《椭圆的定义及其标准方程》教学设计

合集下载

椭圆的定义及其标准方程教学设计

椭圆的定义及其标准方程教学设计

椭圆的定义及其标准方程教学设计
一、教材分析
椭圆是选修2-1第二章《椭圆》第一节的内容,在这一节中主要学习椭圆的定义及其标准方程,它是本章也是整个解析几何中最重要的内容之一,这节课是在学生学习了坐标平面上圆的方程的基础上,运用曲线与方程理论解决具体的二次曲线的又一个实例,它是坐标法研究曲线的几何性质的又一次实际演练,同时也是进一步研究椭圆几何性质的基础,此外,它还为后面研究双曲线和抛物线这两种圆锥曲线提供打下基础,因此本节课具有承上启下的重要作用。

二、教学目标
目标:1)知识与技能:感受椭圆定义构建的过程,归纳出椭圆的定义;
2)过程与方法:经历从具体情境中抽象出椭圆模型的过程,依据椭圆的定义推导椭圆的标准方程;
3)情感、态度与价值观:进一步体会数形结合的数学思想方法。

三、教学重难点
重点:掌握椭圆的定义及其标准方程,理解坐标法的基本思想。

难点:椭圆的标准方程的建立、推导和化简过程以及坐标法的应用。

四、学情分析
学情:在学习本节课之前,学生已经学习了直线与圆的方程,对曲线和方程的概念具备了一些了解和运用的经验,用坐标法研究几何问题也有了初步的认识,但由于学生对解析几何的学习程度还不够深,对坐标法解决几何问题掌握还不够,此外,对含有两个根式之和的等式化简的运算较为生疏,去根号的方法选择不当等会成为学生推导标准方程的“拦路虎”。

椭圆及其标准方程讲课教案

椭圆及其标准方程讲课教案

椭圆及其标准方程讲课教案一、教学目标:1. 让学生理解椭圆的定义及其性质。

2. 引导学生掌握椭圆的标准方程及其求法。

3. 培养学生运用椭圆知识解决实际问题的能力。

二、教学内容:1. 椭圆的定义与性质2. 椭圆的标准方程3. 椭圆方程的求法4. 椭圆的应用三、教学重点与难点:1. 重点:椭圆的定义、性质、标准方程及其求法。

2. 难点:椭圆方程的求法及其应用。

四、教学方法:1. 采用问题驱动法,引导学生主动探究椭圆的定义与性质。

2. 利用图形演示法,让学生直观理解椭圆的标准方程。

3. 运用案例分析法,培养学生解决实际问题的能力。

4. 采用小组讨论法,促进学生合作学习。

五、教学过程:1. 导入:通过展示生活中的椭圆实例,引导学生思考椭圆的定义。

2. 新课讲解:(1) 讲解椭圆的定义,引导学生理解椭圆的基本性质。

(2) 讲解椭圆的标准方程,让学生掌握椭圆方程的表示方法。

(3) 讲解椭圆方程的求法,引导学生学会运用数学方法解决问题。

3. 案例分析:分析实际问题,运用椭圆知识解决问题。

4. 巩固练习:布置练习题,让学生巩固所学知识。

5. 课堂小结:总结本节课的主要内容,强调重点与难点。

6. 课后作业:布置作业,让学生进一步巩固椭圆知识。

六、教学目标:1. 让学生掌握椭圆的焦点和准线的概念。

2. 引导学生了解椭圆的离心率及其求法。

3. 培养学生运用椭圆的性质解决几何问题的能力。

七、教学内容:1. 椭圆的焦点和准线2. 椭圆的离心率3. 椭圆的参数方程4. 椭圆的图像特点5. 椭圆的应用八、教学重点与难点:1. 重点:椭圆的焦点、准线、离心率的概念及其应用。

2. 难点:椭圆的参数方程及其图像特点。

九、教学方法:1. 采用问题驱动法,引导学生探究椭圆的焦点和准线。

2. 利用几何画图软件,演示椭圆的焦点和准线。

3. 运用案例分析法,让学生运用椭圆性质解决几何问题。

4. 采用小组讨论法,促进学生合作学习。

十、教学过程:1. 导入:通过复习上一节课的内容,引导学生思考椭圆的焦点和准线。

椭圆及其标准方程》教学设计

椭圆及其标准方程》教学设计

椭圆及其标准方程》教学设计一、教学目标:1、知识与技能目标(1)掌握椭圆的定义及焦点、焦距的概念,能正确推导椭圆的标准方程.(2)掌握求椭圆标准方程的定义法和待定系数法.2、过程与方法目标(1)经历椭圆的形成过程,培养学生运动变化的观点,训练学生的动手的能力、合作学习能力和运用所学知识解决实际问题的能力.(2)通过联系曲线方程的求法,推导椭圆的标准方程,培养学生运用类比、分类讨论、数形结合思想解决问题的能力.3、情感态度与价值观目标(1)通过小组合作,培养学生的协作、友爱精神,体验成功的快乐.(2)激发学生学习数学的兴趣、提高学生的审美情趣、培养学生勇于探索,敢于创新的精神.二、重点、难点:重点:掌握椭圆的定义及标准方程,理解坐标法的基本思想;难点:椭圆标准方程的推导与化简.三、教学方法:探究式教学法,即教师通过问题诱导f启发讨论f探索结果,引导学生直观观察f归纳抽象f总结规律,使学生在获得知识的同时,能够掌握方法、提升能力.四、教具准备:多媒体课件和自制教具:绘图板、图钉、细绳.五、教学设计情景引入学习探究(一)材料2:地球围绕着太阳旋转;材料3:“嫦娥三号”升空录像.引入课题:椭圆及其标准方程.动手实验:(1)取一定长的细绳,把它的两个端点固定在黑板的同一点处,套上铅笔,拉紧绳子,旋转一周,会得到什么图形?(2)把绳子的两个端点拉开一段距离,再套上铅笔旋转,又会得到什么图形?(3)继续拉远两个端点的距离,直到把绳子拉直,又会得到什么图形?(4)动画演示椭圆的形成过程.师:引导学生观察:椭圆在实际生活中是很常见师:引导学生观察动画,地球运行轨道是椭圆;问“嫦娥三号”的运行轨道是什么?生:常娥三号着陆先是按椭圆轨道运行,再直线着陆.师:板书课题.请学生拿出课前准备的硬纸板、细线、铅笔实验(1)教师演示,学生观察思考.实验(2)、(3),各小组学生利用手中工具在图板上进行实验,一起合作画椭圆.利用学生熟知的地理规律:地球围绕太阳转引入,让学生感到亲切自然;通过“嫦娥三号”的升空录像,让学生感受现实,激发学生的兴趣,培养爱国思想.通过做实验,让学生动手实践,体验椭圆的形成过程,加深对椭圆定义的理解将学生分为四人一组,通过分组讨论、研究,增强学生的合作意识.学习探究(二)【学情预设】学生可能会建系如下几种情况:方案一:把匚、F2建在X轴上,以FF的中点为原点;12方案二:把匚、F2建在X轴上,以匚为原点;方案三:把匚、F2建在x轴上,以F原点;2方案四:把匚、F2建在X轴上,以.F2与x轴的左交点为原点;方案五:把匚、F2建在x轴上,以FF与x轴的右交点为原点;12经过比较确定方案一.下面我们来建立椭圆的方程建系:以F,F所在的直线为x轴,以12线段F]F2的垂直平分线为y轴建立直角坐标系xOy.设点:设点M(x,y)是椭圆上的任意一点,点M到F,F的距离和为2a,焦距12为2c(c〉0),则.(—c,0),F2(C,0)列式:由定义:|M「1+叫=2a,即(2)如何设点?(3)怎样列式?⑷如何化简?建立椭圆的方程是本节课的难点,为降低难度,让学生回顾求曲线方程的步骤,以已有的知识来探求新的知识,温故知新,教师再加以正确的引导,新知会自然形成.生:回顾求曲线方程的步骤:⑴建系,⑵设点,⑶列式,⑷化简.师:引导学生按求曲线方程的步骤建立椭圆的方程.生:思考,回答:(1)怎样建立适当的坐标系生:分析化简的方法,在J(x+c)2+y2+J(x-c)2+y2=2a练习本上完成化简.化简:整理,得(a2一c2)x2+a2y2=a2(a2一c2)•.•a〉0,c〉0,2a〉2c a2(a2—c2)>0.方程的两边都除以a2(a2—c2),得教学环节教学过程师生互动设计思想学习探究(二)OF=OF=c12则|MO|=、.;a2-c2,令b=\;'a2-c2,则b2=a2-c2,那么方程变为:=1(a>b>0).多媒体展示动画:将椭圆的焦点放在y轴上结论:当焦点在y轴是时,椭圆的方程为:y2x2—+一=1(a>b>0).a2b2多媒体展示图表:让学生对照图形、方程理解记忆.师:请同学们在图中找出长度等于a,c的线段,则师:引导学生推出椭圆的标准方程.师:指出其焦点在x轴上,坐标为F](―c,0),F2(C,0)生:观察图像,识记方程.活动过程:点拨-----板演-----点评师:若焦点放在y轴上,方程又怎样?生:小组讨论椭圆的方程,相互交流、补充,得出结论.生:分析方程、图形,识记椭圆的标准方程.师:引导学生如何根据方程判断焦点的位置?实践体验1、你能判断下列椭圆的焦点位置生:根据所学椭圆的标吗?并写出焦点坐标.⑵25x2+16y2=400.准方程,思考后回答.师生共同矫正.生:总结如何判断焦点的位置?椭圆的标准方程的导出,放手给学生有很大的难度,这里采取有意义的接受学习的方式,教师对照图形,加以引导,让学生明白方程中字母的几何意义,对方程的理解有很大的作用.展示动画,通过类比的方法,让学生对照焦点在x轴的情形,写出焦点在y轴上时,椭圆的标准方程.通过图表便于对比,加深学生对两个方程及几何意义的认识.尝试练习,加深对方程及几何意义的理解.六、板书设计:七、布置作业:。

《椭圆及其标准方程》教学设计(精选3篇)

《椭圆及其标准方程》教学设计(精选3篇)

《椭圆及其标准方程》教学设计(精选3篇)《椭圆及其标准方程》教学设计篇1一、教材内容分析本节是整个解析几何部分的重要基础学问。

这一节课是在《直线和圆的方程》的基础上,将讨论曲线的方法拓展到椭圆,又是连续学习椭圆几何性质的基础,同时还为后面学习双曲线和抛物线作好预备。

它的学习方法对整个这一章具有导向和引领作用,所以椭圆是同学学习解析几何由浅入深的一个台阶,它在整章中具有承前起后的作用。

二、学情分析高中二班级同学正值身心进展的鼎盛时期,思维活跃,又有了相应学问基础,所以他们乐于探究、敢于探究。

但高中生的规律思维力量尚属阅历型,运算力量不是很强,有待于训练。

基于上述分析,我实行的是“创设问题情景-----自主探究讨论-----结论应用巩固”的一种讨论性教学方法,教学中采纳激发爱好、主动参加、乐观体验、自主探究的学习,形成师生互动的教学氛围。

使同学真正成为课堂的主体。

三、设计思想1、把章头图和引言用微机以影像、录音和图片的形式给出,生动体现出数学的有用性;2、进行分组试验,让同学亲自动手,体验学问的发生过程,并培育团队协作精神;3、利用《几何画板》进行动态演示,增加直观性;四、教学目标1、学问与技能目标:理解椭圆定义、把握标准方程及其推导。

2、过程与方法目标:注意数形结合,把握解析法讨论几何问题的一般方法,注意探究力量的培育。

3、情感、态度和价值观目标:(1)探究方法激发同学的求知欲,培育深厚的学习爱好。

(2)进行数学美育的渗透,用哲学的观点指导学习。

五、教学的重点和难点教学重点:椭圆定义的理解及标准方程的推导。

教学难点:标准方程的推导。

四、说教学过程(一)、创设情景,导入新课。

(3分钟)1、利用微机放映“彗星运行”资料片,引入课题——椭圆及其标准方程。

2、提问:同学们在日常生活中都见过哪些带有椭圆外形的物体?对同学的回答进行筛选,并利用微机放映几个例子的图片。

设计意图:通过观看影音资料,一方面使同学简洁了解椭圆的实际应用,另一方面产生问题意识,对讨论椭圆产生心理期盼。

《椭圆及其标准方程》教案(通用4篇)

《椭圆及其标准方程》教案(通用4篇)

《椭圆及其标准方程》教案(通用4篇)《椭圆及其标准方程》篇1教学目标:(一)知识目标:掌握椭圆的定义及其标准方程,能正确推导椭圆的标准方程.(二)能力目标:培养学生的动手能力、合作学习能力和运用所学知识解决实际问题的能力;培养学生运用类比、分类讨论、数形结合思想解决问题的能力.(三)情感目标:激发学生学习数学的兴趣、提高学生的审美情趣、培养学生勇于探索,敢于创新的精神.教学重点:椭圆的定义和椭圆的标准方程.教学难点:椭圆标准方程的推导.教学方法:探究式教学法,即教师通过问题诱导→启发讨论→探索结果,引导学生直观观察→归纳抽象→总结规律,使学生在获得知识的同时,能够掌握方法、提升能力.教具准备:多媒体和自制教具:绘图板、图钉、细绳.教学过程:(一)设置情景,引出课题问题:XX年10月12日上午9时,“神州六号”载人飞船顺利升空,实现多人多天飞行,标志着我国航天事业又上了一个新台阶,请问:“神州六号”飞船的运行轨道是什么?多媒体展示“神州六号”运行轨道图片.(二)启发诱导,推陈出新复习旧知识:圆的定义是什么?圆的标准方程是什么形式?提出新问题:椭圆是怎么画出来的?椭圆的定义是什么?它的标准方程又是什么形式?引出课题:椭圆及其标准方程(三)小组合作,形成概念动画演示椭圆形成过程.提问:点m运动时,f1、f2移动了吗?点m按照什么条件运动形成的轨迹是椭圆?下面请同学们在绘图板上作图,思考绘图板上提出的问题:1.在作图时,视笔尖为动点,两个图钉为定点,动点到两定点距离之和符合什么条件?其轨迹如何?2.改变两图钉之间的距离,使其与绳长相等,画出的图形还是椭圆吗?3.当绳长小于两图钉之间的距离时,还能画出图形吗?学生经过动手操作→独立思考→小组讨论→共同交流的探究过程,得出这样三个结论:椭圆线段不存在并归纳出椭圆的定义:平面内与两个定点、的距离的和等于常数(大于)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距.(四)椭圆标准方程的推导:1.回顾:求曲线方程的一般步骤:建系、设点、列式、化简.2.提问:如何建系,使求出的方程最简?由各小组讨论,请小组代表汇报研讨结果.各组分别选定一种方案:(以下过程按照第一种方案)①建系:以所在直线为x轴,以线段的垂直平分线为y轴,建立直角坐标系。

《椭圆的定义及其标准方程》教学设计说明

《椭圆的定义及其标准方程》教学设计说明

课题:§2.1.1椭圆的定义及其标准方程鹿城中学田光海一、教案背景:1.面向对象:高中二年级学生2.学科:数学3.课时:2课时4.教学容:高中新课程标准教科书《数学》北师大版选修1-1第二章圆锥曲线与方程§2.1.1椭圆及其标准方程二. 教材分析本节课是圆锥曲线的第一课时,它是继学生学习了直线和圆的方程,对曲线和方程的概念有了一些了解,对用坐标法研究几何问题有了初步认识的基础上,进一步学习用坐标法研究曲线。

椭圆的学习可以为后面研究双曲线、抛物线提供基本模式和理论基础。

因此这节课有承前启后的作用,是本章的重点容之一。

1. 教法分析结合生活经验观察发现、启发引导、探究合作。

在学生的生活体验、直观感知、知识储备的基础上,引导学生逐步建构概念,为学生数学思想方法的形成打下基础。

利用多媒体课件,精心构建学生自主探究的教学平台,启发引导学生观察,想象,思考,实践,从而发现规律、突破学生认知上的困难,让学生体验问题解决的思维过程,获得知识,体验成功。

主要采用探究实践、启发与讲练相结合。

2. 学法分析从知识上看,学生已掌握了一些椭圆图形的实物与实例,对曲线和方程的概念有了一些了解,对用坐标法研究几何问题有了初步的认识。

从学生现有的学习能力看,通过一年多的学习,学生已具备了一定的观察事物的能力,积累了一些研究问题的经验,在一定程度上具备了抽象、概括的能力和语言转换能力。

从学生的学习心理上看,学生头脑中虽有一些椭圆的实物实例,但并没有上升为“概念”的水平,如何给椭圆以数学描述? 如何“定性”“定量”地描述椭圆是学生关注的问题,也是学习的重点问题。

他们渴望将感性认识理性化,渴望通过自己动手作图、观察来辨析和完善概念,通过对比产生顿悟,渴望获得这种学习的积极心向是学生学好本节课的情感基础。

3.教学目标知识与技能:掌握椭圆的定义;理解椭圆标准方程的推导过程,掌握椭圆标准方程的两种形式,会运用待定系数法求椭圆的标准方程。

椭圆及其标准方程教案

椭圆及其标准方程教案

椭圆及其标准方程教案一、教学目标1. 知识与技能:(1)理解椭圆的定义及其性质;(2)掌握椭圆的标准方程及其求法;(3)能够运用椭圆的标准方程解决相关问题。

2. 过程与方法:(1)通过观察、分析、归纳,培养学生的逻辑思维能力;(2)利用数形结合,提高学生运用数学知识解决实际问题的能力。

3. 情感态度与价值观:(1)培养学生对数学的兴趣和好奇心;(2)培养学生勇于探索、积极思考的科学精神。

二、教学内容1. 椭圆的定义:椭圆是平面上到两个固定点(焦点)距离之和为常数的点的轨迹。

2. 椭圆的性质:(1)椭圆的两个焦点在x轴上,且距离为2c;(2)椭圆的长轴为2a,短轴为2b,其中a>b>0;(3)椭圆的标准方程为:x^2/a^2 + y^2/b^2 = 1。

3. 椭圆的标准方程求法:(1)已知椭圆的两个焦点坐标和长轴、短轴长度,求椭圆的标准方程;(2)已知椭圆的离心率e和长轴、短轴长度,求椭圆的标准方程;(3)已知椭圆上的三点坐标,求椭圆的标准方程。

三、教学重点与难点1. 教学重点:(1)椭圆的定义及其性质;(2)椭圆的标准方程及其求法。

2. 教学难点:(1)椭圆标准方程的求法;(2)椭圆性质的应用。

四、教学方法1. 采用问题驱动法,引导学生主动探究椭圆的定义、性质和标准方程;2. 利用数形结合,让学生直观地理解椭圆的性质和标准方程;3. 设计具有针对性的练习题,巩固所学知识。

五、教学过程1. 引入:通过展示椭圆的实际应用场景,激发学生的兴趣,引出椭圆的定义;2. 讲解:讲解椭圆的性质和标准方程,引导学生理解并掌握;3. 例题:讲解椭圆标准方程的求法,分析解题思路,让学生跟随解题过程;4. 练习:布置练习题,让学生独立完成,巩固所学知识;六、教学策略1. 采用互动式教学,鼓励学生提问和发表见解,提高学生的参与度;2. 利用多媒体课件,直观展示椭圆的性质和标准方程,增强学生的理解;3. 注重个体差异,针对不同学生的学习水平,给予适当的指导和帮助;4. 创设情境,引导学生运用椭圆的知识解决实际问题,提高学生的应用能力。

椭圆的定义及标准方程教案

椭圆的定义及标准方程教案

椭圆的定义及标准方程教案教案标题:椭圆的定义及标准方程教案教学目标:1. 了解椭圆的定义及其特点。

2. 掌握椭圆的标准方程及其相关参数的含义。

3. 能够根据给定的条件写出椭圆的标准方程。

4. 通过练习和实例,培养学生解决椭圆相关问题的能力。

教学准备:1. 教学投影仪或白板。

2. 教材、教辅资料及练习题。

3. 尺子、铅笔等绘图工具。

教学过程:一、导入(5分钟)1. 利用教学投影仪或白板,展示一张椭圆的图像,引起学生的兴趣。

2. 提问:你们对椭圆有什么了解?请举例说明。

二、椭圆的定义及特点(10分钟)1. 讲解椭圆的定义:椭圆是平面上到两个定点的距离之和等于常数的点的集合。

2. 引导学生思考并回答以下问题:a. 椭圆的特点有哪些?b. 椭圆的两个定点分别叫什么?c. 椭圆上的点到两个定点的距离之和等于什么?三、椭圆的标准方程(15分钟)1. 介绍椭圆的标准方程:((x-h)^2/a^2) + ((y-k)^2/b^2) = 1,其中(h, k)是椭圆的中心坐标,a和b分别是椭圆的半长轴和半短轴的长度。

2. 解释标准方程中各参数的含义及作用。

3. 指导学生通过观察标准方程的形式,理解椭圆的形状和位置。

四、练习与实例分析(20分钟)1. 给学生提供一些椭圆的标准方程,要求他们根据方程找出椭圆的中心、半长轴和半短轴的长度,并绘制出对应的图像。

2. 引导学生分析实例,让他们发现椭圆的特点和规律。

3. 给学生一些练习题,巩固他们对椭圆标准方程的理解和运用能力。

五、拓展与应用(10分钟)1. 提出一些应用问题,如:已知一个椭圆的中心和一个焦点,求椭圆的标准方程等,让学生运用所学知识解决问题。

2. 引导学生思考椭圆在现实生活中的应用,如天文学、建筑设计等领域。

六、小结与反思(5分钟)1. 对本节课所学内容进行小结,并强调椭圆的定义及标准方程的重要性。

2. 鼓励学生积极思考和提问,及时解答他们的疑惑。

3. 总结教学过程,思考教学中存在的问题,并提出改进的建议。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:§2.1.1椭圆的定义及其标准方程
鹿城中学田光海
一、教案背景:
1.面向对象:高中二年级学生
2.学科:数学
3.课时:2课时
4.教学内容:高中新课程标准教科书《数学》北师大版选修1-1第二章圆锥曲线与方程§2.1.1椭圆及其标准方程
二. 教材分析
本节课是圆锥曲线的第一课时,它是继学生学习了直线和圆的方程,对曲线和方程的概念有了一些了解,对用坐标法研究几何问题有了初步认识的基础上,进一步学习用坐标法研究曲线。

椭圆的学习可以为后面研究双曲线、抛物线提供基本模式和理论基础。

因此这节课有承前启后的作用,是本章的重点内容之一。

1. 教法分析
结合生活经验观察发现、启发引导、探究合作。

在学生的生活体验、直观感知、知识储备的基础上,引导学生逐步建构概念,为学生数学思想方法的形成打下基础。

利用多媒体课件,精心构建学生自主探究的教学平台,启发引导学生观察,想象,思考,实践,从而发现规律、突破学生认知上的困难,让学生体验问题解决的思维过程,获得知识,体验成功。

主要采用探究实践、启发与讲练相结合。

2. 学法分析
从知识上看,学生已掌握了一些椭圆图形的实物与实例,对曲线和方程的概念有了一些了解,对用坐标法研究几何问题有了初步的认识。

从学生现有的学习能力看,通过一年多的学习,学生已具备了一定的观察事物的能力,积累了一些研究问题的经验,在一定程度上具备了抽象、概括的能力和语言转换能力。

从学生的学习心理上看,学生头脑中虽有一些椭圆的实物实例,但并没有上升为“概念”的水平,如何给椭圆以数学描述? 如何“定性”“定量”地描述椭圆是学生关注的问题,也是学习的重点问题。

他们渴望将感性认识理性化,渴望通过自己动手作图、观察来辨析和完善概念,通过对比产生顿悟,渴望获得这种学习的积极心向是学生学好本节课的情感基础。

3.教学目标
知识与技能:掌握椭圆的定义;理解椭圆标准方程的推导过程,掌握椭圆标准方程的两种形式,会运用待定系数法求椭圆的标准方程。

过程与方法:经历从具体情境中抽象出椭圆模型的过程,逐步提高学生的观察、分析、归纳、类比、概括能力;通过椭圆标准方程的推导,进一步掌握求曲线方程的一般方法——坐标法,并渗透数形结合、等价转化的数学思想方法。

情感、态度与价值观:通过课堂活动参与,激发学生学习数学的兴趣,提高学生审美情趣,培养学生勇于探索的精神。

4.教学重点与难点
重点:椭圆的定义和椭圆标准方程的两种形式
难点:椭圆的标准方程的建立和推导教学方法
5.教学准备
通过百度搜索与椭圆有关的图片资料,利用百度搜索相关的教学
资料制作多媒体课件,自制教具:绘图板、图钉、细绳。

三、教学过程




教师活动学生活动设计意图
创设情情景1:用圆柱状水杯盛半杯水,将水杯放在
水平桌面上,截面为圆形.当端起水杯喝水时,
水杯倾斜,再观察水平面,此时截面为椭圆
形.(演示)
问题1:联想生活中还有哪些是椭圆图形?
学生观察
学生举例
引入生活
情境激发
学生的学
习欲望,自
然引入新
课,同时与
其实际相
联系,拓宽
学生思维,
发展他们
联想、类比





情景2:
问题2:(1)圆是怎么画出来的?
(2)圆的定义是什么?
(3)圆的标准方程是什么形式的?
猜想:1、椭圆是怎么画出来的?2、椭圆的定义是什么?3、椭圆的标准方程又是什么形式?学生思考
后回答。

能力。

使学生在
感叹祖国
科技辉煌
发展的氛
围中认识
椭圆。

用类比的
思想,通过
已经学过
的圆的知
识猜想椭
圆,开展后
续教学。

互动探究
形成概念探究1
将圆心从一点“分裂”成两点,给你两个图钉,
一根无弹性的细绳,一张纸板,能画出椭圆
吗?
让学生自己动手画图,使其探究性学习,
再提出以下问题:
思考1:在纸板上作图说明什么?
思考2:在作图过程中,有哪些物体的位
置没变?有哪些量没有变?
思考3:若调节两图钉的相对位置,所得
到的图形有何变化?
根据椭圆画法,从中归纳椭圆定义——与两个
定点的距离之和为定长(绳长)的点的轨迹为
椭圆(绳长大于两定点间距离).
动态演示动点生成轨迹的全过程,印证猜想
同桌同学
按照老师
的要求合
作画图,并
思考轨迹
上的点具
备什么特
点。

展示学生
成果。

请学
生代表本
小组交流
探究结论:
给学生提
供一个动
手操作,合
作学习的
机会;通过
实验让学
生去探究
“满足什
么样的条
件下的点
的集合为
椭圆”;让
每个人都
动手画图,
自己思考
问题,由此
培养学生
的自信
心。

互动探究
深化概念探究2
在绳长不变的情况下,改变两个图钉之间
的距离,画出的椭圆有何变化?
当两个图钉重合在一起时,画出的图形是
什么?
当两个图钉之间的距离等于绳长时,画出
的图形是什么?
当两个图钉之间固定,能使绳长小于两个
图钉之间的距离吗?
定义:平面内与两个定点距离的和等于常
数(大于)的点的轨迹叫椭圆。

教师指出:这两个定点叫椭圆的焦点,两焦点
的距离叫椭圆的焦距。

思考1:焦点为的椭圆上任一点M,有什
么性质?
令椭圆上任一点M,则有

补充:若时,轨迹是线段;若
时,无轨迹。

思考2:刚才在画图时,大家的绳长是一样的,
但是画出的椭圆一样吗?椭圆的圆扁程度与
什么有关?
利用动
画显示结

学生通过
课件观察
变化情况
请学生给
出经过修
改的椭圆
定义
使学生经
历椭圆概
念的生成
和完善过
程,提高其
归纳概括
能力,加深
对椭圆本
质的认识,
并逐渐养
成严谨的
科学作风
方程
方程22221x y a b
+=(0a b >>)(☆)叫做椭圆的标
准方程。

它表示焦点在x 轴上,焦点坐标为
1(,0)F c -,2(,0)F c ,其中2
2
2
c a b =-.
22
22
1y x a b +=(0a b >>),它也是椭圆的标准方程。

此时,椭圆的焦点在y 轴上,
焦点坐标为1(0,)F c 2(0,)F c -,其中222c a b =- 我们可以发现,以上两种方案是最好的。

问:观察一下焦点分别在x 轴、y 轴上的椭圆
的标准方程,如何根据方程判断其焦点在x 轴
上还是在y 轴上?(看分母大小,哪个分母大
焦点就在哪一条轴上)
说明:
学生思考后主动发言回答。

以上三条,尽量由学生总结出
解曲线与
方程的关
系,感受恰
当选择坐
标系的优越性,感受标准方程的简洁、对称、和谐之美,并在实践中通过对比提高决策能力、计算能力、培养学生简约的思维能力。

培养学生
的观察、分
六、板书设计
七、教学反思
本节课整个教学过程为:提出问题——探索——解决问题——归纳反思——提高。

在问题的设计中,从多角度探究,纵向挖掘知识深度,横向加强知识间的联系,这样的设计不但突出了重点,更使难点的突破水到渠成。

本节课以问题为纽带,以探究活动为载体,学生在自觉进入问题情境后,在问题的指引下和老师的指导下,通过实践、探索、体验、反思等活动把探究活动层层展开、步步深入,亲身经历知识的产生过程。

使学生在知识的形成过程中,获得数学的情感体验,享受到成功的乐趣,同时在思想方法运用、思维能力等方面得到提高和发展。

课堂进行中通过实际操作、多媒体课件演示等,激发学生的学习兴趣,使学生让学生在生生互动、师生互动中把学生的学习过程转变为学生观察问题、发现问题、分析问题、解决问题的过程,希望对学生的思维品质的培养﹑数学思想的建立﹑心理品质的优化起到良好的作用。

本节课学生活动较多,知识拓展较深,运算较困难,因此本节课不能按预计完成,剩余问题下节课解决。

相关文档
最新文档