院

二维稳态计算练习1、原始题目及要求 二维平壁的节点划分及边界条件如上图所示,计算要求如下: 1. 写出各未知温度节点的代数方程 2. 分别给出G-S迭代和Jacobi迭代程序 3. 程序中给出两种自动判定收敛的方法 4. 考察三种不同初值时的收敛快慢 5. 上下边界的热流量(λ=1W/(m℃)) 6. 绘出最终结果的等值线 报告要求如下: 1. 原始题目及要求 2. 各节点的离散化的代数方程 3. 源程序 4. 不同初值时的收敛快慢 5. 上下边界的热流量(λ=1W/(m℃)) 6. 计算结果的等温线图 7. 计算小结 2. 各节点的离散化的代数方程 将上图二维平壁的节点编号如下

各节点的离散化代数方程如下: t i?1,j+t i+1,j+t i,j?1+t i,j+1?4t i,j=0 2≤i≤4,2≤j≤4 t i,j=200 i=1,1≤j≤5 t i,j=100 1≤i≤5,j=5 2t i,j+1+t i?1,j+t i+1,j?4+2?△x λ t i,j+ 2?△x λ t∞=0 2≤i≤4,j=1 t i,j?1+t i,j+1+2t i?1,j?4t i,j=0 i=5,2≤j≤4 由于(5,1)为歧义点,现将其近似认为对流边界外部拐点,其节点离散化代数方程为: t4,1+t5,2?2+2?△x t5,1+ 2?△x t∞=0 △x=△y=1 λ=1W ?=10 W 2 3.源程序 (1)、G-S迭代算法Matlab源程序:t=zeros(5,5); t0=zeros(5,5); e=0.001; h=10;

哈工大能源学院专业课历年考研真题

2007 工程流体力学(90分)(必选) 一、解释下列概念(20分) 1.旋转角速度、角变形速度 2.动能修正因数、动量修正因数 3.时间平均流速、断面平均流速 4.恒定流动、缓变流动 5.点源、点汇 二、推求不可压缩流体恒定流动的动量方程(15分) 三、推求圆管层流的速度分布规律,并求通过圆管中的流量及沿程阻力损失因数。 (15分) 四、推导说明圆柱外伸管嘴出流流量增大的原因(10分) 五、有长为L,直径为D的圆柱体,在图示位置上恰好处于平衡状态。不计摩擦力, 试计算1.圆柱体的重量;2.对壁面的作用力。(15分) 六、水沿两根同样长度L1=L2=40m,直径d1=40mm,d2=80mm的串联管路由水箱A 自由流入水池B中。设λ1=0.04,λ2=0.035,h=20m。(15分) 试确定:1.流量为多少?2.对L1、d1管并联同样长度及直径的支管时,流量为多少?

(1) 试导出圆柱体内的一维径向稳态导热微分方程,并给出边界条件;

燃烧学试题(60分)任选之三 1.解释下列专业名词(15分): (1)化合物的生成焓; (2)理论燃烧温度; (3)火焰传播速度; (4)燃料的高位发热量; (5)比表面积。 2.说明下列概念(20分): (1)阿累尼乌斯定律; (2)扩散火焰和预混火焰; (3)影响热力着火的着火温度的主要因素; (4)链锁反应。 3.在研究碳的燃烧过程中,根据燃烧条件不同可分为几个燃烧特性区,在不同的燃 烧特性区如何强化燃烧过程?(7分) 4.利用非绝热条件下谢苗诺夫热自燃理论分析燃料发热量对着火的影响。(8分) 5. 假定:1)油滴为均匀对称的球体;2)油滴随风飘动,与空气没有相对运动;3)燃烧进行得很快,火焰面很薄;4)油滴表面温度为饱和温度;5)忽略对流与辐射换热;6)忽略油滴周围的温度场不均匀对热导率、扩散系数的影响;7)忽略斯蒂芬流。试计算火焰锋面的直径、油耗量,以及油滴直径与时间的关系。(10分)

传热学大作业(2)

传热学大作业(2) 二维稳态计算练习1、原始题目及要求 二维平壁的节点划分及边界条件如上图所示,计算要求如下: 1. 写出各未知温度节点的代数方程 2. 分别给出G-S迭代和Jacobi迭代程序 3. 程序中给出两种自动判定收敛的方法 4. 考察三种不同初值时的收敛快慢 5. 上下边界的热流量(λ=1W/(m℃)) 6. 绘出最终结果的等值线 报告要求如下: 1. 原始题目及要求 2. 各节点的离散化的代数方程 3. 源程序 4. 不同初值时的收敛快慢 5. 上下边界的热流量(λ=1W/(m℃)) 6. 计算结果的等温线图 7. 计算小结

2. 各节点的离散化的代数方程 将上图二维平壁的节点编号如下 各节点的离散化代数方程如下: 由于(5,1)为歧义点,现将其近似认为对流边界外部拐点,其节点离散化代数方程为:3.源程序 (1)、G-S迭代算法Matlab源程序: t=zeros(5,5); t0=zeros(5,5); e=0.001; h=10; n=1; tf=10; for j=1:5 %上边界节点 t(1,j)=200; end for i=1:5 %右边界节点 t(i,5)=100; end

for k=1:100 for i=2:4 %内部节点 for j=2:4 t(i,j)=(t(i-1,j)+t(i+1,j)+t(i,j-1)+t(i,j+1))/4; end end for i=2:4;%左边界节点 t(i,1)=(2*t(i,2)+t(i-1,1)+t(i+1,1)+2*h*tf/n)/(4+2*h/n); end for j=2:4; %下边界节点 t(5,j)=(t(5,j-1)+t(5,j+1)+2*t(4,j))/4; end t(5,1)=(t(4,1)+t(5,2)+2*h*tf/n)/(2+2*h/n); %(5,1)节点dtmax=0; for i=1:5 for j=1:5 dtmax=max(abs(t(i,j)-t0(i,j)),dtmax); end end contour(t',30); t0=t; t pause; if dtmax

相关文档
最新文档