光的量子性..

合集下载

光的量子特性

光的量子特性
大学物理(丙)
第26讲 光的量子特性
提纲
y 黑体辐射以及Planck量子假说 y 光电效应,Einstein光电效应方程 y * Compton效应 y 光的波粒二象性
近代物理(modern physics)及其应用
经典物理学:牛顿力学、热学、电磁学、光学
(宏观 + 低速)
近代物理学:相对论、量子力学、量子场论、•••


与 (b) 对

康 (a)







光子理论的解释
光的波动理论无法解释康普顿效应。 根据经典电磁波理论,当电磁波通过物质时,物质
中带电粒子将作受迫振动,其频率等于入射光频率, 所以它所发射的散射光频率应等于入射光频率。
光子理论对康普顿效应的解释 光子理论认为康普顿效应是光子和自由电子作
弹性碰撞的结果。具体解释如下:
I
光强较强
结论1:单位时 间内,受光照的 金属板释放出 来的电子数和 入射光的强度 成正比。
IH
光强较弱
U O 光电效a 应的伏安特性曲线
U
(2)遏止电势差 如果使负的电势差足够大,从
而使由金属板表面释放出的具有最大速度的电子 也不能到达阳极时,光电流便降为零,此外加电
势差的绝对值Ua 叫遏止电势差。
能量子的概念是非常新奇的,它冲破了 传统的概念,揭示了微观世界中一个重要规 律,开创了物理学的一个全新领域。由于普 朗克发现了能量子,对建立量子理论作出了 卓越贡献,获1918年诺贝尔物理学奖。
光电效应 爱因斯坦的光子理论
光电效应 当波长较短的 可见光或紫外光照射到 某些金属表面上时,金属 中的电子就会从光中吸 取能量而从金属表面逸 出的现象。

第七章 光的量子性

第七章 光的量子性

Vg应与光强有关,实际却与光的频率有关。 Vg应与光强有关,实际却与光的频率有关。矛盾 应与光强有关
3.照射时间长,积累能量多,只要照射足够长时间,总会有 照射时间长,积累能量多,只要照射足够长时间,
电子逸出,有电流。实际却是若入射光频率ν 电子逸出,有电流。实际却是若入射光频率ν <ν0 ,无论照 入射光频率 射多长时间,无光电流产生。 射多长时间,无光电流产生。 矛盾 光很弱,必须要照射长时间 才能积累足够的能量, 长时间, 积累足够的能量 4.光很弱,必须要照射长时间,才能积累足够的能量,使电 子从金属表面逸出。但实际却只要 不管I 多弱, 子从金属表面逸出。但实际却只要 ν >ν0,不管I0多弱,一 照上去,就有光电流产生。 矛盾 照上去,就有光电流产生。
普适常数就是黑体的单色幅出度。 普适常数就是黑体的单色幅出度。
∴基尔霍夫定律
M(ν ,T ) = Mb (ν ,T ) A(ν ,T )
T=5000k T=3000k
讨论:
1.同样温度下,黑体的辐射最大。 1.同样温度下,黑体的辐射最大。 同样温度下 2.绝对黑体不存在,黑体模型。 2.绝对黑体不存在,黑体模型。 绝对黑体不存在 3.黑体是否一定是黑的? 黑色物体是否就是黑体? 3.黑体是否一定是黑的? 黑色物体是否就是黑体? 黑体是否一定是黑的
一、黑体
黑体—在任何温度状态下全部吸收任何波长的电磁波. 黑体 在任何温度状态下全部吸收任何波长的电磁波. 在任何温度状态下全部吸收任何波长的电磁波 由

Mb (ν ,T ) = f (ν ,T ) Ab (ν ,T )
黑体
Ab (ν , T ) = 1
Mb (ν ,T )
可见光 T=6000k

光的量子性

光的量子性

光的量子性光是一种电磁波,同时也是由一个粒子组成的能量包,这个粒子被称为光子。

在量子物理学中,光的量子性指的是光以离散的能量量子形式传播和吸收的现象,而不是以连续的波浪形式。

光的量子性的概念源于波粒二象性理论,这是量子物理学的基本原则之一。

根据波粒二象性理论,光可以展示出波动性和粒子性。

在光的粒子性方面,每一个光子都携带着离散的能量,其大小由光的频率决定。

光的波长越短,频率越高,每个光子携带的能量就越大。

光子的行为在很多实验中都得到了验证。

例如,光的干涉实验和光的散射实验都可以解释为光粒子之间的相互作用。

在干涉实验中,光的波动性可以解释为不同光子之间相位差的叠加,造成明暗干涉条纹的形成。

在散射实验中,光的粒子性可以解释为光子在物质中与原子或分子之间的相互作用,从而产生散射现象。

光的量子性还可以在单光子实验中得到验证。

通过使用特殊装置,科学家可以将光限制在非常低的能量水平,使得只有一个光子通过。

这种情况下,光呈现出典型的粒子性质,例如光子会在探测器上形成点状的光斑。

光的量子性在现代科技中有着广泛的应用。

例如,在量子通信领域,利用光的量子性可以实现安全的通信。

量子密钥分发协议利用光子的单光子性质,来保证通信的安全性和不可破解性。

此外,量子计算和量子存储等领域也都依赖于光的量子性。

为了更好地理解光的量子性,科学家们不断进行着深入的研究。

通过发展新的实验技术和理论模型,他们希望能够更全面地认识光的本质。

例如,光的单光子实验、光的量子纠缠实验以及光的非经典态实验等都是为了揭示光的微观粒子性质所进行的研究。

光的量子性是现代物理学中一个非常重要的概念,它帮助我们理解和解释光的行为。

从波粒二象性理论出发,我们可以认识到光既有波动性,也具有粒子性。

这种独特的性质使得光在许多领域中都具有广泛的应用潜力。

通过深入研究和探索,我们相信光的量子性将产生更多的新发现和新应用,为人类社会的进步带来更多的可能性。

大学基础物理学答案(习岗)第10章

大学基础物理学答案(习岗)第10章

129第十章 量子物理基础本章提要1. 光的量子性· 物体由于自身具有一定温度而以电磁波的形式向周围发射能量的现象称热辐射。

· 在任何温度下都能全部吸收照射到其表面上的各种波长的光(电磁波),的物体称为绝对黑体,简称黑体。

· 单位时间内从物体单位表面积发出的、波长在λ附近单位波长间隔内电磁波的能量称单色辐射本领(又称单色辐出度),用)(T M λ表示· 单位时间内物体单位表面积发出的包括所有波长在内的电磁波的辐射功率称为辐射出射度,用则M 表示,M 与)(T M λ的关系为0()d M M T λλ∞=⎰2. 维恩位移定律在不同的热力学温度T 下,单色辐射本领的实验曲线存在一个峰值波长λm , T 和λm 满足如下关系:λm T b =其中,b 是维恩常量。

该式称维恩位移定律。

3. 斯忒藩—玻尔兹曼定律· 黑体的辐射出射度M 与温度T 的关系为4T M σ=其中,σ为斯忒藩—玻尔兹曼常量。

该结果称斯忒藩—玻尔兹曼定律。

· 对于一般的物体4T M εσ=ε称发射率。

4. 黑体辐射· 能量子假说:黑体辐射不是连续地辐射能量,而是一份份地辐射能量,并且每一份能量与电磁波的频率ν成正比,满足条件E nhv =,其中n =1,2,3,…,等正整数,h 为普朗克常数。

这种能量分立的概念被称为能量量子化,130每一份最小的能量E hv =称为一个能量子。

· 普朗克黑体辐射公式(简称普朗克公式)为112)(/52-=kT hc e hc T M λλλπ其中,h 是普朗克常量。

由普朗克公式可以很好地解释黑体辐射现象。

· 光子假说:光是以光速运动的粒子流,这些粒子称为光量子,简称光子。

一个光子具有的能量为νh E =动量为 λh p =5. 粒子的波动性· 实物粒子也具有波粒二象性,它的能量E 、动量p 与和它相联系的波的频率ν、波长λ满足关系2E mc h ν==λh p m u == 这两个公式称为德布罗意公式或德布罗意假设。

第七章 光的量子性 第二节 普朗克辐射公式

第七章 光的量子性 第二节 普朗克辐射公式

由于他们的理论没有超出经典物理学的传统概念。 由于他们的理论没有超出经典物理学的传统概念。 所以没有取得完全成功。 所以没有取得完全成功。最具代表性的是维恩公式 和瑞利-金斯公式。 和瑞利-金斯公式。
维恩公式和瑞利- 一. 维恩公式和瑞利-金斯公式
1896年,维恩根据热力学原理,并假设辐射按 年 维恩根据热力学原理, 波长的分布类似于与麦克斯韦速度分布律, 波长的分布类似于与麦克斯韦速度分布律,导 出下列公式: 出下列公式:
ε = hν
普朗克根据上述假设,由玻耳兹曼分布, 普朗克根据上述假设,由玻耳兹曼分布,得出谐振 子的平均能量为: 子的平均能量为:
ε (k , T ) =
ε0
e 1
2πhc 2
hν kT
得出黑体辐射的单色辐出度的表达式为: 得出黑体辐射的单色辐出度的表达式为:
2πhν 1 M B (ν , T ) = hν c 2 e kT 1
2. 与经典物理中能量变化是连续的概念不同,谐振 与经典物理中能量变化是连续的概念不同, 子的能量只能取某些分立值, 子的能量只能取某些分立值,这些分立值是某一最 小能量单元ε的整数倍, 小能量单元ε的整数倍,即ε,2ε,3ε等。这些允许的 ε ε 能量值称为谐振子的能级。 称为能量子。 能量值称为谐振子的能级。 ε称为能量子。所以振子 的能量是不连续的。 的能量是不连续的。 振子从一个能级跃迁到一个能级而辐射或吸收电磁 波时,能量变化也是不连续的, 波时,能量变化也是不连续的,能量的不连续变化 称为能量量子化。 称为能量量子化。 3. 能量子ε与谐振子的频率成正比。 能量子ε与谐振子的频率成正比。 h=6.626×10-34J/s,称为普朗克常数。 = × ,称为普朗克常数。
3

第七章光的量子性普朗克公式能量子

第七章光的量子性普朗克公式能量子

第七章光的量子性普朗克公式能量子在经典物理学中,光被认为是一种波动现象,其行为可以用波动方程来描述和解释。

然而,在20世纪初,德国物理学家马克斯·普朗克提出了一个新的理论,即光也具有颗粒性质,被称为“能量子”。

普朗克的研究主要集中在黑体辐射的研究上。

黑体是一种理想化的物体,可以吸收和辐射所有输入的能量。

普朗克试图解释黑体辐射的谱线分布问题,但在经典物理学的框架下,无法得到与实验结果相符的理论。

为了解释黑体辐射谱线的分布,普朗克假设能量可以通过小单位,即“能量子”来传递。

这个假设意味着能量是离散的,而不是连续的。

他还假设能量子的大小与辐射的频率相关,即E = hf,其中E代表能量,h代表普朗克常数,f代表频率。

普朗克的假设得到了与实验结果相符的计算结果,并被后来的实验证实。

这个假设不仅解决了黑体辐射问题,也为后来量子力学的发展奠定了基础。

普朗克公式也被称为第一个量子理论的基本公式,标志着经典物理学的结束和量子物理学的诞生。

根据普朗克公式,光的能量是与频率成正比的,频率越高,能量就越大。

这与经典物理学中光波的能量与振幅平方成正比的关系不同。

相比之下,普朗克公式更加符合大量实验的结果。

普朗克公式的提出不仅在黑体辐射领域产生了广泛的应用,也为后来的量子理论奠定了基础。

后来,爱因斯坦提出了光的光子理论,进一步深化了对光的量子性质的认识。

光子是光的能量量子,它具有波粒二象性,在一些实验中表现为波动性,在另一些实验中表现为粒子性。

普朗克的量子理论不仅推动了对光的理解的发展,也改变了对其他微观粒子行为的理解。

在后来的量子力学中,量子概念被广泛应用于解释微观世界的行为,如电子的行为和原子的结构等。

量子力学的发展对物理学产生了深远的影响,并且在其他领域,如化学、材料科学和计算机科学中也有广泛的应用。

光的量子性

光的量子性
(2)反冲电子得到多少动能? (3)在碰撞中,光子的能量损失了多少?
解(1) C (1 cos ) C(1 cos90 ) C
2.431012 m
(2) 反冲电子的动能
Ekmc 2 Nhomakorabea0c2
hc
0

hc


hc
0
(1
0
)

295 eV
(3) 光子损失的能量=反冲电子的动能
解 (1) E h hc 4.421019 J 2.76eV
p h E 1.471027 kg m s1 2.76eV / c
c (2) Ek E A(2.762.28)eV0.48eV (3) hc 5.18107 m 518nm
21.2 光的量子性
1、光电效应(photoelectric effect) (1)光电效应实验的规律
①实验装置
光照射至金属表面,电子从金 属表面逸出,称其为光电子。
②实验规律
截止频率(cutoff frequency) 0 仅当 0才发生光电效应,
截止频率与材料有关与光强无关。
A V
0 0(红限)

Ua k U0
③经典理论遇到的困难
红限问题 按经典理论,无论何种频率的入射光,只要其强度 足够大,就能使电子具有足够的能量逸出金属 .与实 验结果不符。
最大初动能问题 按经典理论,光电子最大初动能取决于光强,应
该和光的频率 无关。与实验结果不符。
瞬时性问题 按经典理论,电子逸出金属所需的能量,需要有 一定的时间来积累,一直积累到足以使电子逸出金属 表面为止.与实验结果不符。
E
3、康普顿效应(Compton effect) 1920年,美国物理学家康普顿在观察X射线被物质

第七章光的量子性光电效应爱因斯坦的量子解释

第七章光的量子性光电效应爱因斯坦的量子解释
m0c 9.111031 3108 2.7310 0.0024 nm 22 p 2.7310
34
在整个电磁波谱中,射线的波长在0.01nm一下, 14 所以该光子在电子波谱中属于射线。
六. 光压
1
一. 光子
普朗克把能量子的概念只局限于谐振子及其发射 或吸收的机制上,对于辐射场,仍然认为只是一 种电磁波。 爱因斯坦指出,光不仅具有波动性,也具有粒子性。 光是一粒一粒以光速c运动的粒子流,这些光粒子称 光量子,简称光子。每个光子的能量为:
h
不同频率的光其光子能量不同,光子只能整个地被 吸收或发射。
因此,光电倍增管的灵敏度比普通光电管高几百万倍, 微弱的光照就可产生很大的电流。
11
五. 光子的质量和动量
光子不仅具有能量,也具有动量和质量。但光子又是 以光速运动,牛顿力学便不适用。按照狭义相对论的 观点,质量和能量具有如下关系: 2
E mc
因此,光子的质量为:
E h m 2 2 c c
从光子具有动量这一假设出发,还可以解释光压的 作用。即当光子流遇到任何障碍物时,在障碍物上 施加压力,就好像气体分子在容器壁上的碰撞形成 气压的一样。 光压就是光子流产生的压强。 俄罗斯科学家门捷列夫首先 于1900年做了光压的实验, 证实了光压的存在。 光压的存在的事实说明,光不但有能量,而且确实有动 量。这有力地证明了光的物质性,证明了光和电子、原 子、分子等实物一样,是物质的不同形式。
8
阴极可用多种材料制成, 常用的阴极材料有银氧铯 光电阴极、锑铯光电阴极、 铋银氧铯光电阴极等。不 同的阴极材料用于不同波 长范围的光。
为了提高真空光电管的灵敏度,通常在玻璃泡内充入 某种低压惰性气体,光电子在飞向阳极的过程中与气 体分子碰撞,使气体电离,这样可增大光电流,使灵 敏度增加。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
c2 T
e0 ( , T ) c1 e
5

(c1和c2为经验参数)
mT b
b 2.898 103 m K
固体在温度升高时颜色的变化
800K
2018/9/25
1000K T
1200K
1400K
P.12/32
量子物理
1. 维恩公式 (Wien formula) 维恩根据经典热力学得出:
c2 T
2. 瑞利 — 金斯公式(Rayleigh-Jans formula)
e0 ( , T ) c15e
(c1和c2为经验参数)

e0 ( , T )
瑞利 — 金斯线
J.W.S. Rayleigh 1842—1919
James H. Jeans 1887-1946
瑞利和金斯用能量均分定理和电磁理论得出:
饱 (4) 和 存在一个“截止频 率” frequency) 电 (cutoff光 强 较 弱 I 流 s ( 红限频率 ) Heinrich R. Hertz
o
经典理论认为: 光电子的初动能应决定于 I 入射光的光强,而不决定于 光的频率。 光 强 较 强
1857-1894
即:当入射光的频率小于红限频率 时,无论光强多大,也不会 产生光电效应。 二、 爱因斯坦的光子 (photon)理论 U O
19 世纪的最后一天,欧洲著名的科学家欢聚一堂。会上,英 国著名物理学家W.汤姆生(即开尔文男爵)发表了新年祝词。他 在回顾物理学所取得的伟大成就时说,物理大厦已经落成,所 剩只是一些修饰工作。同时,他在展望 20 世纪物理学前景时, 却若有所思地讲道:“动力理论肯定了热和光是运动的两种方 式,现在,它的美丽而晴朗的天空却被两朵乌云笼罩了, “第 一朵乌云出现在光的波动理论上”,“第二朵乌云出现在关于 能量均分的麦克斯韦-玻尔兹曼理论上。” 热辐射实验 迈克尔逊-莫雷实验
2018/9/25
P.6/32
量子物理
二、热辐射的定量描述 黑体(black 3.单色吸收率 (, T) body) (monochromatic absorptance): 物体辐射总能量及能量按波长分布 当辐射从外界入射到温度为T 的物 体表面时,在到+d的波段内,吸 都决定于温度。 收能量与入射总能量之比。 (一)描述热辐射的物理量 1.单色辐出度 (monochromatic radiant exitance):
2018/9/25
P.16/32
量子物理
一、光电效应(photoelectric effect) (1) 光电效应是瞬时发生的, 响应时间为 10-9 s 经典理论不能解释“毋 需时间积累” (2) 入射光频率一定时,饱和光电流 (saturation photocurrent)与入射光 光强成正比,但反向截止电压 (cutoff voltage)与入射光光强无关。 (3) 反向截止电压与入射光频率成 线性关系。 反向截止电压反映光电子的初动能
2018/9/25
P.5/32
量子物理
第7章
§7-1 光速“米”的定义
自己阅读
光的量子性
§7-2 经典辐射定律
一、热辐射(thermal radiation)现象 由经典理论,带电粒子加速运动将向 外辐射电磁波; 一切物体都以电磁波的形式向外 辐射能量; 物体的辐射与其温度有关,故将这种辐 射称为热辐射; 这种电磁波形式的辐射能量按波长分布 是不均匀的。
Josef Stefan 1844—1906 1835—1893 1879年,斯忒藩根据实验得出黑体 辐出度:
Ludwig Boltzmann
E0 (T ) 0T 4
3.黑体辐射基本定律
0 5.6703 108 W m2 K 4
——斯忒藩常数(Stefan constant) 1884年玻尔兹曼从理论上证明
吸收比 = 吸收能量 入射总能量
温度为 T 物体从单位面积上发射的、 波长介于和+d之间的辐射功率dEλ (二)绝对黑体(black-body) 对于任何温度,任何波长吸收比始终 与d之比。 等于一的物体。即: 即: dE 能吸收一切外来辐射而无反射的物体。 e ( , T ) d ——理想模型 0 (, T ) 1 2. 辐出度(radiant exitance):
Wilhelm Wien 1864—1928 能谱分布曲线的峰值对应的波长 m与温度T的乘积为一常量。
E0 (T ) 0T 4
0 5.6703 108 W m2 K 4
——斯忒藩常数(Stefan constant) 1884年玻尔兹曼从理论上证明
mT b
2 π hc 25 e
hc kT
1
普朗克认为:经典理论只需作适当 的修正,就可以得出该公式。
经典理论的基本观点: 电磁辐射来源于带电粒子的振动, 电磁波的频率与振动频率相同; 振子辐射的电磁波含有各种波长, 是连续的,辐射能量也是连续的。 温度升高,振子振动加强,辐射能 增大。 普朗克将上述第二点进行了修正
Max Plancize in Physics 1918
2018/9/25
P.3/32
量子物理
历史回顾——关键人物
L. De Broglie E. Schrödinger W. Heisenberg Max Born (1892-1987) (1887-1961) (1901-1976) (1882-1970)
2018/9/25
P.10/32
(1)斯忒藩-玻尔兹曼定律 (Stefan-Boltaman law):
量子物理
2.维恩位移定律(Wien displacement law)
Josef Stefan 1844—1906 1835—1893 1879年,斯忒藩根据实验得出黑体 辐出度:
Ludwig Boltzmann
当发射 = 吸收时,其温度不变 —— 平衡热辐射 锶(Sr) 铷(Rb) 铜(Cu)
二、热辐射的定量描述 黑体(black body) 物体辐射总能量及能量按波长分布 都决定于温度。 (一)描述热辐射的物理量 1.单色辐出度 (monochromatic radiant exitance):
不同的原子辐射谱线的颜色(频率)成分 不同。
光电效应伏安特性曲线
1 2 eV mv m 2
2018/9/25
P.17/32
量子物理
二、 爱因斯坦的光子(photon)理论
电磁辐射是由以光速 c 运动的 局域于空间小范围内的光量子所 组成。 光子的能量 光子的动量 对光电效应实验规律的解释 (1) 电子只要吸收一个光子就可以从金 属表面逸出, 所以无须时间上的累 积过程。 (2) 光强大,光子数多,释放的光电子 也多,所以饱和光电流也大。 (3) 入射光子能量 = 逸出功 + 光电子初动能 因而光电子初动能和入射光的频率 1879-1955 成线性关系。 The Nobel Prize in Physics 1921 (4) 红限频率对应光电子初动能等于 0 。
量子物理
W.Thomson 1824—1907
2018/9/25
P.2/32
量子物理
The Nobel Prize in Physics 1914
历史回顾——关键人物
Max Planck,量子论的奠基人。 Max von Laue 1900年12月14日他在德国物理 1879-1960 学会上,宣读了以《关于正常 光谱中能量分布定律的理论》 为题的论文,提出了能量的量 子化假设,并导出黑体辐射能 量的分布公式。 劳厄称这一天是 “量子论的诞生日”
一个好的发射体。 黑体的单色辐出度
结论:一个好的吸收体一定也是
2018/9/25
P.8/32
量子物理
三、黑体辐射(black-body radiation)定律
1.黑体辐射实验:
实验装置
T
三棱镜 绝对黑体
平行光管
2.黑体的单色辐出度按波长分布实验曲线
2018/9/25
P.9/32
量子物理
2.黑体的单色辐出度按波长分布实验曲线 (1)斯忒藩-玻尔兹曼定律 (Stefan-Boltaman law):
P. Dirac (1902-1984)
De Broglie (法)、Schrö dinger (奥地利)、Heisenberg (德)、Born (德)、Dirac (英)等人建立起反映微观粒子规 律的量子力学。
2018/9/25
P.4/32
量子物理
历史回顾——重要事件
1905年,Einstein引进光量子(光子)的概念,成功地解释了光电 效应。 1913年,Bohr圆满地解释了氢原子的光谱规律。 1923年,De Broglie提出实物粒子波粒二象性的假说。 1926年,Schrö dinger找到了微观体系的运动方程,建立起波动 量子力学。 1927年,Heisenberg提出微观量子体系的测不准关系。 Dirac、Heisenberg和Pauli将量子力学和狭义相对论结合起来, 建立相对论量子力学——量子电动力学。 20世纪30年代以后形成了描述各种粒子场的量子化理论 ——量 子场论,它构成了描述基本粒子现象的理论基础。
b 2.898 103 m K
固体在温度升高时颜色的变化
800K
1000K T
1200K
1400K
P.11/32
2018/9/25
量子物理
2.维恩位移定律(Wien displacement law) 四、经典物理的困难 上述实验定律虽然很有实用价值,但 只有从理论上得到黑体辐射的能谱公式 ——黑体的单色辐出度公式才是最重要的。 从经典理论出发能推倒出吗? 1. 维恩公式 (Wien formula) 维恩根据经典热力学得出: Wilhelm Wien 1864—1928 能谱分布曲线的峰值对应的波长 m与温度T的乘积为一常量。
相关文档
最新文档