高二数学上学期期中试题理

合集下载

【高二】安微省池州市第一中学高二上学期期中考试数学(理)试题

【高二】安微省池州市第一中学高二上学期期中考试数学(理)试题

【高二】安微省池州市第一中学高二上学期期中考试数学(理)试题试卷说明:第一学期中考大二数学笔记:1。

在答题纸的指定位置填写你的姓名、班级、考试号和其他信息。

2.请在答题纸上正确填写答案。

选择题:这道大题有10道小题,每道小题5分,共计50分。

每个小问题中给出的四个选项中只有一个符合问题的要求。

假设点B是点a(3,4,-2)在平面上的投影,它等于()B.c.5d 2。

以下是四个命题:① 如果“”是一个错误命题,那么它们都是错误命题;② 命题“如果,那么”的无命题是“如果,那么”;③ 对“任意”命题的否定是“存在”;④ 中,是不正确命题个数为a.4b 3c的充要条件。

2d。

13.已知抛物线的顶点在原点,焦点在y轴上,从抛物线上的点到焦点的距离为4,那么()a.4b的值。

-2c。

4或-4d。

12或-2为焦点,顶点为焦点的椭圆标准方程为()a.b.c.d.5,已知空间四边形的对角线为,分别为边的中点,点在线段上,矢量为()a.b.c.d.6。

方程表示的曲线是()A.焦点在x轴上的椭圆B.焦点在x轴上的双曲线C.焦点在y轴上的椭圆D.焦点在y轴上的双曲线7。

立方体abcd-a1b1c1d1中直线与平面之间的夹角的余弦为()a.b.c.d.8。

它是椭圆的两个焦点,穿过并垂直于椭圆长轴的直线在两点处与椭圆相交。

如果是等边三角形,椭圆的偏心率为()a.b.c.d.9,抛物线上最靠近直线的点的坐标为()a.b.c.d.10,椭圆的左焦点和右焦点分别为,弦AB穿过。

如果椭圆的内切周长为,则a点和B点的坐标分别为和(a.B.c.d.)2。

填空:在这个大问题中有5个小问题,每个小问题有5分,总共25分在答案的相应部分填写答案并满足约束条件:;的值范围是12。

在已知的平行六面体中,轴上的偏心率为2,即左右焦点。

P是双曲线上的一个点,那么双曲线的标准方程是___14。

在直角坐标系中,让a(-2,3),B(3,-2)沿轴将直角坐标平面折叠成大小的二面角。

安徽省蚌埠市第二中学2021-2022学年高二上学期期中考试数学(理)试题 Word版含答案

安徽省蚌埠市第二中学2021-2022学年高二上学期期中考试数学(理)试题 Word版含答案

蚌埠二中2021—2022学年度高二第一学期期中考试 数学(理科)试题(试卷分值:150分 考试时间:120分钟 )留意事项:第Ⅰ卷全部选择题的答案必需用2B 铅笔涂在答题卡中相应的位置,第Ⅱ卷的答案必需用0.5毫米黑色签字笔写在答题卡的相应位置上,否则不予计分。

第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.推断圆1:221=+y x C 与圆9)2()2(:222=-+-y x C 的位置关系是A .相离 B.外切 C. 相交 D. 内切2.若直线l 经过点)3,2(P ,且在x 轴上的截距的取值范围是)3,1(-,则其斜率的取值范围是A . 1k 3>-<或k B. 311<<-k C. 13<<-k D. 311>-<k k 或3.以下结论正确的是A. 各个面都是三角形的几何体是三棱锥B. 以三角形的一条边所在直线为旋转轴,其余两边绕旋转轴旋转形成的曲面所围成的几何体叫圆锥C. 棱锥的侧棱长与底面多边形的边长都相等,则该棱锥可能是六棱锥D. 圆锥的顶点与底面圆周上的任意一点的连线都是母线4.一条光线从点)4,2(A 射出,倾斜角为60角,遇x 轴后反射,则反射光线的直线方程为A .03243=-+-y x B.03423=---y xC. 03243=-++y xD. 03423=---+y y x5.已知n m ,是两条不同的直线,γβα,,是三个不同的平面,则下列命题正确的是 A .若,//,//ααn m 则n m // B. 若γβγα⊥⊥,则βα// C. 若,//,//βαm m 则βα// D. 若,,αα⊥⊥n m 则n m //6. 若圆03222=+-+by ax y x 的圆心位于第三象限,那么直线0=++b ay x 肯定不经过 A .第一象限 B.其次象限 C.第三象限 D.第四象限7. 已知点)3,1(P 与直线01:=++y x l ,则点P 关于直线l 的对称点坐标为 A.1,3(--) B.)4,2( C. )2,4(-- D. )3,5(--8. 如图,在四周体ABCD 中,截面PQMN 是正方形,则下列命题中,错误的为A .BD AC ⊥B .BD AC =C. PQMN //截面ACD. 异面直线BD 与PM 所成的角为459. 已知棱长为2的正方体1111D C B A ABCD -的一个面1111D C B A 在半球底面上,四个顶点D C B A ,,,都在半球面上,则半球体积为A.π34B.π32 C. π3 D. 33π10.如图,网格纸上小正方形的边长为1,粗实线画出的是某三棱椎的三视图,则该三棱锥的体积为A .32 B. 34C. 38D. 411. 在正方体1111D C B A ABCD -中,F E ,分别为棱11,CC AA 的中点,则在空间中与三条直线CDEF D A ,,11第10题图都相交的直线有A .很多条B . 3条 C.1条 D. 0条12.设点)1,(a P ,若在圆1:22=+y x O 上存在点Q ,使得60=∠OPQ ,则a 的取值范围是A .⎥⎦⎤⎢⎣⎡-33,33 B. ⎥⎦⎤⎢⎣⎡-23,23 C. ⎥⎦⎤⎢⎣⎡-21,21 D. ⎥⎦⎤⎢⎣⎡-31,31 第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分.)13.母线长为1的圆锥体,其侧面开放图是一个半圆,则该圆锥的体积为______________ 14.一个平面图形用斜二测画法作的直观图是一个边长为cm 1的正方形,则原图形的周长为________________cm15.已知P 点是圆0364x C 22=--++y x y :上的一点,直线05-4y -3x :l =。

2022-2023学年内蒙古自治区包头市高二年级上册学期期中考试数学(理)试题【含答案】

2022-2023学年内蒙古自治区包头市高二年级上册学期期中考试数学(理)试题【含答案】

2022-2023学年内蒙古自治区包头市第一中学高二上学期期中考试数学(理)试题一、单选题1.命题“R x ∃∈,2210x x +-<”的否定是( ) A .R x ∀∈,2210x x +-≥ B .R x ∃∉,2210x x +-≥ C .R x ∃∈,2210x x +-≥ D .R x ∀∉,2210x x +-≥【答案】A【分析】将特称命题否定为全称命题即可. 【详解】命题“R x ∃∈,2210x x +-<”的否定是 “R x ∀∈,2210x x +-≥”, 故选:A.2.圆()()22341x y -+-=与圆2236x y +=的位置关系为( ) A .相离 B .内切 C .外切 D .相交【答案】B【分析】根据圆心距与21r r -的关系求得正确答案.【详解】圆()()22341x y -+-=的圆心为()3,4A ,半径11r =;圆2236x y +=的圆心为()0,0O ,半径26=r , 圆心距215OA r r ==-,所以两圆的位置关系是内切. 故选:B3.已知双曲线221x y m +=(m 为非零常数)的渐近线方程为y x =,则双曲线的虚轴长是( )A .-3B .3C .D 【答案】C【分析】根据双曲线的渐近线方程求得m ,进而求得双曲线的虚轴长. 【详解】双曲线221x y m+=,即221x y m -=-,双曲线的渐近线方程为y x =,3m ==-,所以双曲线方程为2213x y -=,所以b =2b =故选:C4.已知椭圆经过点(),且焦点分别为()10,1-F ,()20,1F ,则椭圆的离心率为( )A B C D 【答案】D【分析】根据已知条件求得,a c ,从而求得椭圆的离心率. 【详解】由于焦点()10,1-F , 所以焦点在y 轴上,且1c =,由于椭圆经过点(),所以b =所以a ==所以椭圆的离心率为c a =故选:D5.过抛物线22y x =的焦点作直线l ,交抛物线于,A B 两点,若线段AB 中点的横坐标为4,则AB 等于( ) A .10 B .9 C .6 D .5【答案】B【分析】利用抛物线的几何意义求解即可. 【详解】设()()1122,,,A x y B x y ,由题意得1242x x +=, 所以由抛物线的几何意义得1281922p pAB x x =+++=+=, 故选:B.6.已知空间四边形ABCO 中,OA a =,OB b =,OC c =,M 为OA 中点,点N 在BC 上,且2NB NC =,则MN 等于( )A .121233a b c -+-B .121233a b c -++C .111232a b c +- D .112233a b c -++【答案】D【分析】根据已知条件,结合空间向量的线性运算法则,即可求解. 【详解】如图所示:点N 在BC 上,且2NB NC =,∴2BN NC =, 由OB b =,OC c =,∴111212()333333ON OC CN OC CB OC OB OC OB OC b c =+=+=+-=+=+,M 为OA 中点,OA a =,1122OM OA a ==,∴11122233MN ON OM ON OA a b c =-=-=-++.故选:D .7.曲线()2216126x y m m m +=<--与曲线()2212828x y m m m+=<<--的( )A .焦距相等B .焦点相同C .离心率相等D .顶点相同【答案】A【分析】先分清两曲线分别是什么类型的曲线,再分别求出每个曲线的几何特征即可. 【详解】对于曲线()2216126x y m m m +=<-- ,1260m m ->-> ,是焦点在x 轴上的椭圆, 2222212,6,6,6a m b m c a b c =-=-=-==;对于曲线()2212828x y m m m +=<<-- ,20,80m m -<-> ,是焦点在y 轴上的双曲线, 222228,2,6,6a m b m c a b c =-=-=+== ;所以两曲线的焦距相同. 故选:A8.下列命题中的说法正确的是( )A .命题“若21x =,则1x =”的否命题为“若21x =,则1x ≠”B .命题“p q ∨”为真命题,则“命题p ”和“命题q ”均为真命题C .“220a b +=,则,a b 全为0”的逆否命题是“若,a b 不全为0,则220a b +≠”D .命题“若空间向量a b =,则a b =”的逆命题是真命题 【答案】C【分析】利用否命题、逻辑连接词、逆否命题和逆命题的定义判断各选项即可. 【详解】命题“若21x =,则1x =”的否命题为“若21x ≠,则1x ≠”,选项A 错误;命题“p q ∨”为真命题,则“命题p ”和“命题q ”均为真命题或其中一个为真命题,选项B 错误; “220a b +=,则,a b 全为0”的逆否命题是“若,a b 不全为0,则220a b +≠”,选项C 正确; 命题“若空间向量a b =,则a b =”的逆命题为“若空间向量a b =,则a b =”,由于模长相等方向不一定相等,所以该命题为假命题,选项D 错误; 故选:C9.已知圆()22:316M x y ++=外一点()3,0N ,点P 是圆上任意一点,线段NP 的垂直平分线l 和直线MP 交于点Q ,则点Q 的轨迹方程为( ) A .22145x y -=B .2211620x y -=C .221167x y +=D .2213627x y +=【答案】A【分析】结合双曲线的定义求得正确答案. 【详解】圆M 的圆心为()3,0M -,半径4r =, 由于线段NP 的垂直平分线l 交直线MP 于Q , 所以QP QN =,所以4QN QM QP QM r MN -=-==<,所以Q 点的轨迹是双曲线,且3,24,2,c a a b === 所以Q 点的轨迹方程为22145x y -=. 故选:A10.椭圆22163x y +=中,以点11,2⎛⎫ ⎪⎝⎭为中点的弦所在直线斜率为( )A .1B .12C .-1D .12-【答案】C【分析】先设出弦的两端点的坐标,分别代入椭圆方程,两式相减后整理即可求得弦所在的直线的斜率.【详解】设弦的两端点为()11,A x y ,()22,B x y ,则12122,1x x y y +=+=,因为22112163⎛⎫ ⎪⎝⎭+<,所以点11,2⎛⎫ ⎪⎝⎭在椭圆22163x y +=内, 将()11,A x y ,()22,B x y 代入椭圆得22112222163163x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩, 两式相减得()()()()12121212063x x x x y y y y -+-++=,即()()()()1212121263x x x x y y y y -+-+=-,即()()1212121236x x y y y y x x +--=+-, 即12123261y y x x -⨯-=⨯-, 即12121y y x x -=--, 所以弦所在的直线的斜率为1-. 故选:C .11.直线1ax by +=与圆221x y +=有公共点是点(),P a b 在该圆外的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B【分析】结合直线与圆的位置关系、点与圆的位置关系、充分和必要条件的知识确定正确答案. 【详解】圆221x y +=的圆心为()0,0,半径为1,当直线1,10ax by ax by +=+-=与圆221x y +=有公共点时,221,1a b ≤+≥,所以P 在圆上或圆外,所以直线1ax by +=与圆221x y +=有公共点是点(),P a b 在该圆外的必要不充分条件. 故选:B12.已知P 是抛物线24y x =上的一点,过点P 作直线2x =-的垂线,垂足为H ,设圆()()22:331C x y ++-=上任意一点Q ,则PQ PH +的最小值是( )A.1 B .5 C .6 D .4【答案】B【分析】结合抛物线的定义以及圆的几何性质求得正确答案. 【详解】抛物线24y x =的焦点()1,0F ,准线方程为=1x -, 根据抛物线的定义可知1PH PF =+,圆()()22:331C x y ++-=的圆心为()3,3C -,半径1r =,min 1PQ PC =-,5CF ==所以115PQ PH PC PF PC PF CF +≥-++=+≥=, 所以当,,F P C 三点共线时,PQ PH +取得最小值5. 故选:B二、填空题13.抛物线28y x =-的准线方程是________. 【答案】132y =【分析】先将抛物线方程化为标准形式,即可得出其准线方程.【详解】因为抛物线28y x =-的标准方程为:218=-x y ,因此128=p ,即116=p ;所以其准线方程为:132y =. 故答案为:132y =【点睛】本题主要考查求抛物线的准线方程,熟记抛物线的标准方程即可,属于基础题型.14.过点)的等轴双曲线,其焦点到渐近线的距离是______.【分析】根据点)求得等轴双曲线的方程,求得双曲线的焦点坐标以及渐近线方程,从而求得正确答案.【详解】当双曲线的焦点在x 轴上时,设等轴双曲线的方程为222x y a -=,由于等轴双曲线过点),所以2312a =-=,所以a b ==2c =双曲线方程为22122x y -=,渐近线方程为y x =±,即0x y ±=,双曲线其中一个焦点()2,0到其中一条渐近线0x y -=的距离为2022,根据对称性可知,双曲线焦点到渐近线的距离是2.当双曲线的焦点在y 轴上时,设等轴双曲线的方程为222y x a -=, 由于等轴双曲线过点()3,1,所以2122a =-=-,不符合题意.综上所述,该等轴双曲线的焦点到渐近线的距离是2. 故答案为:215.点P 是椭圆22149x y +=上的一点,则点P 到直线2150x y +-=的距离最大值是______.【答案】45【分析】设()2cos ,3sin P θθ,θ为OP 与x 轴正半轴的夹角,由点线距离公式及辅助角公式即可求化简大值.【详解】设()2cos ,3sin P θθ,θ为OP 与x 轴正半轴的夹角,则点P 到直线2150x y +-=的距离为()225sin 154cos 3sin 15521d θϕθθ+-+-==+,其中43sin ,cos 55ϕϕ==,故()5sin 155154555d θϕ+---=≤=.故答案为:4516.如图是抛物线形拱桥,当水面在l 时,拱顶离水面2米,水面宽4米,水位下降1米后,水面宽 米.【答案】26米【详解】如图建立直角坐标系,设抛物线方程为2x my =, 将A (2,-2)代入2x my =, 得m=-2,∴22x y =-,代入B ()0,3x -得06x =, 故水面宽为26米,故答案为26米. 【解析】抛物线的应用17.已知2F 是双曲线()2222:10,0x yC a b a b-=>>的右焦点,P 是双曲线右支上的一点,且2PF x ⊥轴,点A 是双曲线的左顶点,若222PF AF =,则双曲线的离心率为______. 【答案】3【分析】根据22222PF AF a c ==+,得到1PF ,2PF ,进而利用勾股定理,得到2222211PF F F PF +=,列方程计算可得答案.【详解】如图,22222PF AF a c ==+,又122PF PF a -=,则有142PF a c =+, 且12PF F △为直角三角形,2222211PF F F PF ∴+=,列方程得, 222(42)4()4a c a c c +=++,化简得22320a ac c +-=,再整理得,2230e e --=,解得3e =或1e =-(舍去) 故答案为:318.已知曲线22:1C mx ny +=有如下命题:1p :若0m n >>,则C 是椭圆,其焦点在y 轴上2p :若0m n =>,则C3p :若0mn <,则C是双曲线,其渐近线方程为y =4p :若0m =,0n >,则C 是两条直线则下述命题中所有真命题的序号是______. ①14p p ∨②12p p ∧③()23p p ⌝∧④()()34p p ⌝∨⌝ 【答案】①③【分析】根据椭圆、圆、双曲线、直线的知识对四个命题进行分析,结合逻辑连接词的知识求得正确答案.【详解】依题意,曲线22:1C mx ny +=,1p :若0m n >>,则110m n<<, 曲线22:111x y C m n +=表示焦点在y 轴上的椭圆,1p 为真命题. 2:p 若0m n =>,则曲线221:C x y n+=,=的圆,2p 是假命题,2p ⌝是真命题. 3:p 若0mn <,则当00m n >⎧⎨<⎩时,曲线22:111x y C m n -=-表示焦点在x 轴上的双曲线, 由22220,m mx ny y x n +==-,所以双曲线的渐近线方程为y =当00m n <⎧⎨>⎩时,曲线22:111y x C n m-=-表示焦点在y 轴上的双曲线, 由22220,m mx ny y x n +==-,所以双曲线的渐近线方程为y =综上所述,3p 是真命题,3⌝p 是假命题.4:p 若0m =,0n >,C的方程为21,y y n ==所以C 是两条直线,所以4p 是真命题,4p ⌝是假命题, 所以①14p p ∨为真命题;②12p p ∧为假命题; ③()23p p ⌝∧为真命题;④()()34p p ⌝∨⌝为假命题.所以真命题的序号①③. 故答案为:①③三、解答题19.已知圆C 经过点()2,0A -,()6,0B ,且圆心C 在直线y x =上. (1)求圆C 的一般方程;(2)若线段OP 的端点P 在圆C 上运动,端点O 为坐标原点,求线段OP 的中点M 的轨迹方程. 【答案】(1)2244120x y x y +---= (2)222230x y x y +---=【分析】(1)利用待定系数法即可求得圆C 的一般方程; (2)利用直接代入法即可求得点M 的轨迹方程.【详解】(1)设所求圆的C 的一般方程为220x y Dx Ey F ++++=,则圆心,22D E C ⎛⎫-- ⎪⎝⎭,由题意得()2222066022D F D F E D ⎧⎪--+=⎪++=⎨⎪⎪-=-⎩,解得4412D E F =-⎧⎪=-⎨⎪=-⎩,所以圆的C 的一般方程为2244120x y x y +---=. (2)依题意,设(),M x y ,()00,P x y ,因为M 为线段OP 的中点,()0,0O ,所以002,2x x y y ==,又因为点P 在圆C 上运动,所以22000044120x y x y +---=,故()()()()22224242120x y x y +-⨯-⨯-=, 整理得:222230x y x y +---=,所以点M 的轨迹方程为222230x y x y +---=.20.在平面直角坐标系xOy 中,圆C 的参数方程为1cos sin x y θθ=+⎧⎨=⎩(θ为参数),直线l的参数方程为x y λ⎧=⎪⎨=⎪⎩(λ为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,设l 与C 交于P ,Q(1)求l 与C 的极坐标方程;(2)求PQ .【答案】(1)l 的极坐标方程为()π6θρ=∈R ,圆C 的极坐标方程为2cos 0ρθ-=;(2)PQ =【分析】(1)先把参数方程化为直角坐标方程,再化为极坐标方程;(2)求出直线l 、圆C 的直角坐标方程和交点坐标,再由两点间的距离公式计算即可.【详解】(1)l的直角坐标方程为y =,化为极坐标方程为()π6θρ=∈R , 将圆C 的参数方程1cos sin x y θθ=+⎧⎨=⎩平方相加得()2211x y -+=, 化为极坐标方程为2cos 0ρθ-=;(2)设()()1122,,,P x y Q x y ,由()2211y x x y ⎧=⎪⎨⎪-+=⎩得2203-=x x ,解得 1230,2x x ==, 当10x =时10y =,即()0,0P , 当232x =时2y =32Q ⎛ ⎝⎭, 所以==P Q 21.已知抛物线顶点在原点,焦点在x 轴上,又知此抛物线上一点()3,Q m 到焦点的距离为4.(1)求此抛物线的方程.(2)若此抛物线方程与直线2y kx =+相交于不同的两点A ,B ,且AB 中点横坐标为4,求k 的值.【答案】(1)24y x =(2)1k =-【分析】(1)结合抛物线的定义求得p ,进而求得抛物线的方程.(2)联立直线2y kx =+的方程与抛物线的方程,化简写出根与系数关系,根据AB 中点的横坐标求【详解】(1)依题意,抛物线焦点在x 轴,且()3,Q m 的横坐标为正数,所以抛物线开口向右,设抛物线的方程为()220y px p =>,由于抛物线上一点()3,Q m 到焦点的距离为4,所以34,22p p +==, 所以抛物线方程为24y x =. (2)由224y kx y x=+⎧⎨=⎩消去y 并化简得()224440k x k x +-+=, 则()220Δ44160k k k ≠⎧⎪⎨=-->⎪⎩,016320k k ≠⎧⎨->⎩, 解得12k <且0k ≠, 设()()1122,,,A x y B x y ,则12244k x x k -+=-, AB 中点横坐标为4,所以2224k k --=, 解得1k =-或12k =(舍去). 22.已知1F ,2F 椭圆()2222:10x y C a b a b+=>>的两个焦点,椭圆上的任意一点P 使得124PF PF +=,且1PF 的最大值为2(1)求椭圆的标准方程;(2)若直线l 与椭圆C 交于A ,B 两点(A ,B 不是左右顶点),且以AB 为直径的圆经过椭圆的右顶点.求证直线l 过定点,并求出该定点的坐标.【答案】(1)22142x y += (2)证明详见解析,定点坐标为2,03⎛⎫ ⎪⎝⎭【分析】(1)根据已知条件求得,,a b c ,从而求得椭圆的标准方程.(2)对直线l 的斜率是否存在进行分类讨论,设出直线l 的方程并与椭圆的方程联立,化简写出根与系数关系,根据“以AB 为直径的圆经过椭圆的右顶点”列方程,由此求得定点坐标.【详解】(1)依题意,1242,2PF PF a a +===,由于1PF 的最大值为2a c +=c =所以b ==22142x y +=. (2)椭圆的右顶点为()2,0Q ,当直线l 的斜率不存在时,设直线l 的方程为()22x t t =-<<, 由22142x t x y =⎧⎪⎨+=⎪⎩得22221242t t y ⎛⎫=-=- ⎪⎝⎭, 设()()00,,,A t y B t y -,则22022t y =-, 由于以AB 为直径的圆经过椭圆的右顶点()2,0Q ,所以AQ BQ ⊥,()2002221222t y y t t t --⋅=-=----,解得23t =, 所以直线l 过2,03⎛⎫ ⎪⎝⎭. 当直线l 的斜率存在时,设直线l 的方程为y kx m =+, 由22142y kx m x y =+⎧⎪⎨+=⎪⎩消去y 并化简得()222124240k x kmx m +++-=, ()()2222221641224328160k m k m k m ∆=-+-=-+>,即22420k m -+>①.设()()1122,,,A x y B x y ,则2121222424,1212km m x x x x k k --+==++, 由于以AB 为直径的圆经过椭圆的右顶点()2,0Q ,所以AQ BQ ⊥,()()1212121212222y y y y x x x x ⋅==-----, ()()121222y y x x =---,()()()()121222kx m kx m x x ++=--- ,()()221212121224k x x km x x m x x x x +++=+--,()()()2212121240k x x km x x m ++-+++=,()()2222224412401212m km k km m k k--+⋅+-⋅++=++, 整理得()()3220m k m k ++=,23m k =-或2m k =-, 若23m k =-,代入①得222432422099k k k -+=+>,成立, 若2m k =-,代入①得2244220k k -+=>成立,所以直线l 的方程为2233y kx k k x ⎛⎫=-=- ⎪⎝⎭,过点2,03⎛⎫ ⎪⎝⎭; 或()22y kx k k x =-=-,过点()2,0Q ,不符合题意,舍去.综上所述,直线l 过定点2,03⎛⎫ ⎪⎝⎭. 【点睛】求解直线过定点问题,关键点是研究直线方程中参数的关系,从而求得定点的坐标.有关直线和圆锥曲线相交的题目,要注意验证判别式是否成立.。

山西省山西大学附属中学校2022高二数学上学期期中试题 理(含解析)

山西省山西大学附属中学校2022高二数学上学期期中试题 理(含解析)
(2)求过点P并且在两坐标轴上截距相等的直线l2方程(结果写成直线方程的一般式)
【答案】(1)4x﹣3y﹣1=0(2)直线l2的方程为x+y﹣2=0或x﹣y=0
【解析】
【分析】
(1)首先联立 ,求出 ,再设直线 的方程为 ,代入 即可.
(2)分别讨论直线 过原点和不过原点两种情况,即可求出 方程.
【详解】(1)联立 ,
点睛:本题主要考查面面之间的关系以及投影的概念,属于中档题,解决本题的关键是对正方体中的点线面之间的关系有比较透彻的了解,对其中的空间位置比较熟悉.
三.解答题:(本题有4个小题,共44分,请将推理、计算过程写在答题卡上.)
18.已知直线2x﹣y﹣1=0与直线x﹣2y+1=0交于点P.
(1)求过点P且垂直于直线3x+4y﹣15=0的直线l1的方程;(结果写成直线方程的一般式)
4.设 为直线, 是两个不同的平面,下列命题中正确的是( )
A. 若 , ,则 B. 若 , ,则
C. 若 , ,则 D. 若 , ,则
【答案】B
【解析】
A中, 也可能相交;B中,垂直与同一条直线的两个平面平行,故正确;C中, 也可能相交;D中, 也可能在平面 内.
【考点定位】点线面的位置关系
5.点 , ,直线 与线段 相交,则实数 的取值范围是( )
【详解】过点 作 的平行线交 轴于点 如图(1), , , , ,由正弦定理可得 ,可得 , ,
将直观图还原为平面图形,并过点 作 的垂线垂足为 ,如图(2),
则 , , ,
显然 ,即原图形既不是正方形又不是菱形,原图形的面积为 .
故选C.
【点睛】
本题考查了平面图形的直观图与原图形的关系,属于基础题.

2022-2023学年四川省泸州市叙永第一中学校高二上学期期中考试数学(理)试题(解析版)

2022-2023学年四川省泸州市叙永第一中学校高二上学期期中考试数学(理)试题(解析版)

2022-2023学年四川省泸州市叙永第一中学校高二上学期期中考试数学(理)试题一、单选题1.已知直线10x ay ++=和直线210x y -+=互相平行,则a 的值为( ) A .2 B .2-C .12D .12-【答案】D【分析】直接利用两条直线平行的充要条件进行求解即可. 【详解】解:因为直线10x ay ++=和直线210x y -+=互相平行,所以1(1)201(1)10a a ⨯--=⎧⎨⨯--⨯≠⎩,解得12a =-.故选:D .2.若a b >,则下列结论正确的是( ) A .22a b > B .11a b> C .22a b > D .ln ln a b >【答案】C【分析】利用特殊值1a =-,4b =-判断选项A ,利用作差法判断选项B ,利用指数函数的单调性判断选项C ,利用对数的定义判断选项D ,【详解】解:因为a b >,若1a =-,4b =-,则22a b <,故选项A 错误; 因为11b a a b ab--=,当0ab >时,11a b <,故选项B 错误;因为2x y =在R 上为增函数,若a b >,则22a b >,故选项C 正确; 若0a b >>,则lna 和lnb 无意义,故选项D 错误. 故选:C .3.某校现有高一学生210人,高二学生270人,高三学生300人,用分层抽样的方法从这三个年级的学生中随机抽取n 名学生进行问卷调查,如果已知从高一学生中抽取的人数为7,那么从高二学生中抽取的人数应为( ) A .10 B .9C .8D .7【答案】B【分析】由分层抽样的概念求解,【详解】设从高二学生中抽取的人数为x ,则7=210270x ,得9x =, 故选:B4.有一组样本数据12,,,n x x x ,由这组数据得到新样本数据12,,,n y y y ,其中()1,2,3,i i y x c i n =+=,c 为非零常数,则这两组样本数据( )A .平均数相同B .中位数相同C .标准差不相同D .极差相同【答案】D【分析】由各个统计量的概念判断, 【详解】对于A ,设12,,,n x x x 的平均数为x ,则12,,,n y y y 的平均数为x c +,对于B ,设12,,,n x x x 的中位数为m ,则12,,,n y y y 的中位数为m c +,对于C ,由方差与标准差的计算公式,可得12σσ=, 对于D ,max min max min x x y y -=-,两组样本数据极差相同 故选:D5.现有以下两项调查:①从100台刚出厂的电视机中抽取3台进行质量检查;②某社区有1000户家庭,其中高收入家庭100户,中等收入家庭820户,低收入家庭80户,为了调查家庭每年生活费的开支情况,计划抽取一个容量为50的样本,则完成这两项调查最适宜采用的抽样方法分别是( ) A .①②都采用简单随机抽样 B .①②都采用分层随机抽样C .①采用简单随机抽样,②采用分层随机抽样D .①采用分层随机抽样,②采用简单随机抽样 【答案】C【分析】根据简单随机抽样和分层抽样的特点,判断选项. 【详解】①的总体中的个体数较少,宜采用简单随机抽样,②中1000户家庭中收入存在较大差异,层次比较明显,宜采用分层抽样. 故选:C6.在《九章算术》中,将四个面都为直角三角形的四面体称之为鳖膳(biē nào ).如图,网格纸上小正方形的边长1,粗实线画出的是某鳖臑的三视图,则该鳖臑表面积为A .6B .21C .27D .54【答案】C【分析】结合三视图,还原直观图,计算表面积,即可. 【详解】结合三视图,还原直观图为已知3,4,3AB BC CD ===,则该四面体1111272222S AB BC AC CD AB BD BC CD =⋅+⋅+⋅+⋅=,故选C. 【点睛】本道题考查了三视图还原直观图,难度中等.7.从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为( ) A .16B .13C .12D .23【答案】D【分析】由古典概型概率公式结合组合、列举法即可得解.【详解】从2至8的7个整数中随机取2个不同的数,共有27C 21=种不同的取法,若两数不互质,不同的取法有:()()()()()()()2,4,2,6,2,8,3,6,4,6,4,8,6,8,共7种, 故所求概率2172213P -==.故选:D.8.设,m n 是两条不同的直线,,αβ是两个不同的平面,由下列四个命题,其中正确的是( ) A .若,m m n α⊥⊥,则//n α B .若//,//m n αα,则//m n C .若//,m αβα⊂,则//m β. D .若//m β,m α⊂,则//αβ.【答案】C【解析】A 选项可能n ⊂α,B 选项两条直线位置关系不能确定,C 选项正确,D 选项两个平面相交也能满足//m β,m α⊂.【详解】A 选项,当,m m n α⊥⊥可能n ⊂α,所以该选项不正确;B 选项,平行于同一平面的两条直线可能平行,可能相交,可能异面,所以该选项不正确;C 选项,根据面面平行的性质,说法正确;D 选项,当两个平面相交,m α⊂且平行于交线,也满足//m β,m α⊂,所以不能推出面面平行. 故选:C【点睛】此题考查空间点线面位置关系的辨析,根据已知条件判断线面平行,线线平行和面面平行,关键在于熟练掌握相关定理公理.9.在一个实验中,某种豚鼠被感染A 病毒的概率均为40%,现采用随机模拟方法估计三只豚鼠中被感染的概率:先由计算机产生出[0,9]之间整数值的随机数,指定1,2,3,4表示被感染,5,6,7,8,9,0表示没有被感染.经随机模拟产生了如下20组随机数: 192 907 966 925 271 932 812 458 569 683 257 393 127 556 488 730 113 537 989 431 据此估计三只豚鼠都没被感染的概率为( ) A .0.25 B .0.4 C .0.6 D .0.75【答案】A【分析】求得三只豚鼠都没有被感染的数量,结合题意,求解即可.【详解】20组数据中,都不含1,2,3,4的数据有5个,分别是:907,966,569,556,989; 故三只豚鼠都没被感染的概率为:50.2520=. 故选:A .10.若正数x ,y 满足32x y xy +=,则34x y +的最小值是( ) A .245B .25C .5D .252【答案】D【分析】由基本不等式求解, 【详解】由题意得3132x y xy y x+=+=,则 31123()131323625(34)2222y xx y x y x y +++++=≥=,当且仅当123y x x y =即55,24x y ==时等号成立, 故选:D11.在如图的直角梯形ABCD 中,利用“两个全等的直角三角形和一个等腰直角三角形的面积之和等于直角梯形面积”.可以简洁明了地推证出勾股定理,把这一证明方法称为“总统证法”.设15BEC ∠=︒,在梯形ABCD 中随机取一点,则此点取自等腰直角CDE 中(阴影部分)的概率是( )A .23B .34C 3D 2【答案】A【分析】根据()()()=ΩS A P A S 计算即可. 【详解】解:记此点取自等腰直角CDE 中(阴影部分)为事件A , 此点取自梯形ABCD 为事件Ω, 在Rt CEB △中,·sin b c CEB =∠,·cos a c CEB =∠,()22222232?sin cos ?sin 302a b c c CEB CEB c c c ∴+=+∠⋅∠=+︒=, 212△=⋅DCE S c ,()221324梯形=⋅+=ABCD S a b c ,()()()22122334∴===Ωc S A P A S c .故选:A .12.若,x y 满足221+-=x y xy ,则( )A .1x y +≥B .2x y +≥C .221x y +≤D .222x y +≤【答案】D【分析】由基本不等式求解,【详解】由题意得222x y xy ≤+,即222221x x y y -++≤,得222x y +≤,当且仅当1x y ==±时等号成立,故C 错误,而0,1x y ==-时满足题意,故A ,B 错误, 故选:D二、填空题13.若x ,y 满足约束条件0,201,x y x y x +≥⎧⎪-≥⎨⎪≤⎩, ,则z =3x +2y 的最大值为_________.【答案】7【分析】作出可行域,利用截距的几何意义解决. 【详解】不等式组所表示的可行域如图 因为32z x y =+,所以322x zy =-+,易知截距2z 越大,则z 越大,平移直线32x y =-,当322x zy =-+经过A 点时截距最大,此时z 最大, 由21y x x =⎧⎨=⎩,得12x y =⎧⎨=⎩,(1,2)A ,所以max 31227z =⨯+⨯=. 故答案为:7.【点晴】本题主要考查简单线性规划的应用,涉及到求线性目标函数的最大值,考查学生数形结合的思想,是一道容易题.14.从甲、乙等5名同学中随机选3名组成校庆志愿小分队,则甲、乙都不入选的概率为 ________. 【答案】110##0.1 【分析】由组合数与古典概型求解,【详解】由题意得甲、乙都不入选的概率为3511C 10p ==, 故答案为:11015.某产品的广告费用x (万元)与销售额y (万元)的统计数据如下表:若x 与y 之间是线性关系,且根据上表可得回归直线方程ˆ68y x =+,现发现表中有一个数据模糊看不清,该数据是___________. 【答案】31【分析】根据回归方程过样本中心点可得答案. 【详解】设表中模糊不清数据为m ,由表知6345109: 4.5,44m x y ++++===, 代人回归方程ˆ68yx =+中,得1096 4.584m+=⨯+,解得31.m = 故答案为:31.16.在三棱锥ABCD -中,平面ABC ⊥平面BCD ,ABC 与BCD △都是边长为6的正三角形,则该三棱锥的外接球的体积为________. 【答案】【分析】取BC 的中点为,,M E F 分别是正三角形ABC 和正三角形BCD 的重心,O 是该三棱锥外接球的球心,连接,,,,,AM DM OF OE OM OB ,可证明AM DM ⊥,通过几何关系可得到外接球的半径为OB =【详解】取BC 的中点为,,M E F 分别是正三角形ABC 和正三角形BCD 的重心,O 是该三棱锥外接球的球心,连接,,,,,AM DM OF OE OM OB ,则,E F 分别在,AM DM 上,OF ⊥平面BCD ,OE ⊥平面ABC ,AM BC ⊥,DM BC ⊥, 因为平面ABC ⊥平面BCD ,AM BC ⊥,平面ABC ⋂平面BCD BC =,AM ⊂平面,ABC 所以AM ⊥平面BCD ,所以//AM OF ,同理可得//DM OE ,所以四边形OEMF 是平行四边形, 因为AM BC ⊥,DM BC ⊥,AMDM M =,,AM DM ⊂平面ADM ,所以BC ⊥平面ADM ,又OM ⊂平面ADM ,所以OM BC ⊥, 因为AM ⊥平面BCD ,DM ⊂平面BCD , 所以AM DM ⊥, ∵3633AM DM === ∴133EM FM AM ==∴四边形OEMF 为正方形,∴6OM = 在直角三角形OMB 中,球半径()22226315OB OM BM =++∴外接球体积为341520153ππ⨯=,故答案为:2015π三、解答题17.求下列不等式的解集: (1)2450x x -++<; (2)5131x x +<+. 【答案】(1){|1x x <-或5}x > (2){|11}x x -<<【分析】(1)由一元二次不等式的解法求解, (2)移项,通分后化简求解,【详解】(1)由2450x x -++<,得2450x x --> 解得1x <-或5x >.所以不等式的解集为{|1x x <-或5}x >; (2)由5131x x +<+,可得2201x x -<+, 等价于(1)(1)0x x -+<,解得11x -<<, 所以不等式的解集为{|11}x x -<<.18.某收费APP (手机应用程序)自上架以来,凭借简洁的界面设计、方便的操作方式和强大的实用功能深得用户的喜爱.该APP 所在的公司统计了用户一个月月租减免的费用x (单位:元)及该月对应的用户数量y (单位:万人),得到如下数据表格:已知x 与y 线性相关.(1)求y 关于x 的线性回归方程55211135,41.7i i i i i x x y ==⎛⎫== ⎪⎝⎭∑∑;(2)据此预测,当月租减免费用为10元时,该月用户数量为多少?参考公式:对于一组具有线性相关关系的数据(),(1,2,,)i i x y i n =,其回归直线y bx a =+的斜率和截距的最小二乘估计公式分别为()()()1122211ˆn niii ii i nniii i x x y y x y nxybx x xnx====---==--∑∑∑∑,a y bx =- 【答案】(1)0.320.06y x =- (2)3.14万人【分析】(1)根据已知数据,先求得,x y ,然后利用公式计算回归方程中的系数,得到回归方程; (2)利用回归方程估计.【详解】(1)解:由()13456755x =⨯++++=()11 1.1 1.5 1.9 2.2 1.54.5y =⨯++++=有241.755 1.54ˆ0.32, 1.540.3250.0613555ba -⨯⨯===-⨯=--⨯, 故y 关于x 的线性回归方程为0.320.06y x =-;(2)解:由(1)知回归方程为0.320.06y x =-,当10x =时,0.32100.06 3.14y =⨯-=, 所以预测该月的用户数量为3.14万人.19.已知某保险公司的某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:随机调查了该险种的400名续保人在一年内的出险情况,得到下表:该保险公司这种保险的赔付规定如下:将所抽样本的频率视为概率.(1)求本年度续保人保费的平均值的估计值;(2)按保险合同规定,若续保人在本年度内出险3次,则可获得赔付()2.5 1.5a a a ++元;若续保人在本年度内出险6次,则可获得赔付()2.5 1.50.5a a a a +++元;依此类推,求本年度续保人所获赔付金额的平均值的估计值.【答案】(1)1.035a ;(2)0.945a .【分析】(1)得出保费0.9a ,a ,1.5a ,2.5a ,4a 对应的概率,即可得出本年度续保人保费的平均值的估计值;(2)先计算出每个赔偿金额对应的概率,然后按照平均值的计算公式得出本年度续保人所获赔付金额的平均值的估计值;【详解】(1)由题意可得保费(元)0.9a a 1.5a 2.5a4a概率0.7 0.2 0.06 0.03 0.01本年度续保人保费的平均值的估计值为0.90.70.2 1.50.06 2.50.0340.01 1.035⨯+⨯+⨯+⨯+⨯=a a a a a a(2)由题意可得赔偿金额(元)0 2.5a4a5a 5.5a概率0.7 0.2 0.06 0.03 0.01本年度续保人所获赔付金额的平均值的估计值⨯+⨯+⨯+⨯+⨯=a a a a a00.7 2.50.240.0650.03 5.50.010.94520.某学校为了了解高二年级学生数学运算能力,对高二年级的200名学生进行了一次测试.已知参x i=全部介于45分到95分之间,该校将所有分数分成5组:加此次测试的学生的分数(1,2,3,,200)i[45,55),[55,65),⋯,[85,95],整理得到如下频率分布直方图(同组数据以这组数据的中间值作为代表).(1)求m的值,并估计此次校内测试分数的平均值x;x i=的方差2s,并判断此次得分为52分和94分的两名(2)试估计这200名学生的分数(1,2,3,,200)i同学的成绩是否进入到了[2,2]x s x s -+范围内?(参考公式:2211()n i i i s f x x n ==-∑,其中i f 为各组频数;参考数据:12911.4)≈【答案】(1)m 0.024=,75(2)129,进入【分析】(1)由各组的频率和为1,可求出m 的值,再根据平均数的定义可求出x ;(2)利用方差公式求出方差2s ,然后计算出[2,2]x s x s -+,再判断即可.【详解】(1)(0.0060.014++m 0.0360.020)101++⨯=.∴m 0.024=.∴该次校内考试测试分数的平均数的估计值为:500.06600.14700.24800.36900.275⨯+⨯+⨯+⨯+⨯=分.(2)2211()n i i i s f x x n ==-∑ 222220.06(5075)0.14(6075)0.24(7075)0.36(8075)0.2(9075)=⨯-+⨯-+⨯-+⨯-+⨯-129=.∴s 12911.4=≈,∴252.2,297.8x s x s -=+=.∴得分为52分的同学的成绩没有进入到[52.2,97.8]内,得分为94分的同学的成绩进入到了[52.2,97.8]内.21.如图,四棱锥P ABCD -中,PD ⊥平面ABCD ,底面ABCD 是正方形,2PD AB ==,E 为PC 中点.(1)求证:DE ⊥平面PCB ;(2)求二面角E BD P --的余弦值.【答案】(1)证明见解析6【分析】(1)根据条件先证BC ⊥平面PCD ,得到BC ⊥DE ,再由DE ⊥PC ,即可证明DE ⊥平面PCB .(2)以点D 为坐标原点,分别以直线DA ,DC ,DP 为x 轴,y 轴,z 轴,建立空间直角坐标系,分别求出平面BDE ,平面PDB 的法向量,即可求得二面角的余弦值.【详解】(1)证明:PD ⊥平面ABCD ,∴PD ⊥BC ,又∵正方形ABCD 中,CD ⊥BC ,PD CD =D ,∴BC ⊥平面PCD ,又∵DE ⊂平面PCD ,∴BC ⊥DE ,∵PD =CD ,E 是PC 的中点,DE ⊥PC ,PC BC =C ,且PC ⊂面PCB ,BC ⊂面PCB∴DE ⊥平面PCB(2)以点D 为坐标原点,分别以直线DA ,DC ,DP 为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,由题意知:()()()()0,0,0,0,0,2,2,2,0,0,1,1,D P B E则()()2,2,0,0,1,1DB DE ==,设平面BDE 的法向量为(),,n x y z =,则220000x y n DB y z n DE ⎧+=⎧⋅=⇒⎨⎨+=⋅=⎩⎩, 令1z =,得到1,1y x =-=,()1,1,1n ∴=-又()()0,2,0,2,0,0C A ,则()2,2,0AC =-,且AC ⊥平面PDB ,∴平面PDB 的一个法向量为()1,1,0m =-,设二面角E BD P --的平面角为α,则1cos cos ,m n α+=<>== 所以二面角E BD P -- 22.已知函数()2()22f x ax a x =-++,a R ∈(1)求关于x 的不等式()0f x ≥的解集;(2)若存在0m >使关于x 的方程(21)xf -11m m=++有四个不同的实根,求实数a 的取值范围. 【答案】(1)答案见解析 (2)(,4-∞--【分析】(1)对a 进行讨论,分别求出其解集即可;(2)先令11t m m =++ 由0m >,则可得3t ≥,再将关于x 的方程1(||)1f x m m=++有四个不同的实根,转化为2(2)20ax a x t -++-= 有两个不同正根,结合根与系数的关系,即可求解.【详解】(1)当a<0时,不等式的解集为或2{|1}x x a≤≤; 当0a =时,不等式的解集为 {|1}x x ≤;当02a <<时,不等式的解集为 {|1x x ≤或2}x a ≥; 当2a =时,不等式的解集为R ;当2a >时,不等式的解集为 2{|x x a ≤或1}x ≥; (2)当 0m > 时,令 1113s m m =++≥=,当且仅当1m =时取等号,设 |21|x t -=,则原方程可化为2()(2)20g t at a t s =-++-=.由题意知()0g t =在(0,1)有两个不等的实根.因为(0)20g s =-<,(1)0g s =-<,固有()()224200201a a s a aa ⎧⎪∆=+-->⎪<⎨⎪+⎪<<⎩解得4a <--故实数a的取值范围是(,4-∞--.。

陕西省西安市第一中学2022-2021学年高二上学期期中考试数学(理)试题 Word版含答案

陕西省西安市第一中学2022-2021学年高二上学期期中考试数学(理)试题 Word版含答案

市一中高校区2022—2021学年度第一学期期中考试高二数学试题(理科)命题人:袁芹芹一、选择题:(本大题共12小题,每小题3分,共36分) 1.已知向量a =(-1,1,-1),b =(2, 0,-3),则a b 等于( ) A.2 B. -4 C. -5 D.12.不等式021≥+-xx的解集为( )A .]1,2[-B .]1,2(-C .),1()2,(+∞--∞D .),1(]2,(+∞--∞ 3. 下列命题中是假命题的是( ) A .若a > 0,则2a>1 B .若x 2+y 2=0,则x =y =0 C .若b 2=ac ,则a ,b ,c 成等比数列D .若a+c=2b ,则a ,b ,c 成等差数列4.已知{}n a 是等比数列,1414,2a a ==,则公比q 等于 ( )A .21-B .-2C . 2D .215. 命题“任意x ∈R ,|x |+x 2≥0”的否定是 ( ) A .任意x ∈R ,|x |+x 2<0 B .存在x ∈R ,|x |+x 2≤0C .存在x 0∈R ,|x 0|+x 20<0 D .存在x 0∈R ,|x 0|+x 20≥0 6. 如图,在平行六面体ABCD —A 1B 1C 1D 1中,已知AB =a ,AD =b ,1AA =c ,则用向量a ,b ,c 可表示向量1BD 等于( ) A .a +b +c B .a -b +c C .a +b -c D .-a +b +c7. 若,,a b c 为实数,则下列命题正确的是( )A .若a b >,则22ac bc >B .若0a b <<,则22a ab b >>C .若0a b <<,则11a b < D .若0a b <<,则b a a b >8. 若命题))((q p ⌝∨⌝为真命题,则p ,q 的真假状况为( )A .p 真,q 真B .p 真,q 假C .p 假,q 真D .p 假,q 假 9. 已知变量x ,y 满足条件,则目标函数z=2x+y( )A .有最小值3,最大值9B .有最小值9,无最大值C .有最小值8,无最大值D .有最小值3,最大值810.已知数列{}n a 的前n 项和12+=+n n S n ,则3=a ( )A. 321 B. 281 C. 241 D. 20111. 设2910n a n n =-++,则数列{}n a 前n 项和最大值时,n 的值为( )A .4B .5C .9或10D .4或512. 方程ax 2+2x +1=0至少有一个负实根的充要条件是 ( ).A .0<a ≤1B .a <1C .a ≤1D .0<a ≤1或a <0二、填空题(本大题共4小题,每小题5分,共20分) 13. 已知0,0,0>>>n y x ,41,x y +=则yx 41+的最小值为 . 14. 若不等式22214x a x ax ->++对任意实数x 均成立,则实数a 的取值范围是________ 15.在数列{}n a 中,11a =,13(1)n n a S n +=≥,则数列{a n }的通项公式。

2022-2023学年宁夏石嘴山市平罗中学高二(重点班)上学期期中考试数学(理)试题【含答案】

2022-2023学年宁夏石嘴山市平罗中学高二(重点班)上学期期中考试数学(理)试题【含答案】

2022-2023学年宁夏石嘴山市平罗中学高二(重点班)上学期期中数学(理)试题一、单选题1.设全集U =R ,集合{|1}A x x =≥,{|22}B x x =-≤≤,则()U A ∩B =( )A .[2-,1]B .(2-,1)C .[2-,1)D .[1,2] C【分析】直接根据交集和补集的概念计算即可.【详解】由已知{|1}U A x x =<,则()U A ∩B =[){|1}{|22}=2,1x x x x <-≤≤-故选:C.2.现要完成下列3项抽样调查:①从10盒酸奶中抽取3盒进行食品卫生检查;②报告厅有32排,每排有40个座位. 有一次报告会恰好坐满了听众,报告会结束后,为了调查听众对报告会的意见,需要请32名听众进行座谈;③平罗中学共有360名教职工,其中专职教师300名,行政教辅人员36名,后勤人员24名,为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为60的样本.较为合理的抽样方法是( )A .①简单随机抽样,②系统抽样,③分层抽样B .①简单随机抽样,②分层抽样,③系统抽样C .①系统抽样,②简单随机抽样,③分层抽样D .①分层抽样,②系统抽样,③简单随机抽样A【分析】观察所给的四组数据,根据四组数据的特点,把所用的抽样选出来①简单随机抽样,②系统抽样,③分层抽样.【详解】观察所给的四组数据,①个体没有差异且总数不多可用随机抽样法,简单随机抽样,②将总体分成均衡的若干部分指的是将总体分段,在第1段内采用简单随机抽样确定一个起始编号,在此编号的基础上加上分段间隔的整倍数即为抽样编号,所以选用系统抽样,③个体有了明显了差异,所以选用分层抽样法,故选:A .3.一个魔方的六个面分别是红、橙、蓝、绿、白、黄六种颜色,且红色面和橙色对、蓝色面和绿色对,白色面和黄色对,将这个魔方随意扔到桌面上,则事件“红色面朝上”和“绿色面朝下”( )A .是对立事件B .不是互斥事件C .既不是互斥事件也不是对立事件D .是互斥事件但不是对立事件D 【分析】根据互斥事件和对立事件的定义即可判断.【详解】将魔方随意扔到桌面上,则事件“红色面朝上”和“绿色面朝下”不能同时发生,但可以同时不发生,故“红色面朝上”和“绿色面朝下”是互斥事件但不是对立事件.故选:D4.《算法统宗》是由明代数学家程大位所著的一部应用数学著作,其完善了珠算口诀,确立了算盘用法,并完成了由筹算到珠算的彻底转变,该书清初又传入朝鲜、东南亚和欧洲,成为东方古代数学的名著.书中卷八有这样一个问题:“今有物靠壁,一面尖堆,底脚阔一十八个,问共若干?”如图所示的程序框图给出了解决该题的一个算法,执行该程序框图,输出的S 即为该物的总数S ,则总数S =( )A .136B .153C .171D .190C【分析】执行程序框图,计算S 【详解】由图可知,输出(118)181********S +⨯=++++== 故选:C5.关于直线m 、n 与平面α、β,有以下四个①若//m α,//n β且//αβ,则//m n ;②若m α⊥,n β⊥且αβ⊥,则m n ⊥;③若m α⊥,//n β且//αβ,则m n ⊥;④若//m α,n β⊥且αβ⊥,则//m n .其中真命题的序号是( )A .①②B .③④C .①④D .②③ D【分析】根据①②③④中的已知条件判断直线m 、n 的位置关系,可判断①②③④的正误.【详解】对于①,若//m α,//n β且//αβ,则m 与n 平行、相交或异面,①错误;对于②,如下图所示:设a αβ⋂=,因为αβ⊥,在平面β内作直线l a ⊥,由面面垂直的性质定理可知l α⊥, m α⊥,//m l ∴,n β⊥,l β⊂,n l ∴⊥,因此,m n ⊥,②正确;对于③,若m α⊥,//αβ,则m β⊥,因为//n β,过直线n 作平面γ使得a βγ=,由线面平行的性质定理可得//n a ,m β⊥,a β⊂,则m a ⊥,因此m n ⊥,③正确;对于④,若//m α,n β⊥且αβ⊥,则m 与n 平行、相交或异面,④错误.故选:D.方法点睛:对于空间线面位置关系的组合判断题,解决的方法是“推理论证加反例推断”,即正确的结论需要根据空间线面位置关系的相关定理进行证明,错误的结论需要通过举出反例说明其错误,在解题中可以以常见的空间几何体(如正方体、正四面体等)为模型进行推理或者反驳.6.如图是甲、乙两名运动员在某赛季部分场次得分的茎叶图,据图可知( )A .甲的平均成绩大于乙的平均成绩,且甲发挥的比乙稳定B .甲的平均成绩大于乙的平均成绩,但乙发挥的比甲稳定C .乙的平均成绩大于甲的平均成绩,但甲发挥的比乙稳定D .乙的平均成绩大于甲的平均成绩,且乙发挥的比甲稳定A【分析】分别计算甲乙的平均分和方差,比较大小得到答案. 【详解】122233435373844444936.29x ++++++++=≈, 2812141721292933365225.110x +++++++++==, ()()()222212236.22336.24936.274.69S -+-++-=≈, ()()()22222825.11225.15225.1160.4910S -+-++-==,12x x >且2212S S <. 故选:A7.若x 、y 满足约束条件50210210x y x y x y +-≤⎧⎪--≥⎨⎪-+≤⎩,则2z x y =+的最大值为( )A .3B .7C .8D .10C【分析】作出不等式组所表示的可行域,平移直线2z x y =+,找出使得该直线在y 轴上截距最大时对应的最优解,代入目标函数即可得解. 【详解】作出不等式组50210210x y x y x y +-≤⎧⎪--≥⎨⎪-+≤⎩所表示的可行域如下图所示:联立21050x y x y -+=⎧⎨+-=⎩可得32x y =⎧⎨=⎩,即点()3,2A , 平移直线2z x y =+,当该直线经过可行域的顶点A 时,直线2z x y =+在y 轴上的截距最大, 此时z 取最大值,即max 2328z =⨯+=.故选:C.8.某校举行运动会期间,将学校600名学生编号为001,002,003,…,600,采用系统抽样方法抽取一个容量为50的样本,且在第一段中随机抽得的号码为009.将这600名学生分别安排在看台的A ,B ,C 三个区,001号到130号在A 区,131号到385号在B 区,386号到600号在C 区,则样本中属于A ,B ,C 三个区的人数分别为( )A .10,21,19B .10,20,20C .11,20,19D .11,21,18D 【分析】系统抽样是等间隔抽样,所以抽样间隔为6001250=,且第一段中随机抽得的号码为009,所以所有抽到的号码为()1290,1,2,,49k k +=⋅⋅⋅,根据条件列出不等式即可解得A ,B ,C 三个区的人数. 【详解】由题意知抽样间隔为6001250=, 因为在第一段中随机抽得的号码为009,故所有抽到的号码为()1290,1,2,,49k k +=⋅⋅⋅,根据条件得:A 区:1129130k <+<, 即121812k -<<, 所以k 可以取:0,1,2,3,4,5,6,7,8,9,10共11人,同理,可得B 区抽中21人,C 区抽中18人.故选:D .9.设数据1x ,2x ,3x ,……,n x 的平均数为m ,方差为5,数据124x +,224x +,324x +,……,24n x +的平均数为8,方差为n ,则m 、n 的值分别是( )A .4,14B .4,20C .2,36D .2,20D 【分析】根据平均数和方差的性质直接求解即可.【详解】因为数据1x ,2x ,3x ,……,n x 的平均数为m ,数据124x +,224x +,324x +,……,24n x +的平均数为8,248m ∴+=,解得2m =,数据1x ,2x ,3x ,……,n x 的方差为5,数据124x +,224x +,324x +,……,24n x +的方差为n ,22520n ∴=⨯=故选:D10.已知三棱锥-P ABC 的底面是正三角形,PA ⊥平面ABC ,且PA AB =,则直线PA 与平面PBC 所成角的正弦值为( )AB.7 CDB【分析】如图所示,连接各线段,证明⊥AE 平面PBC ,得到APD ∠即为直线PA 与平面PBC 所成角,再计算线段长度得到答案.【详解】如图所示:D 为BC 中点,连接AD ,PD ,作AE PD ⊥于E .PA ⊥平面ABC ,BC ⊂平面ABC ,故PA BC ⊥,BC AD ⊥,PA AD A ⋂=, 故BC ⊥平面PAD ,AE ⊂平面PAD ,故AE BC ⊥,又AE PD ⊥,PDBC D =,故⊥AE 平面PBC ,即APD ∠即为直线PA 与平面PBC 所成角.设PA AB a ==,则AD =,PD ,故sin AD APD PD ∠===. 故选:B11.已知实数x ,y 满足:22(1)3x y -+=,则1y x +的取值范围为( ) A .[3-,3]B .[23-,23]C .3[3-,3]3D .23[3-,23]3A【分析】确定圆心和半径,将题目转化为点(),x y 和点()1,0A -直线的斜率,画出图像,计算角度,计算斜率得到答案.【详解】22(1)3x y -+=表示圆心为()1,0M ,半径3R =的圆,1k y x =+表示点(),x y 和点()1,0A -直线的斜率, 如图所示:直角ADM △中2AM =,3DM R ==,故3sin 2DAM ∠=, π0,2DAM ⎛⎫∠∈ ⎪⎝⎭,故π3DAM ∠=,同理可得π3EAM ∠=,对应的斜率为3和3-. 故,313k y x ⎡⎤=∈-⎣+⎦, 故选:A12.已知三棱柱ABC —A 1B 1C 1的外接球的半径为R ,若AA 1⊥平面ABC ,△ABC 是等边三角形,则三棱柱ABC —A 1B 1C 1的侧面积的最大值为( )A .243RB .26RC .233RD .23R C【分析】设三棱柱的高为h ,底面三角形的边长为a ,根据勾股定理结合均值不等式得到23ah R ≤,再计算侧面积即可.【详解】设三棱柱的高为h ,底面三角形的边长为a ,如图所示:易知122333323AO AD a a ==⨯=, 在直角1AOO 中:222323h R a ⎛⎫⎛⎫=+ ⎪ ⎪ ⎪⎝⎭⎝⎭,即222223243433h a h a R ah =+≥⨯=, 即23ah R ≤,当2243h a =,即3622a h R ==时等号成立. 侧面积2333S ah R =≤.故选:C二、填空题13.过点(1,2)P 且与直线21y x =+平行的直线的方程是__________________.2y x =【分析】设与直线21y x =+平行的直线的方程为2y x b =+,代点P 计算即可.【详解】设与直线21y x =+平行的直线的方程为()21y x b b =+≠,代入点(1,2)P 得22b =+,解得0b =所以过点(1,2)P 且与直线21y x =+平行的直线的方程是2y x =故2y x =14.已知(1,3)a =-,(3,1)b =,则2a b +=__________.25 【分析】根据向量坐标运算求出()223132a b +=-+,,进而根据向量模的坐标公式计算得解. 【详解】因为()223132a b +=-+,, 所以()()2222313225a b +=-+=+,故答案为.2515.三棱锥中-P ABC ,底面ABC 是锐角三角形,PC 垂直平面ABC ,若其三视图中主视图和左视图如图所示,则棱PB 的长为______42【分析】根据三视图,求得,BC PC 的长度,再利用勾股定理即可求得PB .【详解】根据主视图可知,4,PC B =点在AC 的投影位于AC 的中点,不妨设其为H ,故可得2AH HC ==,根据左视图可知:23BH =224BC BH HC +=,又PC ⊥面,ABC BC ⊂面ABC ,故可得PC BC ⊥,则2242PB PC BC +故答案为.4216.已知正方体1111ABCD A B C D -的棱长为2,点M 、N 在正方体的表面上运动,分别满足:2AM =,AN ∥平面1BDC ,设点M 、N 的运动轨迹的长度分别为m 、n ,则m n=_______________. 2π2 【分析】M 的轨迹为半径为2的球A 与正方体表面的交线,即3个半径为2的14圆弧,要满足AN ∥平面1BDC ,则N 在平行于平面1BDC 的平面与正方体表面的交线上,可证得为11AB D ,最后求值即可得m n 【详解】点M 、N 在正方体的表面上运动,由2AM =,则M 的轨迹为半径为2的球A 与正方体表面的交线,即3个半径为2的14圆弧,故132π23π4m =⨯⨯⨯=. 正方体中,11111111111,,,,AD BC AB DC AD AB A DC BC C AD AB ==⊂∥∥、平面11AB D ,11DC BC ⊂、平面1BDC ,故平面11AB D ∥平面1BDC ,当N 在11AB D 上时,即满足AN ∥平面1BDC 且N 在正方体的表面上,故32262n =⨯=,故3π2π462m n ==. 故2π4三、解答题17.学习了《高中数学必修3》的内容后,高二年级某学生认为:月考成绩与月考次数存在相关关系.于是他收集了自己进入高二以后的前5次月考成绩,列表如下:第x 次月考1 2 3 4 5 月考成绩y85 100 100 105 110经过进一步研究,他发现:月考成绩y 与月考的次数 x 具有线性相关关系.(1)求y 关于x 的线性回归方程ˆˆˆy bx a =+;(2)判断变量y 与x 之间是正相关还是负相关(只写出结论即可).(3)按计划,高二年级两学期共有8次月考,请你预测该同学高二最后一次月考的成绩(结果保留整数).(1)ˆ 5.583.5yx =+ (2)正相关 (3)128【分析】(1)根据已知数据直接计算回归方程即可; (2)结合回归方程x 的系数判断即可;(3)根据(1)中的方程计算8x =时的值,估计即可. 【详解】(1)解:根据已知可得()11234535x =++++=,()1851001001051101005y =++++=, 所以,()5214101410i i x x=-=++++=∑,()()()512150052055iii x x y y =--=-⨯-++++=∑,所以,()()()5152155ˆ 5.510iii i i x x y y x bx===---==∑∑,ˆˆ100 5.5383.5a y bx=-=-⨯=, 所以,y 关于x 的线性回归方程为ˆ 5.583.5yx =+ (2)解:因为y 关于x 的线性回归方程为ˆ 5.583.5yx =+, 所以,变量y 与x 之间是正相关.(3)解:结合(1)得y 关于x 的线性回归方程为ˆ 5.583.5y x =+, 所以,当8x =时,ˆ 5.5883.5127.5128y=⨯+=≈ 所以,高二最后一次月考的成绩大约为128分. 18.已知函数()2sin (cos )f x x x x =+(1)求函数()f x 的最小正周期; (2)求函数()f x 的单调区间和对称中心. (1)π(2)答案见解析【分析】(1)根据二倍角公式结合辅助角公式化简得()2sin(π2)3f x x =+,进而可得周期;(2)将π23x +代入sin y x =的单调增减区间,对称中心,求出x 即为所求. 【详解】(1)由已知()2sin (cos 3sin )3f x x x x =-+ sin 23(1cos 2)3x x =--+πsin 23cos22sin(2)3x x x =+=+则最小正周期2ππ2T ==; (2)令ππ3π2π22π,232k x k k Z +≤+≤+∈,得7πππ,1212πk x k k Z +≤≤+∈ 令πππ2π22π,232k x k k -+≤+≤+∈Z ,得5ππππ,1212k x k k -+≤≤+∈Z令π2π,3x k k +=∈Z ,得ππ,62k x k Z =-+∈,故函数()f x 的单调增区间为π5ππ,π,1212k k k Z ⎡⎤-++∈⎢⎥⎣⎦,单调减区间7ππ,π,π1212k k k Z ⎡⎤++∈⎢⎥⎣⎦, 对称中心ππ,0,62k k Z ⎛⎫-+∈ ⎪⎝⎭.19.当前,新冠肺炎疫情防控形势依然复杂严峻. 为进一步增强学生的防控意识,让全体学生充分了解新冠肺炎疫情的防护知识,提高防护能力,做到科学防护,平罗中学组织学生进行了新冠肺炎疫情防控科普知识线上问答,共有100人参加了这次问答,将他们的成绩(满分100分)分成六组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100],制成如图所示的频率分布直方图.(1)求图中a 的值;(2)试估计这100人的问答成绩的中位数和平均数(结果保留整数);(3)用分层抽样的方法从问答成绩在[70,100]内的学生中抽取24人参加疫情防控知识宣讲,那么在[70,80),[80,90),[90,100]内应各抽取多少人? (1)0.015a =(2)中位数为73,平均数为72 (3)12,10,2【分析】(1)直接利用频率和为1计算得到答案. (2)直接利用平均数和中位数的公式计算即可. (3)根据分层抽样的比例关系计算得到答案.【详解】(1)()0.0050.0200.0300.0250.005101a +++++⨯=,解得0.015a =. (2)()0.0050.0150.020100.4++⨯=,故中位数为0.50.41070730.03010-⨯+=⨯.平均数为450.05550.15650.2750.3850.25950.0572⨯+⨯+⨯+⨯+⨯+⨯=. (3)0.03:0.025:0.056:5:1=,[70,80),[80,90),[90,100]内应各抽人数分别为: 6241212⨯=,5241012⨯=,124212⨯=. 20.在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,cos cos b C c B a c -=-. (1)求B ;(2)若b =△ABC 22)a c +,求△ABC 的周长. (1)π3(2)3【分析】(1)先利用余弦定理角化边,整理后直接用余弦定理求角;(2)利用面积公式和题中面积相等构造一个方程,再用余弦定理构造一个方程,解方程组即可. 【详解】(1)cos cos b C c B a c -=-,由余弦定理可得22222222a b c a c b b c a c ab ac+-+-⨯-⨯=-, 整理得222a c b ac +-=,2221cos 222a cb ac B ac ac +-∴===,又()0,πB ∈π3B ∴=;(2)由已知221π)=sin 23ABCS a c ac +, 整理得2223a c ac +=①又222π2cos33b ac ac =+-=, 整理得223a c ac +-=②由①②得a c ⎧=⎪⎨=⎪⎩12a c =⎧⎨=⎩=123++=+∴△ABC 的周长为321.数列{}n a 的各项均为正数,11a =,当2n ≥时,1n n a a --(1)证明:是等差数列,并求数列{}n a 的通项公式; (2)设141n n b a =-,数列{}n b 前n 项和为n S ,证明:12n S <. (1)证明见解析;2n a n =(2)证明见解析【分析】(1)将递推式变形为=再根据等差数列的通项公式求解即可;(2)变形得11122121n b n n ⎛⎫=- ⎪-+⎝⎭,利用裂项相消法计算n S ,再观察即可得结果.【详解】(1)由1n n a a --=因为数列{}n a 0≠,1=1=所以是以1为首项,1为公差的等差数列.()1n n -=即2n a n =;(2)由(1)2n a n =得2141n b n =-,()()1111212122121n b n n n n ⎛⎫∴==- ⎪-+-+⎝⎭,1112111111111123355227211n S n n n ⎛⎫⎛⎫=-+-+-++=∴---++ ⎪ ⎪⎝⎭⎝⎭1021n >+, 则11121n -<+,11112212n ⎛⎫-< ⎪+⎝⎭,即12n S <. 22.如图1,在直角梯形ABCD 中,ABCD ,AB BC ⊥,224AB BC CD ===,E 是AB 的中点. 沿DE 将ADE 折起,使得AE BE ⊥,如图2所示. 在图2中,M 是AB 的中点,点N 在线段BC 上运动(与点B ,C 不重合).在图2中解答下列问题:(1)证明:平面EMN ⊥平面ABC ;(2)设二面角M EN B --的大小为θ,求tan θ的取值范围 (1)证明见解析 (2)()tan 2,θ∈+∞【分析】(1)证明⊥AE 平面BCDE ,BC ⊥平面AEB 得到EM ⊥平面ABC ,得到证明.(2)如图所示建立空间直角坐标系,计算各点坐标,计算平面EMN 的法向量为()1,2,n t t =--,平面EBN 的法向量为()20,0,1n =,根据向量的夹角公式得到224tan 1t θ=+,计算得到答案. 【详解】(1)AEB △中,AE EB =,M 时AB 中点,故EM AB ⊥, AE BE ⊥,AE DE ⊥,DE BE E ⋂=,故⊥AE 平面BCDE ,BC ⊂平面BCDE ,故AE BC ⊥,又BC BE ⊥,AE BE E =,故BC ⊥平面AEB ,EM ⊂平面AEB ,故EM BC ⊥,AB BC B ⋂=, 故EM ⊥平面ABC ,EM ⊂平面EMN ,故平面EMN ⊥平面ABC . (2)如图所示,分别以,,EB ED EA 分别为,,x y z 轴建立空间直角坐标系. 则()0,0,0E ,()2,0,0B ,()0,0,2A ,()1,0,1M ,()2,,0N t ,()0,2t ∈,设平面EMN 的法向量为()1,,n a b c =,则()()()()11,,1,0,10,,2,,020n EM a b c a c n EN a b c t a bt ⎧⋅=⋅=+=⎪⎨⋅=⋅=+=⎪⎩,取a t =,则()1,2,n t t =--.取平面EBN 的法向量为()20,0,1n =,二面角M EN B --的平面角为锐角,大小为θ,则12212cos 24n n t n n t θ⋅==⋅+222221244tan 111cos t t tθθ+=-=-=+,()0,2t ∈, 故()2tan 2,θ∈+∞,故()tan 2,θ∈+∞.。

四川省成都市郫都区2019-2020学年高二上学期期中考试数学(理)试题 含解析

四川省成都市郫都区2019-2020学年高二上学期期中考试数学(理)试题 含解析

四川省成都市郫都区2019-2020学年度上期期中考试高二数学(理)试题一、选择题(本大题共12小题)1.直线x+y-1=0的倾斜角为()A. B. C. D.2.抛物线y=4x2的焦点坐标是()A. B. C. D.3.双曲线的一个焦点到它的渐近线的距离为()A. 1B.C.D. 24.下列说法正确的是()A. 命题“3能被2整除”是真命题B. 命题“,”的否定是“,”C. 命题“47是7的倍数或49是7的倍数”是真命题D. 命题“若a、b都是偶数,则是偶数”的逆否命题是假命题5.已知α、β是两个不同的平面,直线a⊂α,直线b⊂β,命题p:a与b没有公共点,命题q:α∥β,则p是q的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件6.直线l1:x+ay+6=0与l2:(a-2)x+3y+2a=0平行,则a的值等于()A. 或3B. 1或3C.D.7.设m、n是两条不同的直线α,β,γ,是三个不同的平面,下列四个命题中正确的序号是()①若m⊥α,n∥α,则m⊥n②若α⊥γ,β⊥γ,则α∥β③若m∥α,n∥α,则m∥n④若α∥β,β∥γ,m⊥α,则m⊥γA. 和B. 和C. 和D. 和8.若直线y=kx+1与圆x2+y2=1相交于P、Q两点,且∠POQ=120°(其中O为原点),则k的值为()A. B. C. D.9.一空间几何体的三视图如图所示,则该几何体的体积为()A. 1B. 3C. 6D. 210.已知圆,圆,则这两个圆的公切线条数为()A. 1条B. 2 条C. 3 条D. 4 条11.在平面直角坐标系中,A,B分别是x轴和y轴上的动点,若以AB为直径的圆C与直线2x+y-4=0相切,则圆C面积的最小值为()A. B. C. D.12.已知椭圆的左右焦点分别为F1,F2,点Q为椭圆上一点.△QF1F2的重心为G,内心为I,且,则该椭圆的离心率为()A. B. C. D.二、填空题(本大题共4小题)13.已知x、y满足不等式组,则z=3x+y的最大值为______.14.体积为4π的球的内接正方体的棱长为______.15.椭圆+=1与双曲线-=1有公共的焦点F1,F2,P是两曲线的一个交点,则cos∠F1PF2= ______ .16.抛物线x2=2py(p>0)上一点A(,m)(m>1)到抛物线准线的距离为,点A关于y轴的对称点为B,O为坐标原点,△OAB的内切圆与OA切于点E,点F为内切圆上任意一点,则的取值范围为______.三、解答题(本大题共6小题)17.已知p:方程x2+2mx+(m+2)=0有两个不等的正根;q:方程表示焦点在y轴上的双曲线.(1)若q为真命题,求实数m的取值范围;(2)若“p或q”为真,“p且q”为假,求实数m的取值范围.18.在△ABC中,a,b,c分别是角A,B,C的对边,且2cos A cos C(tan A tan C-1)=1.(Ⅰ)求B的大小;(Ⅱ)若,,求△ABC的面积.19.已知在等比数列{a n}中,a1=2,且a1,a2,a3-2成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{b n}满足:,求数列{b n}的前n项和S n.20.如图,多面体ABCDEF中,底面ABCD是菱形,∠BCD=60°,四边形BDEF是正方形且DE⊥平面ABCD.(Ⅰ)求证:CF∥平面ADE;(Ⅱ)若AE=,求多面体ABCDEF的体积V.21.已知动点M(x,y)满足:.(1)求动点M的轨迹E的方程;(2)设过点N(-1,0)的直线l与曲线E交于A,B两点,点A关于x轴的对称点为C(点C与点B不重合),证明:直线BC恒过定点,并求该定点的坐标.22.已知椭圆C:+=1(a>b>0)的离心率为,且过点(1,).(1)求椭圆C的方程;(2)设与圆O:x2+y2=相切的直线l交椭圆C于A,B两点,求△OAB面积的最大值,及取得最大值时直线l 的方程.答案和解析1.【答案】D【解析】解:设直线x+y-1=0的倾斜角为α.直线x+y-1=0化为.∴tanα=-.∵α∈[0°,180°),∴α=150°.故选:D.利用直线的倾斜角与斜率的关系即可得出.本题考查了直线的倾斜角与斜率的关系,属于基础题.2.【答案】C【解析】解:抛物线y=4x2的标准方程为x2=y,p=,开口向上,焦点在y轴的正半轴上,故焦点坐标为(0,),故选:C.把抛物线y=4x2的方程化为标准形式,确定开口方向和p值,即可得到焦点坐标.本题考查抛物线的标准方程,以及简单性质的应用;把抛物线y=4x2的方程化为标准形式,是解题的关键.3.【答案】C【解析】解:根据题意,由双曲线的方程为,可得焦点坐标为(-2,0)(2,0),渐近线的方程为y=±x;结合双曲线的对称性,其任一个焦点到它的渐近线的距离相等,故只需计算一个焦点到其中一条渐近线的距离即可,其距离为d==,故选:C.根据双曲线的方称可得其焦点坐标与渐近线的方程,由于双曲线的对称性,只需计算一个焦点到其中一条渐近线的距离即可,由点到直线的距离公式,计算可得答案.本题考查双曲线的性质,解题时注意结合双曲线的对称性,只需计算一个焦点到其中一条渐近线的距离即可.4.【答案】C【解析】解:对于A,3不能被2整除,∴“3能被2整除”是假命题,A错误;对于B,“∃x0∈R,x02-x0-1<0”的否定是“∀x∈R,x2-x-1≥0”,∴B错误;对于C,47不是7的倍数,49是7的倍数,∴“47是7的倍数或49是7的倍数”是真命题,C正确;对于D,“若a、b都是偶数,则a+b是偶数”是真命题,则它的逆否命题也是真命题,∴D错误.故选:C.A,3不能被2整除,判断A是假命题;B,写出命题的否定,即可判断B是假命题;C,由47不是7的倍数,49是7的倍数,利用复合命题的真假性判断即可;D,根据原命题与它的逆否命题真假性相同,判断即可.本题考查了命题真假的判断问题,是基础题.5.【答案】B【解析】解:当a,b都平行于α与β的交线时,a与b无公共点,但α与β相交.当α∥β时,a与b一定无公共点,∴q⇒p,但p⇒/q故选:B.利用量平面平行的定义推出a与b没有公共点;a与b没有公共点时推不出α∥β,举一个反例即可.利用充要条件定义得选项.本题考查两个平面平行的定义:两平面无公共点;充要条件的判断.6.【答案】D【解析】解:因为两条直线平行,两直线的斜率都存在,故它们的斜率相等,由,解得:a=-1,故选:D.直接利用两直线平行的充要条件,列出方程求解,解得a的值.本题考查两直线平行的条件,要注意特殊情况即直线斜率不存在的情况,要进行检验.7.【答案】D【解析】解:由m、n是两条不同的直线α,β,γ,是三个不同的平面,知:∵m⊥α,n∥α,∴m⊥n,故①正确;∵α⊥γ,β⊥γ,∴α∥β或α与β相交,故②不正确;∵m∥α,n∥α,∴m与n相交、平行或异面,故③不正确;∵α∥β,β∥γ,∴α∥γ,∵m⊥α,∴m⊥γ,故④正确.故选:D.由m、n是两条不同的直线α,β,γ,是三个不同的平面,知:m⊥α,n∥α⇒m⊥n;α⊥γ,β⊥γ⇒α∥β或α与β相交;m∥α,n∥α⇒m与n相交、平行或异面,故③不正确;α∥β,β∥γ⇒α∥γ,由m⊥α,知m⊥γ.本题考查平面的基本性质及其推论,是基础题.解题时要认真审题,仔细解答.8.【答案】A【解析】解:如图,直线过定点(0,1),∵∠POQ=120°∴∠OPQ=30°,⇒∠1=120°,∠2=60°,∴k=±.故选:A.直线过定点,直线y=kx+1与圆x2+y2=1相交于P、Q两点,且∠POQ=120°(其中O为原点),可以发现∠QOx的大小,求得结果.本题考查过定点的直线系问题,以及直线和圆的位置关系,是基础题.9.【答案】D【解析】【分析】本题主要考查由三视图求几何体的体积,在三个图形中,俯视图确定锥体的名称,即是几棱锥,正视图和侧视图确定锥体的高,注意高的大小,侧视图是最不好理解的一个图形,注意图形上的虚线部分,根据体积公式得到结果.【解答】解:由三视图知,几何体是一个四棱锥,四棱锥的底面是一个直角梯形,直角梯形的上底是1,下底是2,垂直于底边的腰是2,一条侧棱与底面垂直,这条侧棱长是2,∴四棱锥的体积是=2.故选D.10.【答案】D【解析】解:根据题意,圆C1:x2+y2+2x-4y+1=0,即(x+1)2+(y-2)2=4,其圆心为(-1,2),半径r1=2,圆C2:(x-3)2+(y+1)2=1,其圆心为(3,-1),半径r2=1,则有|C1C2|==5>r1+r2,两圆外离,有4条公切线;故选:D.根据题意,分析两圆的圆心与半径,进而分析两圆的位置关系,据此分析可得答案.本题考查圆与圆的位置关系以及两圆的公切线,关键是分析两圆的位置关系,属于基础题.11.【答案】A【解析】【分析】本题主要考查了直线与圆的位置关系,考查圆的面积的最小值的求法,是中档题,解题时要认真审题,注意数形结合思想的合理运用.由已知得|OC|=|CE|=r,过点O作直线2x+y-4=0的垂直线段OF,交AB于D,交直线2x+y-4=0于F,则当D恰为AB中点时,圆C的半径最小,即面积最小.【解答】解:如图,设AB的中点为C,坐标原点为O,圆半径为r,由已知得|OC|=|CE|=r,过点O作直线2x+y-4=0的垂直线段OF,交AB于D,交直线2x+y-4=0于F,则当D恰为OF中点时,圆C的半径最小,即面积最小.此时圆的直径为O(0,0)到直线2x+y-4=0的距离为:d==,此时r=,∴圆C的面积的最小值为:S min=π×()2=.故选A.12.【答案】A【解析】解:椭圆的左右焦点分别为F1(-c,0),F2(c,0),设Q(x0,y0),∵G为△F1QF2的重心,∴G点坐标为G(,),∵,则∥,∴I的纵坐标为,又∵|QF1|+|QF2|=2a,|F1F2|=2c,∴=•|F1F2|•|y0|,又∵I为△F1QF2的内心,∴||即为内切圆的半径,内心I把△F1QF2分为三个底分别为△F1MF2的三边,高为内切圆半径的小三角形,∴=(|QF1|+|F1F2|+|QF2|)||,即×2c•|y0|=(2a+2c)||,∴2c=a,∴椭圆C的离心率为e=,∴该椭圆的离心率,故选:A.由题意,设Q(x0,y0),由G为△F1QF2的重心,得G点坐标为(,),利用面积相等可得,×2c•|y0|=(2a+2c)||,从而求椭圆的离心率.本题考查了椭圆的标准方程及其性质、三角形的重心与内心的性质、三角形面积计算公式、向量共线定理,考查了推理能力与计算能力,属于难题.13.【答案】9【解析】解:作出x、y满足不等式组表示的平面区域,得到如图的三角形及其内部,其中A(2,3),设z=F(x,y)=3x+y,将直线l:z=3x+y进行平移,当l经过点A时,目标函数z达到最大值,∴z最大值=F(2,3)=9.故答案为:9.作出题中不等式组表示的平面区域,再将目标函数z=2x+y对应的直线进行平移,可得当x=2,y=3时,求出z=3x+y取得最大值.本题给出二元一次不等式组,求目标函数z=3x+y的最大值,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于基础题.14.【答案】2【解析】解:设球的半径为R,正方体的棱长a,则=4,∴R3=,∴R=,则由正方体的性质可知,正方体的体对角线=2R=2,∴a=2,故答案为:2.先确定球的半径,利用球的内接正方体的对角线为球的直径,即可求得结论.本题考查球的内接正方体,解题的关键是利用球的内接正方体的对角线为球的直径,属于基础题.15.【答案】【解析】解:由题意设焦点F2(2,0)、F1(-2,0),∴3+b2=4,求得b2=1,双曲线-=1,即双曲线-y2=1.不妨设点P在第一象限,再根据椭圆、双曲线的定义和性质,可得|PF1|+|PF2|=2,|PF1|-|PF2|=2,可得|PF1|=+,|PF2|=-,且|F1F2|=4.再由余弦定理可得cos∠F1PF2=即=,故答案为:.不妨设点P在第一象限,再根据椭圆、双曲线的定义和性质,可得|PF1|+|PF2|=2,|PF1|-|PF2|=2,求得|PF1|和|PF2|的值,根据|F1F2|=4,利用余弦定理可得cos∠F1PF2的值.本题主要考查椭圆、双曲线的定义和性质及其标准方程,余弦定理的应用,属于中档题.16.【答案】【解析】解:因为点在抛物线上,所以,点A到准线的距离为,解得或p=6.当p=6时,,故p=6舍去,所以抛物线方程为x2=y,∴,所以△OAB是正三角形,边长为,其内切圆方程为x2+(y-2)2=1,如图4,∴.设点F(cosθ,2+sinθ)(θ为参数),则,∴.故答案为:.利用点在抛物线上,求出m,点A到准线的距离为,求出p,即可解出抛物线方程,设点F(cosθ,2+sinθ)(θ为参数),化简数量积,求解范围即可.本题考查抛物线的简单性质,直线与抛物线的位置关系圆的方程的应用,考查转化思想以及计算能力.17.【答案】解:(1)由已知方程表示焦点在y轴上的双曲线,则,得,得m<-3,即q:m<-3.(2)若方程x2+2mx+(m+2)=0有两个不等的正根则,解得-2<m<-1,即p:-2<m<-1.因p或q为真,所以p、q至少有一个为真.又p且q为假,所以p,q至少有一个为假.因此,p,q两命题应一真一假,当p为真,q为假时,,解得-2<m<-1;当p为假,q为真时,,解得m<-3.综上,-2<m<-1或m<-3.【解析】(1)根据双曲线的标准方程进行求解即可.(2)根据复合命题真假关系得到p,q两命题应一真一假,进行求解即可.本题主要考查复合命题的真假应用,根据条件求出命题为真命题的等价条件是解决本题的关键.18.【答案】解:(Ⅰ)由2cos A cos C(tan A tan C-1)=1得:2cos A cos C(-1)=1,∴2(sin A sin C-cos A cos C)=1,即cos(A+C)=-,∴cos B=-cos(A+C)=,又0<B<π,∴B=;(Ⅱ)由余弦定理得:cos B==,∴=,又a+c=,b=,∴-2ac-3=ac,即ac=,∴S△ABC=ac sin B=××=.【解析】(Ⅰ)已知等式括号中利用同角三角函数间基本关系切化弦,去括号后利用两角和与差的余弦函数公式化简,再由诱导公式变形求出cos B的值,即可确定出B的大小;(Ⅱ)由cos B,b的值,利用余弦定理列出关系式,再利用完全平方公式变形,将a+b以及b的值代入求出ac的值,再由cos B的值,利用三角形面积公式即可求出三角形ABC面积.此题考查了余弦定理,三角形面积公式,两角和与差的余弦函数公式,熟练掌握余弦定理是解本题的关键.19.【答案】解:(Ⅰ)等比数列{a n}的公比设为q,a1=2,a1,a2,a3-2成等差数列,可得2a2=a1+a3-2,即为4q=2+2q2-2,解得q=2,则a n=a1q n-1=2n,n∈N*;(Ⅱ)=+2log22n-1=+2n-1,则数列{b n}的前n项和S n=(++…+)+(1+3+…+2n-1)=+n(1+2n-1)=1-+n2.【解析】(Ⅰ)等比数列{a n}的公比设为q,由等差数列中项性质和等比数列的通项公式,解方程可得q,进而得到所求通项公式;(Ⅱ)求得=+2log22n-1=+2n-1,由数列的分组求和和等差数列、等比数列的求和公式,计算可得所求和.本题考查等差数列中项性质和等比数列的通项公式和求和公式的运用,考查数列分组求和,以及化简整理的运算能力,属于中档题.20.【答案】(Ⅰ)证明:∵底面ABCD是菱形,∴AD∥BC,∵四边形BDEF是正方形,∴DE∥BF,∵BF∩BC=B,∴平面ADE∥平面BCF,∵CF⊂平面BCF,∴CF∥平面ADE.(Ⅱ)解:连结AC,交BD于O,∵四边形BDEF是正方形且DE⊥平面ABCD.∴DE⊥平面ABCD,又AC⊂平面ABCD,∴AC⊥DE,∵底面ABCD是菱形,∴AC⊥BD,又BD∩DE=D,∴AC⊥平面BDEF,∵AE=,∠BCD=60°,∴AD=DE=BD=1,∴AO=CO=,∴多面体ABCDEF的体积:V=2V A-BDEF=2×=2×=.【解析】(Ⅰ)由已知得AD∥BC,DE∥BF,从而平面ADE∥平面BCF,由此能证明CF∥平面ADE.(Ⅱ)连结AC,交BD于O,由线面垂直得AC⊥DE,由菱形性质得AC⊥BD,从而AC⊥平面BDEF,进而多面体ABCDEF的体积V=2V A-BDEF,由此能求出多面体ABCDEF的体积V.本题考查线面平行证明,考查多面体的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.21.【答案】解:(1)由已知,动点M到点P(-1,0),Q(1,0)的距离之和为2,且|PQ|<2,所以动点M的轨迹为椭圆,而a=,c=1,所以b=1,所以,动点M的轨迹E的方程:+y2=1.(2)设A(x1,y1),B(x2,y2),则C(x1,-y1),由已知得直线l的斜率存在,设斜率为k,则直线l的方程为:y=k(x+1),由,得(1+2k2)x2+4k2x+2k2-2=0,所以x1+x2=-,x1x2=,直线BC的方程为:y-y2=(x-x2),所以y=x-,令y=0,则x====-2,所以直BC与x轴交于定点D(-2,0).【解析】(1)分别求出a,b,c的值,求出M的轨迹方程即可;(2)输出直线l的方程为:y=k(x+1),联立直线和椭圆的方程,根据根与系数的关系,求出定点D的坐标即可.本题考查了求椭圆的轨迹方程问题,考查直线和椭圆的关系以及韦达定理的应用,是一道中档题.22.【答案】解:(1)由题意可得,e==,a2-b2=c2,点(1,)代入椭圆方程,可得+=1,解得a=,b=1,即有椭圆的方程为+y2=1;(2)①当k不存在时,x=±时,可得y=±,S△OAB=××=;②当k存在时,设直线为y=kx+m(k≠0),A(x1,y1),B(x2,y2),将直线y=kx+m代入椭圆方程可得(1+3k2)x2+6kmx+3m2-3=0,x1+x2=-,x1x2=,由直线l与圆O:x2+y2=相切,可得=,即有4m2=3(1+k2),|AB|=•=•=•=•=•≤•=2,当且仅当9k2= 即k=±时等号成立,可得S△OAB=|AB|•r≤×2×=,即有△OAB面积的最大值为,此时直线方程y=±x±1.【解析】(1)运用椭圆的离心率公式和点满足椭圆方程,解方程可得a,b,进而得到椭圆方程;(2)讨论①当k不存在时,②当k存在时,设直线为y=kx+m,A(x1,y1),B(x2,y2),将直线y=kx+m代入椭圆方程,运用韦达定理和弦长公式,以及直线和圆相切的条件:d=r,结合基本不等式即可得到所求面积的最大值和直线l的方程.本题考查椭圆的方程的求法,注意运用离心率公式和点满足椭圆方程,考查三角形的面积的最大值,注意运用分类讨论的思想方法,联立直线方程和椭圆方程,运用韦达定理和弦长公式,以及直线和圆相切的条件:d=r,和基本不等式的运用,属于中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

黑龙江省牡丹江市2017-2018学年高二数学上学期期中试题 理一、选择题(每题5分)1、若点M 到两定点F 1(0,-1),F 2(0,1)的距离之和为2,则点M 的轨迹是( )A .椭圆B .直线21F FC .线段21F FD .线段21F F 的中垂线.2、以下四组向量中,互相平行的有( )组.(1)()1,2,1a = , ()1,2,3b =- .(2)()8,4,6a =- , ()4,2,3b =- . (3)()0,1,1a =- , ()0,3,3b =- .(4)()3,2,0a =- , ()4,3,3b =- .A. 一B. 二C. 三D. 四3、直三棱柱111C B A ABC -中,090=∠BCA ,M,N 分别是1111,C A B A 的中点,BC=CA=1CC , 则BM 与AN 所成角的余弦值为( ) A101 B 1030 C 52 D 224、若()()7,4,3,0,1,2-=-=b a 且()a b a ⊥+λ,则λ的值是( )A. 0B. 1C. -2D. 2 5、“-3<m <5”是“方程x 25-m +y 2m +3=1表示椭圆”的 ( ).A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 6、下列极坐标方程表示圆的是( ). A. π2θ=B. sin 1ρθ=C. ()sin cos 1ρθθ+=D. 1ρ=72,则双曲线C 的渐近线方程为A .y x =±B .3y x =±C .y =D .2y x =±8、已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,∆ABM 为等腰三角形,且顶角为120°,则E 的离心率为( )A .2 C9、已知M (00,x y )是双曲线C :2212x y -=上的一点,12,F F 是C 上的两个焦点,若120MF MF ∙<,则0y 的取值范围是( )A (-3,3 B (-6,6) C (3-,3) D ()10、抛物线x y 42=的焦点到双曲线1322=-y x 的渐近线的距离为( ) A21 B 23 C 1 D 3 11、已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若4=,则|QF|=( )12、已知F 1,F 2是椭圆22221(0)x y a b a b+=>>的左、右焦点,点P 在椭圆上,且122F PF π∠=记线段PF 1与y 轴的交点为Q ,O 为坐标原点,若△F 1OQ 与四边形OF 2PQ 的面积之比为1: 2,则该椭圆的离心率等于 ( )A .2-B .3C .4-1- 二、填空题(每题5分)13、抛物线x y 42=的准线方程为___________.14、已知点1F 为椭圆15922=+y x 的左焦点,点)1,1(A ,动点P 在椭圆上,则||||1PF PA +的最小值为15、过点(1,1)M 作斜率为12-的直线与椭圆C :22221(0)x y a b a b+=>>相交于,A B ,若M是线段AB 的中点,则椭圆C 的离心率为16、已知双曲线的方程为()012222>>=-a b b y a x,O 是坐标原点,2=e 。

点M ()3,5在双曲线上。

直线l 与双曲线交于P,Q 两点,且满足0=∙OQ OP ,则的最小值是________________________三、解答题(10+12+12+12+12+12) 17、在直角坐标系xOy 中,直线1C :x =-2,圆2C :()()22121x y -+-=,以坐标原点为极点, x 轴的正半轴为极轴建立极坐标系. (Ⅰ)求1C ,2C 的极坐标方程; (Ⅱ)若直线3C 的极坐标方程为()4R πθρ=∈,设2C 与3C 的交点为M ,N ,求MNC 2∆的面积.18、椭圆13422=+y x 的左、右焦点分别为F 1,F 2,一条直线l 经过点F 1与椭圆交于A ,B 两点.(1)求△ABF 2的周长; (2)若l 的倾斜角为4π,求弦长|AB|. 19、如图,已知点P 在正方体ABCD -A B C D ''''的对角线BD '上,60PDA ∠=︒.(Ⅰ)求DP 与CC '所成角的大小;(Ⅱ)求DP 与平面AA D D ''所成角的大小.20、如图,四棱锥P ﹣ABCD 的底面是边长为1的正方形, PA⊥底面ABCD ,E 、F 分别为AB 、PC 的中点. (Ⅰ)求证:EF∥平面PAD ;(Ⅱ)若PA=2,试问在线段EF 上是否存在点Q ,使得二面角 Q ﹣AP ﹣D 的余弦值为错误!未找到引用源。

?若存在,确定点 Q 的位置;若不存在,请说明理由.21、已知椭圆()2222:10x y C a b a b +=>>,其离心率e =椭圆上的点到两个焦点的距离之和为()1求椭圆C 的方程;()2过点()0,2P 且斜率为k 的直线l 与椭圆C 交于不同的两点,A B , O 为坐标原点,若AOB ∠为锐角,求直线l 斜率k 的取值范围.22、已知点F 为抛物线2:2(0)E y px p =>的焦点,点(2,)A m 在抛物线E 上,且3AF =.(Ⅰ)求抛物线E 的方程;(Ⅱ)已知点(1,0)G -,延长AF 交抛物线E 于点B , 证明:以点F 为圆心且与直线GA 相切的圆, 必与直线GB 相切.17、答案:(Ⅰ)cos 2ρθ=-,22cos 4sin 40ρρθρθ--+=(Ⅱ)218、【答案】(1)8(2)247 试题解析:(1)椭圆22143x y +=,a=2,c=1, 由椭圆的定义,得丨AF 1丨+丨AF 2丨=2a=4,丨BF 1丨+丨BF 2丨=2a=4, 又丨AF 1丨+丨BF 1丨=丨AB 丨,∴△ABF 2的周长为121248AF AF BF BF a +++== ∴故△ABF 2点周长为8;(2)由(1)可知,得F 1(﹣1,0), ∵AB 的倾斜角为4π,则AB 斜率为1,A (x 1,y 1),B (x 2,y 2),故直线AB 的方程为y=x+1.221{ 143y x x y =++= ,整理得:7y 2﹣6y ﹣9=0, 由韦达定理可知:y 1+y 2=67,y 1•y 2=﹣97, 则由弦长公式丨AB 丨247==, 弦长|AB|=247. 19、.解:如图,以D 为原点,DA 为单位长建立空间直角坐标系D xyz -.则(100)DA = ,,,(001)CC '=,,.连结BD ,B D ''.在平面BB D D ''中,延长DP 交B D ''于H .设(1)(0)DH m m m =>,,,由已知由︒=>=<60||||,cos DA DH,可得2m2m =所以1DH ⎫=⎪⎪⎝⎭.(Ⅰ)因为0011cos DH CC ++⨯'<>== , 所以45DH CC '<>=,.即DP 与CC '所成的角为45 . (Ⅱ)平面AA D D ''的一个法向量是(010)DC =,,.因为01101cos 2DH DC ++⨯<>== ,, 所以60DH DC <>= ,. 可得DP 与平面AA D D ''所成的角为30.20、A 'B 'C 'D'(Ⅱ)结论:满足条件的Q 存在,是EF 中点.理由如下: 如图:以点A 为坐标原点建立空间直角坐标系,则)1,21,21(),0,21,0(),0,1,1(),0,1,0(),2,0,0(F E C B P , 由题易知平面PAD 的法向量为(0,1,0)n = ,假设存在Q 满足条件:设EQ EF λ=,1(,0,1)2EF = ,∴1(,,)22Q λλ=,1(,,)22AQ λλ= ,]1,0[∈λ,设平面PAQ 的法向量为(,,)n x y z = ,由10220x y z z λλ⎧++=⎪⎨⎪=⎩,可得(1,,0)n λ=- ,∴cos ,||||m n m n m n ⋅<>==5=,解得:12λ=, 所以满足条件的Q 存在,是EF 中点.21、()1 2213x y += ()2设直线l 的方程为2y kx =+, ()()1122,,,A x y B x y联立222{ 13y kx x y =++=,得()22311290,k x kx +++=则121222129,,3131k x x x x k k +=-=++ 2=36360k ∆->,解得21k > ()()1122,,,OA x y OB x y ==()()()212121212222124912=12403131OA OB x x y y k x x k x x k k k k k ∴⋅=+=++++⎛⎫+⋅+-+> ⎪++⎝⎭解得213.3k < 21313k ∴<<,即1.k ⎛⎫⎛∈-⋃ ⎪ ⎪ ⎝⎭⎝⎭22、【解析】(I )由抛物线的定义得F 22pA =+. 因为F 3A =,即232p+=,解得2p =,所以抛物线E 的方程为24y x =. (II )因为点()2,m A 在抛物线:E 24y x =上,所以m =±(2,A .由(2,A ,()F 1,0可得直线F A的方程为)1y x =-.由)214y x y x⎧=-⎪⎨=⎪⎩,得22520x x -+=, 解得2x =或12x =,从而1,2⎛B ⎝. 又()G 1,0-,所以G k A ==G k B ==, 所以G G 0k k A B +=,从而GF GF ∠A =∠B ,这表明点F 到直线G A ,G B 的距离相等, 故以F 为圆心且与直线G A 相切的圆必与直线G B 相切.。

相关文档
最新文档