天津大学《物理化学》第四版习题及解答(统计热力学初步)
物理化学天津大学第四版答案

物理化学天津大学第四版答案【篇一:5.天津大学《物理化学》第四版_习题及解答】ass=txt>目录第一章气体的pvt性质 ....................................................................................................... (2)第二章热力学第一定律 ....................................................................................................... . (6)第三章热力学第二定律 ....................................................................................................... .. (24)第四章多组分系统热力学 ....................................................................................................... . (51)第五章化学平衡 ....................................................................................................... .. (66)第六章相平衡 ....................................................................................................... (76)第七章电化学 ....................................................................................................... (85)第八章量子力学基础 ....................................................................................................... . (107)第九章统计热力学初步 ....................................................................................................... ...... 111 第十一章化学动力学 ....................................................................................................... . (117)第一章气体的pvt性质1.1 物质的体膨胀系数与等温压缩率的定义如下试推出理想气体的,与压力、温度的关系。
物理化学第四版上册课后答案天津大学第一章气体PVT关系

第一章习题解答1.1物质的体膨胀系数αV与等温压缩率κT的定义如下:试导出理想气体的、与压力、温度的关系解:对于理想气体:PV=nRT , V= nRT/P求偏导:1.2 气柜储存有121.6kPa,27℃的氯乙烯(C2H3Cl)气体300m3,若以每小时90kg的流量输往使用车间,试问储存的气体能用多少小时?解:将氯乙烯(M w=62.5g/mol)看成理想气体:PV=nRT , n= PV/RT n=121600300/8.314300.13 (mol)=14618.6molm=14618.662.5/1000(kg)=913.66 kgt=972.138/90(hr)=10.15hr1.3 0℃,101.325kPa的条件常称为气体的标准状况,试求甲烷在标准状况下的密度?解:将甲烷(M w=16g/mol)看成理想气体:PV=nRT , PV =mRT/ M w 甲烷在标准状况下的密度为=m/V= PM w/RT=101.32516/8.314273.15(kg/m3)=0.714 kg/m31.4 一抽成真空的球形容器,质量为25.0000g。
充以4℃水之后,总质量为125.0000g。
若改充以25℃,13.33kPa的某碳氢化合物气体,则总质量为25.0163g。
试估算该气体的摩尔质量。
水的密度按1 g.cm-3计算。
解:球形容器的体积为V=(125-25)g/1 g.cm-3=100 cm3将某碳氢化合物看成理想气体:PV=nRT , PV =mRT/ M wM w= mRT/ PV=(25.0163-25.0000)8.314300.15/(13330100 10-6)M w =30.51(g/mol)1.5 两个容器均为V的玻璃球之间用细管连接,泡内密封着标准状况下的空气。
若将其中一个球加热到100℃,另一个球则维持0℃,忽略连接细管中的气体体积,试求该容器内空气的压力。
解:因加热前后气体的摩尔数不变:加热前:n=2 P1V/RT1加热后:n=P1V/RT1PV/RT2列方程:2 P1V/RT1=P1V/RT1PV/RT2P=2 T2P1/( T1T2)=2373.15100.325/(373.15 273.15)kPa=115.47kPa1.6 0℃时氯甲烷(CH3Cl)气体的密度ρ随压力的变化如下。
物理化学第四版课后答案

第一章气体的pVT性质1.1物质的体膨胀系数与等温压缩率的定义如下试推出理想气体的,与压力、温度的关系。
解:根据理想气体方程1.5两个容积均为V的玻璃球泡之间用细管连结,泡内密封着标准状态下的空气。
若将其中的一个球加热到100 C,另一个球则维持0 C,忽略连接细管中气体体积,试求该容器内空气的压力。
解:由题给条件知,(1)系统物质总量恒定;(2)两球中压力维持相同。
标准状态:因此,1.9 如图所示,一带隔板的容器内,两侧分别有同温同压的氢气与氮气,二者均可视为理想气体。
(1)保持容器内温度恒定时抽去隔板,且隔板本身的体积可忽略不计,试求两种气体混合后的压力。
(2)隔板抽取前后,H2及N2的摩尔体积是否相同?(3)隔板抽取后,混合气体中H2及N2的分压立之比以及它们的分体积各为若干?解:(1)等温混合后即在上述条件下混合,系统的压力认为。
(2)混合气体中某组分的摩尔体积怎样定义?(3)根据分体积的定义对于分压1.11 室温下一高压釜内有常压的空气,为进行实验时确保安全,采用同样温度的纯氮进行置换,步骤如下:向釜内通氮气直到4倍于空气的压力,尔后将釜内混合气体排出直至恢复常压。
重复三次。
求釜内最后排气至恢复常压时其中气体含氧的摩尔分数。
解:分析:每次通氮气后至排气恢复至常压p,混合气体的摩尔分数不变。
设第一次充氮气前,系统中氧的摩尔分数为,充氮气后,系统中氧的摩尔分数为,则,。
重复上面的过程,第n次充氮气后,系统的摩尔分数为,因此。
1.13 今有0 C,40.530 kPa的N2气体,分别用理想气体状态方程及van der Waals 方程计算其摩尔体积。
实验值为。
解:用理想气体状态方程计算用van der Waals计算,查表得知,对于N2气(附录七),用MatLab fzero函数求得该方程的解为也可以用直接迭代法,,取初值,迭代十次结果1.16 25 C时饱和了水蒸气的湿乙炔气体(即该混合气体中水蒸气分压力为同温度下水的饱和蒸气压)总压力为138.7 kPa,于恒定总压下冷却到10 C,使部分水蒸气凝结为水。
物理化学(天津大学第四版)课后答案 第五章 化学平衡

第五章化学平衡5.1在某恒定的温度和压力下,取的A(g)进行如下化学反应若,试证明,当反应进度时,系统的Gibbs 函数G值为最小,这时A,B 间达化学平衡。
解:假设系统为理想气体,则反应系统的Gibbs 函数为因为,因此恒温、恒压下G 只是n A的函数,其极值求解如下解得w w w .k h d a w .c o m 课后答案网5.2已知四氧化二氮的分解反应在298.15K 时,。
试判断在此温度及下列条件下,反应进行的方向。
(1)N 2O 4(100kPa),NO 2(1000kPa);(2)N 2O 4(1000kPa),NO 2(100kPa);(3)N 2O 4(300kPa),NO 2(200kPa);解:由J p 进行判断5.31000K时,反应的。
现有与碳反应的气体混合物,其组成为体积分数w w w .k h d a w .c o m 课后答案网,,。
试问:(1)T =1000K ,p =100kPa 时,等于多少,甲烷能否形成?(2)在1000K 下,压力需增加到若干,上述合成甲烷的反应才可能进行。
解:设反应体系中气相为理想气体,则因此,5.4已知同一温度,两反应方程及其标准平衡常数如下:求下列反应的。
w w w .k h d a w .c o m 课后答案网解:所给反应=(2)–(1),因此5.5已知同一温度,两反应方程及其标准平衡常数如下:求下列反应的。
解:所给反应=2x (2)–(1),因此注:平衡组成的计算关键是物料衡算。
w ww .k h d a w .c o m 课后答案网5.6在一个抽空的恒容容器中引入氯和二氧化硫,若它们之间没有发生反应,则在375.3K 时的分压分别为47.836kPa 和44.786kPa 。
将容器保持在375.3K ,经一定时间后,总压力减少至86.096kPa ,且维持不变。
求下列反应的。
解:反应各组分物料衡算如下因此,5.7使一定量摩尔比为1:3的氮、氢混合气体在1174K ,3MPa 下通过铁催化剂以合成氨。
物理化学第四版课后答案

第一章气体的pVT性质1.1物质的体膨胀系数与等温压缩率的定义如下试推出理想气体的,与压力、温度的关系。
解:根据理想气体方程1.5两个容积均为V的玻璃球泡之间用细管连结,泡内密封着标准状态下的空气。
若将其中的一个球加热到100 C,另一个球则维持0 C,忽略连接细管中气体体积,试求该容器内空气的压力。
解:由题给条件知,(1)系统物质总量恒定;(2)两球中压力维持相同。
标准状态:因此,1.9 如图所示,一带隔板的容器内,两侧分别有同温同压的氢气与氮气,二者均可视为理想气体。
(1)保持容器内温度恒定时抽去隔板,且隔板本身的体积可忽略不计,试求两种气体混合后的压力。
(2)隔板抽取前后,H2及N2的摩尔体积是否相同?(3)隔板抽取后,混合气体中H2及N2的分压立之比以及它们的分体积各为若干?解:(1)等温混合后即在上述条件下混合,系统的压力认为。
(2)混合气体中某组分的摩尔体积怎样定义?(3)根据分体积的定义对于分压1.11 室温下一高压釜内有常压的空气,为进行实验时确保安全,采用同样温度的纯氮进行置换,步骤如下:向釜内通氮气直到4倍于空气的压力,尔后将釜内混合气体排出直至恢复常压。
重复三次。
求釜内最后排气至恢复常压时其中气体含氧的摩尔分数。
解:分析:每次通氮气后至排气恢复至常压p,混合气体的摩尔分数不变。
设第一次充氮气前,系统中氧的摩尔分数为,充氮气后,系统中氧的摩尔分数为,则,。
重复上面的过程,第n次充氮气后,系统的摩尔分数为,因此。
1.13 今有0 C,40.530 kPa的N2气体,分别用理想气体状态方程及van der Waals 方程计算其摩尔体积。
实验值为。
解:用理想气体状态方程计算用van der Waals计算,查表得知,对于N2气(附录七),用MatLab fzero函数求得该方程的解为也可以用直接迭代法,,取初值,迭代十次结果1.16 25 C时饱和了水蒸气的湿乙炔气体(即该混合气体中水蒸气分压力为同温度下水的饱和蒸气压)总压力为138.7 kPa,于恒定总压下冷却到10 C,使部分水蒸气凝结为水。
《物理化学》(天津大学第四版)作业问题.

《物理化学》(天津大学第四版)作业问题华南理工大学应用化学系葛华才编写第1 02030405060709101112章第一章气体的性质作业问题1.5 状态变化瓶1(n, p,V, T )+瓶2(n, p,V, T )→瓶1(n 1, p ’,V, T )+瓶2(n 2, p ’,V, T ’)本题的关键是要找变化前后的守恒量:物质的量,建立关系式2n = n 1 +n 2再利用理想气体状态方程n=pV/RT 即可求解。
1.6 漏写坐标轴名和图名。
使用非国标单位:atm 。
没给出计算的数值。
1.9.两种气体的恒温混合过程如下:(1)混合后的总压p ’= nRT/V = [n(N 2)+n(H 2)]RT/4dm3= [(p ×1dm 3/RT)+ (p ×3dm 3/RT)] RT/4dm 3= p即等于混合前的压力。
(2)摩尔体积V m = V/n =RT/p ,仅与温度和(系统)压力有关。
混合前后温度和压力均相同,所以摩尔体积相同。
注意:应用时应为总压,不能用分压。
(3)过程为恒温恒压混合且是理想气体,所以混合前纯组分的体积即为分体积:V(H 2) = 3 dm 3,V(N 2) = 1dm 3;[ 亦可按V(H 2)= y(H 2) V(总) 计算]分压比p(H 2): p(N 2)= y(H 2) :y(N 2) =n(H 2)/ n(N 2) = (p ×3dm 3/RT)/ (p ×1dm 3/RT)= 3 :1H 23dm 3pTN 21dm 3pTH 2 , N 24dm 3p'T恒T 混合对于理想气体:分压是指某组分占所有可空间所具有的压力;分体积是指某组分压力为总压时具有的体积。
1.17 系统状态变化如下:对于容器中的水气,是非恒质量过程,关系复杂;而空气的变化是恒质量且恒容过程,因此可根据理想气体状态方程,建立空气状态变化的关系式: n空气= p空气V/RT ,即(p 1-3.567kPa)V/RT 1 =(p 2-101.325kPa)V/RT 2所以p 2 =101.325kPa +(p 1-3.567kPa) T 2 /T 1=101.325kPa +(101.325kPa-3.567kPa)×373.15K/300K = 222.920 kPa本题的关键是:空气的量和体积不变建立方程求压力。
天津大学《物理化学》第四版上、下册部分习题解答

面向21世纪课程教材 天津大学物理化学教研室编 高等教育出版社《物理化学》(上、下册)第四版习题解答上册P94(热力学第一定律):15.恒容绝热,ΔU=Q V =0ΔU=ΔU Ar +ΔU Cu =(nC V ,m ΔT)Ar +(nC p,m ΔT)Cu =4(20.786-R)(T -273.15)+2×24.435(T -423.15)=0 T=347.38KΔH=ΔH Ar +ΔH Cu =(nC p,m ΔT)Ar +(nC p,m ΔT)Cu =4×20.786(347.38-273.15)+2×24.435(347.38-423.15)=2469J 19.恒压绝热,ΔH=Q p =0ΔH=ΔH A +ΔH B =(nC p,m ΔT)A +(nC p,m ΔT)B =2×2.5R(T -273.15)+5×3.5R(T -373.15)=0 T=350.93KW=ΔU=ΔU A +ΔU B =(nC V ,m ΔT)A +(nC V ,m ΔT)B =2×1.5R(350.93-273.15)+5×2.5R(350.93-373.15)= -369.2J 35.(1) Δr H øm =Δf H øm,酯+2Δf H øm,水-2Δf H øm,醇-Δf H øm,氧= -379.07+2(-285.83)-2(-238.66)-0= -473.41kJ .mol -1 (2) Δr H øm =2Δc H øm,醇+Δc H øm,氧-Δc H øm,酯-2Δc H øm,水=2(-726.51)+0-(-979.5)-0= -473.52 kJ .mol -137.由 HCOOCH 3+2O 2==2CO 2+2H 2OΔc H øm,酯=Δr H øm =2Δf H øm,二氧化碳+2Δf H øm,水-Δf H øm,酯 Δf H øm,酯=2Δf H øm,二氧化碳+2Δf H øm,水-Δc H øm,酯=2(-393.509)+2(-285.83)-(-979.5)= -379.178 kJ .mol -1由 HCOOH+CH 3OH==HCOOCH 3+H 2O Δr H øm =Δf H øm,酯+Δf H øm,水-Δf H øm,酸-Δf H øm,醇= -379.178+(-285.83)-(-424.72)-(-238.66)= -1.628 kJ .mol -1P155(热力学第二定律):1. (1) η=1-T 2/T 1=1-300/600=0.5(2) η= -W/Q 1Q 1= -W/η=100/0.5=200kJ 循环 ΔU=0,-W=Q=Q 1+Q 2 -Q 2=Q 1+W=200-100=100kJ10.理想气体恒温 ΔU=0,ΔS 系统=nR ln (p 1/p 2)=1×8.3145ln (100/50)=5.763J .K -1(1) Q= -W=nRT ln (p 1/p 2) =1×8.3145×300ln (100/50)=1729J 可逆 ΔS 总=0(2) Q= -W=p ex ΔV=22111247J 2nRT nRT p nRT p p -==⎛⎫⎪⎝⎭-11247 4.157J K 300Q Q S T T--∆====-⋅环境环境环境ΔS 总=ΔS 系统+ΔS 环境=5.763-4.157=1.606J .K -1 (3) Q= -W=0 ΔS 环境=0ΔS 总=ΔS 系统+ΔS 环境=5.763J .K -1 19.恒压绝热,ΔH=Q p =0ΔH=ΔH 冷+ΔH 热=(C p ΔT)冷+(C p ΔT)热 =100×4.184(T -300.15)+200×4.184(T -345.15)=0 T=330.15KΔS=ΔS 冷+ΔS 热=C p,冷ln (T/T 1)+C p,热ln (T/T 1) =100×4.184ln (330.15/300.15)+200×4.184 ln (330.15/345.15)=2.678J .K -1 23.恒压 Q=ΔH=n Δvap H m =(1000/32.042)×35.32=1102.3kJW= -p ex ΔV= -p(V g -V l )= -pV g = -nRT= -(1000/32.042)×8.3145×337.80= -87655J ΔU=Q+W=1102.3-87.655=1014.6kJ可逆相变 ΔS=ΔH/T=1102.3/337.80=3.2632kJ .K -136. H 2O(l) 101.325kPa ,393.15K H 2O(g)ΔH 1=C p ΔT=1×4.224(-20)= -84.48kJ ΔH 3=C p ΔT=1×2.033×20= 40.66kJ ΔS 1=C p ln (T 2/T 1)=4.224ln (373.15/393.15) ΔS 3=C p ln (T 2/T 1)=2.033ln (393.15/373.15)=-0.2205kJ .K -1 =0.1061kJ .K -1H 2O(l) 101.325kPa,373.15KH 2O(g)ΔH 2=2257.4kJΔS 2=ΔH 2/T=2257.4/373.15=6.0496kJ .K -1ΔH=ΔH 1+ΔH 2+ΔH 3= -84.48+2257.4+40.66=2213.58kJ ΔS=ΔS 1+ΔS 2+ΔS 3= -0.2205+6.0496+0.1061=5.9352kJ .K -1 ΔG=ΔH -T ΔS=2213.58-393.15×5.9352= -119.84kJ或由22112211T T T p T T p T T T H H C dTC dT S S T∆=∆+∆∆∆=∆+⎰⎰计算40.(1) Δr H øm =2Δf H øm,CO +2Δf H øm,H2-Δf H øm,CH4-Δf H øm,CO2=2(-110.525)+0-(-74.81)-(-393.509)=247.269kJ .mol -1 Δr S øm =2S øm,CO +2S øm,H2-S øm,CH4-S øm,CO2=2×197.674+2×130.684-186.264-213.74=256.712J .K -1.mol -1 Δr G øm =Δr H øm -T Δr S øm =247.269-298.15×256.712/1000=170.730 kJ .mol -1 (2) Δr G øm =2Δf G øm,CO +2Δf G øm,H2-Δf G øm,CH4-Δf G øm,CO2=2(-137.168)+0-(-50.72)-(-394.359)=170.743kJ .mol -1(3) 反应物(150kPa) 产物(50kPa)ΔS 1=nR ln (p 1/p 2)=2R ln (150/100)=6.742 ΔS 2=nR ln (p 1/p 2)=4R ln (100/50)=23.053 ΔG 1=-nRT ln (p 1/p 2)=-2010 ΔG 1=-nRT ln (p 1/p 2)=-6873反应物(100kPa) 产物(100kPa)Δr S øm Δr G ømΔr S m =Δr S øm +ΔS 1+ΔS 2=256.712+6.742+23.053=286.507J .K -1.mol -1Δr G m =Δr G øm +ΔG 1+ΔG 2=170.743-2.010-6.873=161.860 kJ .mol -1 或 先求出各压力下的S m 、Δf G m 值或 由等温方程Δr G m =Δr G øm +RT ln J p (见第五章化学平衡) P208(多组分系统热力学):2. (1)/////(1)/0.095/0.1801580.01040.095/0.180158(10.095)/0.0180153B B BB BB B AB B A AB B B An m M mw M x n n m M m M mw M m w M ===+++-==+-(2) -3/0.0951036.5546mol m /0.180158B B B B B Bn m M w c V m M ρρ⨯=====⋅(3) -1//0.095/0.1801580.583mol kg (1)10.095B B BB B B AAB n m M mw M b m m m w =====⋅--7. k B =p B /x B =101.325/0.0425=2384kPa由 p=p A +p B =p A *x A +k B x B 101.325=10.0(1-x B )+2384x B x B =0.03847//36.4610.03847///36.461100/78.114B B BB B B AB B A AB n m M m x n n m M m M m ====+++m B =1.867g24.b B =ΔT f /K f =0.200/1.86=0.1075mol .kg -1**1000/18.01533.167 3.161kPa 1000/18.01530.1075A A A A A A Bn p p p x p n n ===⋅=⨯=++25.-30.400010000.16136mol m 8.3145298.15B c RT∏⨯===⋅⨯4-13/10 6.2010g mol0.16136110B B BB B B B n m M c VV m M c V-=====⨯⋅⨯⨯27.b B =ΔT f /K f =0.56/1.86=0.301mol .kg -1(1) Π=c B RT=ρb B RT=1000×0.301×8.3145×310.15=7.76×105Pa(2) /B B B BB An n m M b m m Vρ=≈=30.301100010342.30103g B B B m b VM ρ-==⨯⨯⨯=P245(化学平衡):5. 反应之间的关系为:(3)=2(2)-(1)故 Δr G øm,3=2Δr G øm,2-Δr G øm,1-RTlnK ø3=2(-RTlnK ø2)-(-RTlnK ø1) K ø3=( K ø2)2/ K ø16. SO 2Cl 2 == SO 2 + Cl 2开始压力 0 44.786 47.836 平衡压力 p 44.786-p 47.836-p平衡总压Σ=p+44.786-p+47.836-p=86.096 得p=6.526kPa22222222(44.786 6.526)(47.836 6.526)2.4226.526100SOCl SO ClSO Cl SO Cl p p p p ppK p p ppφφφφφ⋅⋅--====⋅⨯8. (1) PCl 5 == PCl 3 + Cl 2开始量 1 0 0平衡量 1-a a a 平衡总量Σ=1+a摩尔分数 1 111αααααα-+++ 325210.31211PCl ClPCl p p p p p p K p pppφφφφφφαααα⋅⋅+===-⋅+⎛⎫ ⎪⎝⎭代入p=200kPa ,p ø=100kPa ,得a =0.367 (2) PCl 5 == PCl 3 + Cl 2 开始量 1 0 5平衡量 1-a a 5+a 平衡总量Σ=6+a摩尔分数 15 666αααααα-++++ 3255660.31216PClClPCl p p p p pp p p K p pppφφφφφφφαααααα+⋅⋅⋅++===-⋅+⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭代入p=101.325kPa ,p ø=100kPa ,得a =0.26810.32266.66/20.1111100NH H Sp p K p p φφφ=⋅==⎛⎫ ⎪⎝⎭(1) NH 4HS (s) == NH 3 + H 2S 开始压 0 39.99平衡压 p 39.99+p 平衡总压Σ=39.99+2p 3239.990.111110010018.87kPa39.99277.73kPaNH H Sp p p p K ppp p φφφ+=⋅=⋅==∑=+=(2) 即要求Δr G m >0,也即J p =32NH H Sp p ppφφ⋅>K ø6.6660.1111100100p⨯> p>166.7kPa17.AgCl 的溶度积即反应AgCl==Ag ++Cl -的平衡常数Δr G øm =Δf G øm,Ag++Δf G øm,Cl --Δf G øm,AgCl=77.107+(-131.22)-(-109.789)=55.676kJ .mol -1105-355.6761000ln 22.4598.3145298.151.7610 1.3310mol dmr m G K RTK s c c φφφ--+-∆⨯=-=-=-⨯=⨯====⨯⋅下册P46(电化学): 10.Λm =κ/c=0.0368/(0.05×1000)=0.000736Ω-1.m 2.mol -1Λm ∞=λ+∞+λ-∞=0.034982+0.00409=0.039072Ω-1.m 2.mol -1 a =Λm /Λm ∞=0.000736/0.039072=0.018842250.050.01884 1.80910110.01884c K φαα-⨯===⨯--19.(1) Pb + Hg 2SO 4 == PbSO 4 + 2Hg(2) Δr G m = -zFE= -2×96485×0.9647= -186.16×103J .mol -1 Δr S m =zF(∂E/∂T)p =2×96485×1.74×10-4=33.58J .K -1.mol -1 Δr H m =Δr G m +T Δr S m = -186.16×103+298.15×33.58= -176.15×103 J .mol -1 Q r,m =T Δr S m =298.15×33.58=10.01×103 J .mol -1 21.Ag + 0.5Hg 2Cl 2 == AgCl + HgΔr S m =S m,AgCl +S m,Hg -S m,Ag -0.5S m,Hg2Cl2=96.2+77.4-42.55-0.5×195.8=33.15J .K -1.mol -1 Δr G m =Δr H m -T Δr S m =5435-298.15×33.15= -4449J .mol -14-144490.04611V19648533.15 3.43610V K 196485r m r m pG E zFS E T zF -∆=-==⨯∆∂===⨯⋅∂⨯⎛⎫ ⎪⎝⎭35.负极反应:2Sb+3H 2O -6e →Sb 2O 3+6H +6*21210.05916lg 0.05916lg 0.05916pH60.05916pH 0.05916pH 0.34510.228pH pH 3.98 5.960.059160.05916H H a a E E E E φφφφϕϕϕϕϕϕϕϕ++----+-+-=+=+=-=-=-+=+--=+=+=37.(1) 反应Fe 2++Ag +==Fe 3++Ag 相应电池为:Pt|Fe 2+,Fe 3+||Ag +|AgE ø=φ+ø-φ-ø=0.7994-0.770=0.0294V1964850.0294ln 1.1448.3145298.153.14zFE K RTK φφφ⨯⨯===⨯=(2) Fe 2+ + Ag + == Fe 3+ + Ag 开始浓度 0 0 0.05 平衡浓度 x x 0.05-x2-30.05 3.140.0439mol dmx K xx φ-===⋅40.(1) 溴化银电极的标准电势即银电极的非标准电势,||||130.05916lg 0.05916lg4.88100.79940.05916lg0.07105V1sp Ag AgBr Br Ag Ag Ag Ag Ag Ag Ag BrK a a φφφϕϕϕϕ-++++--==+=+⨯=+=(2) AgBr 的Δf G øm 即反应Ag+0.5Br 2==AgBr 的Δr G øm该反应相应电池为:Ag,AgBr|Br -|Br 2,Pt E ø=φ+ø-φ-ø=1.065-0.07105=0.99395V Δr G m ø= -zFE ø= -1×96485×0.99395= -95.901×103J .mol -1 P191(界面现象):3.汞γ乙醚-汞=γ水-汞+γ乙醚-水cos θ 0.379=0.375+0.0107cos θ θ=68.050 4. 02lnr p Mp RTrγρ=920.072750.018015ln1.07722.337998.38.3145293.15106.863kPar r p p -⨯⨯==⨯⨯⨯=6. 对水中气泡,66220.05885 1.17710Pa 0.110p r γ-⨯∆===-⨯-⨯ 对空中水滴,66220.05885 1.17710Pa 0.110p rγ-⨯∆===⨯⨯P289(化学动力学):7. CH 3NNCH 3 == C 2H 6 + N 2t=0 21.332 0 0 t=1000s p 21.332-p 21.332-p 总压Σ= p+(21.332-p)+(21.332-p)=22.732得 p=19.932kPa一级反应5-10141/2511121.332l n l n 6.78810s100019.932l n 2l n 21.02110s 6.78810p k t p t k --===⨯===⨯⨯9. 由题意 r 0=k 1c 0=1×10-3r=k 1c=0.25×10-3 两式相除,得 c 0/c=4一级反应 -1011/2111ln ln 40.0231min60ln 2ln 230.0min0.0231c k t c t k ======c 0=1×10-3/k 1=1×10-3/0.0231=0.0433mol .dm -313.二级反应 3-1-1201111110.0333d m m o l m i n1010.251k t c c =-=-=⋅⋅-⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭ 23.由题意,半衰期与初压成反比,可知该反应为二级反应-1-1201/2110.00493kPa s 101.3252k p t ===⋅⨯30.1111lna E k k R T T =--⎛⎫⎪⎝⎭-1103.3100011ln1.56060.2928.3145353.15338.151.390minkk ⨯=--==⎛⎫⎪⎝⎭由速率常数的单位可知反应为一级反应,故1/2ln 2ln 20.4987min 1.390t k === 37.由动力学方程()11001ln1nnc kt cc kt c n --=-=-或可知:反应从某相同初始浓度c 0到达某一定浓度c 时,k 与t 成反比。
物理化学第四版课后习题答案

物理化学第四版课后习题答案【篇一:物理化学第四版上册课后答案天津大学第三章】>3.1卡诺热机在(1)热机效率;的高温热源和的低温热源间工作。
求(2)当向环境作功源放出的热。
时,系统从高温热源吸收的热及向低温热解:卡诺热机的效率为根据定义3.5高温热源温度,低温热源。
今有120 kj的热直接从高温热源传给低温热源,龟此过程的解:将热源看作无限大,因此,传热过程对热源来说是可逆过程3.6 不同的热机中作于的高温热源及的低温热源之时,两热源的总熵变间。
求下列三种情况下,当热机从高温热源吸热。
(1)可逆热机效率(2)不可逆热机效率(3)不可逆热机效率。
解:设热机向低温热源放热,根据热机效率的定义因此,上面三种过程的总熵变分别为。
3.7 已知水的比定压热容下列三种不同过程加热成100 ?c的水,求过程的(1)系统与100 ?c的热源接触。
今有1 kg,10 ?c的水经。
(2)系统先与55 ?c的热源接触至热平衡,再与100 ?c的热源接触。
(3)系统先与40 ?c,70 ?c的热源接触至热平衡,再与100 ?c的热源接触。
解:熵为状态函数,在三种情况下系统的熵变相同在过程中系统所得到的热为热源所放出的热,因此3.8 已知氮(n2, g)的摩尔定压热容与温度的函数关系为将始态为300 k,100 kpa下1 mol的n2(g)置于1000 k的热源中,求下列过程(1)经恒压过程;(2)经恒容过程达到平衡态时的解:在恒压的情况下。
在恒容情况下,将氮(n2, g)看作理想气体将代替上面各式中的,即可求得所需各量3.9始态为同途径变化到,,的某双原子理想气体1 mol,经下列不的末态。
求各步骤及途径的。
(1)恒温可逆膨胀;(2)先恒容冷却至使压力降至100 kpa,再恒压加热至;(3)先绝热可逆膨胀到使压力降至100 kpa,再恒压加热至。
解:(1)对理想气体恒温可逆膨胀,?u = 0,因此(2)先计算恒容冷却至使压力降至100 kpa,系统的温度t:(3)同理,先绝热可逆膨胀到使压力降至100 kpa时系统的温度t:根据理想气体绝热过程状态方程,各热力学量计算如下【篇二:物理化学第四章课后答案傅献彩第五版】lass=txt>第七章电化学7.1 用铂电极电解能析出多少质量的解:电极反应为溶液。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章统计热力学初步
1.按照能量均分定律,每摩尔气体分子在各平动自由度上的平均动能为。
现有1 mol CO气体于0 ºC、101.325 kPa条件下置于立方容器中,试求:
(1)每个CO分子的平动能;
(2)能量与此相当的CO分子的平动量子数平方和
解:(1)CO分子有三个自由度,因此,
(2)由三维势箱中粒子的能级公式
2.某平动能级的,使球该能级的统计权重。
解:根据计算可知,、和只有分别取2,4,5时上式成立。
因此,该能级的统计权重为g = 3! = 6,对应于状态。
3.气体CO分子的转动惯量,试求转动量子数J为4与3两能级
的能量差,并求时的。
解:假设该分子可用刚性转子描述,其能级公式为
4.三维谐振子的能级公式为,式中s为量子数,即。
试证明能级的统计权重为
解:方法1,该问题相当于将s个无区别的球放在x,y,z三个不同盒子中,每个盒子容纳的球数不受限制的放置方式数。
x盒中放置球数0,y, z中的放置数s + 1
x盒中放置球数1,y, z中的放置数s
……………………………………….
x盒中放置球数s,y, z中的放置数1
方法二,用构成一三维空间,为该空间的一个平面,其与三个轴均相交于s。
该平面上为整数的点的总数即为所求问题的解。
这些点为平
面在平面上的交点:
由图可知,
5.某系统由3个一维谐振子组成,分别围绕着
A, B, C三个定点做振动,总能量为。
试
列出该系统各种可能的能级分布方式。
解:由题意可知方程组
的解即为系统可能的分布方式。
方程组化简为,其解为。