小升初数学专题之解方程
小升初数学一元一次方程

小升初必考——(一元一次方程解决实际问题)1.甲、乙两列客车从两地同时相对开出,5小时后在离中点30千米处相遇慢车每小时行驶48千米,快车每小时行驶多少千米?用方程解.设快车每小时行驶x千米,下列方程正确的是()A、5x﹣48×5=30×2B、5x﹣48×5=30C、5x﹣30=48×5+30×2【答案】A【解析】解:设快车每小时行驶x千米5x﹣48×5=30×2故应选:A.【分析】在离中点30千米处相遇,也就是快车比慢车多行驶30×2=60千米,设快车每小时行驶x千米,依据路程=速度×时间,分别表示出快车和慢车行驶的路程,再根据快车行驶的路程﹣慢车行驶的路程=快车比慢车多行驶的路程可列方程:5x﹣48×5=30×2,据此即可解答.2.商场运来1200千克苹果,比梨的3倍少60千克。
设梨有X千克,下面方程中错误的是()。
A.3X+60=1200 B. 3X-60=1200 C.3X-1200=60【答案】A【解析】考查学生能对列方程以及用含有字母的式子知识的综合运用情况3.一个正方形的周长是64厘米,它的边长是多少?设它的边长是x厘米。
列方程是()A. x2=64B. 4x=64C. 2x=64D. 64÷x=2 【答案】B4.六年级植树84棵,比五年级植树棵数的3倍少15棵,五年级植树多少棵?设五年级植树x棵,下列方程错误的是()。
A. 3x-15=84B. 3x=84+15C. 3x=84-15【答案】C5.超市运来苹果100千克,比运来的梨的质量的3倍少5千克,运来梨多少千克?设运来梨x千克,下列方程()是错误的.A.3x﹣100=5 B.3x+5=100 C.3x=100+5 【答案】A【解析】试题分析:设运来梨x千克,根据:运来梨的重量×3﹣苹果的重量=5,列出方程3x﹣100=5,解答即可.解:设运来梨x千克,则:3x﹣100=53x=105x=35答:运来梨35千克;故选:A.6.某班有女生24人,比男生人数的45多4人,男生有多少人?设男生有x人,下列方程错误的是()A.45x﹣4=24 B.45x+4=24 C.45x=24+4【答案】B7.去年小芳比姐姐小18岁,姐姐今年的岁数正好是小芳的3倍。
小升初六年级数学总复习:简易方程及其应用

里填上合适的数。
(2)3x= 15.6
2.28-4x=12 的解是( x=4 )。 3.如果 3x+4=25,那么 4x+3=( 31 )。 4.当 x=( 9 )时,算式(2x-6)÷12 的结果是 1。
5.5x=15 和 +x=38 的解相同, 里应该填( 35 )。
6.如果 2 +3△=21,2 △=( 6 )。
+△=9,那么
=( 1.5 ),
二、判断。(对的画“√”,错的画“×”)(10 分) 1.等式的两边同时乘同一个数,等式仍然成立。( √ ) 2.10=8x+1 不是方程。( × ) 3.20 除 x 的 2 倍,商是 5,列方程是 2x÷20=5。( √ ) 4.方程 x-0.1x=1.08 与方程(x+2)×3=9.6 的解相同。 (√) 5.一批零件,甲单独做需要 3 小时,乙单独做需要 2 小时。 如果两人合作,完成任务需要的时间是 x 小时,那么列方程是
三、选择。(每小题 2 分,共 8 分)
1.下面式子中不是方程的是( C )。
A.15×5=2n
B.2x+63=96
C.7.2+8.3=15.5
2.x=4 是下面( C )方程的解。
A.x-15=20
B.x +15=20
C.5x=20
3.下面方程中,与方程 5x+3=8.5 有相同解的是( B )。 A.5x=8.5 B.5x=8.5-3 C.x+3=8.5 4.运用等式的性质进行变形,正确的是( C )。 A.如果 a=b,那么 a+c=b-c B.如果 a=b,那么 a×3=b÷3 C.如果 3b=3a,那么 b=a
☞思路点拨 本题主要考查方程的意义。方程必须具备两个 条件:一是等式,二是必须含有未知数。很显然第(1)小题的说 法是错误的,应该是含有未知数的等式叫做方程。第(2)小题的 说法是对的,所有的方程都是等式,但等式不一定是方程,因为 它不一定含有未知数。第(3)、(4)小题虽然都含有未知数,但 都不是等式,所以都不是方程。
(完整版)小升初数学专项题-列方程解应用题

列方程解应用题【基础概念】:列方程解决问题就是根据题目中的等量关系先列出方程,再求得问题中的未知量的一种解决问题的方法。
知量的一种解决问题的方法。
把所求问题用一个字母表示,把所求问题用一个字母表示,把所求问题用一个字母表示,并让其参与分析与列式,并让其参与分析与列式,并让其参与分析与列式,很快理很快理清题中的数量关系,可以使一些整数、分数、百分数的应用题化难为易,既可以节省时间,又可以提高解题能力。
【典型例题1】:贵诚超市推销一种积压商品,减价25%出售,每件售价42元,原定价是多少元?【小结】:解决这类问题首先要找到等量关系——原价-减少的钱数=现价,再根据等量关系列出方程,从而解决问题。
【巩固练习】1.列方程解答。
2.列方程解答。
【典型例题2】:甲乙两地相距480千米,客货两车同时从甲乙两地相向而行,客车平均每小时行65千米,货车平均每小时行60千米,行驶了3小时,这时两车还相距多少千米?小时,这时两车还相距多少千米?【小结】:解决这类问题的关键是要明确“行驶的路程、剩下的路程、甲乙两地的距离”之间的关系,即行驶的路程+剩下的路程=甲乙两地的距离,列出方程解答即可。
甲乙两地的距离,列出方程解答即可。
【巩固练习】【巩固练习】3. 甲乙两地相距480千米.客车和货车同时从两地相对开出,千米.客车和货车同时从两地相对开出,相向而行,相向而行,4小时后,小时后,两车还两车还相距80千米.已知货车每小时行53千米,问客车每小时行多少千米?千米,问客车每小时行多少千米?4.一辆客车和一辆货车从甲乙两地同时出发相向而行,经过45小时两车相遇,这时货车行了全程的40%,已知货车每小时行60千米,求甲乙两地的距离。
千米,求甲乙两地的距离。
5、有两包面粉,第一包重是第二包的两倍,如果从第一包取出10千克放入第二包,那么两包样重,问,第一包面粉多重?6、六年级学生合买一件礼物 给母校作纪念,如果 每人出6元则多48元,如果每人出4.5元 ,则小27元,求六年级学生人数?7、妈妈买回一箱梨,按计划天数,如果每天吃四个,由多出24个,如果每天吃6个,则少四个,问计划吃多少天,妈妈买回了多少梨?8、育英学校小学体育室里有足球个数是排球数的2倍,体育课上,每班借7个足球5个排球,排球借完时,还有足球72个,体育室原来有足球排球多少个?9、甲乙仓库的冰箱台数是乙仓库的2倍,每天从甲仓库运出3台,从乙仓库运出冰箱2台,运出几天后,乙仓库的冰箱正好用完,而甲仓库还有25 台,原来乙仓库还有冰箱多少台10、有三个连续的整数,已知最少的数加上中间的数的两倍再加上最大的数的三倍的和是68,求这三个连续的整数?11、已知三个连续奇数之和是75,求这三个数? 12、10年前父亲的年纪是儿子年纪的7倍,15年后父亲的年纪是他儿子的2倍,问今年父子二人各多少岁?13、小明今年的年龄是明明年龄的5倍,25年后,小明的年龄是明明年龄的2倍少16,问小明和明明各多少岁14、商店购进一批皮球每只成本1.5元,出售时每只售价2元,当商店卖到皮球剩20只时,成本已经全部收回,并且赚了50元,问商店原进购皮球多少只?15、一辆卡车运矿石,晴天每天可运20次,雨天可运12次,一共运了112次,平均每天运次,问这几天当中有几个晴天几个雨天?14次,问这几天当中有几个晴天几个雨天?答案及解析:答案及解析:例1、【思路分析】:本题中的等量关系是:原价-减少的钱数=现价,减少的钱数=原价×25%,所以原价-原价×25%=现价,即可解决。
解析小升初数学中常出现的解方程题

解析小升初数学中常出现的解方程题知识点:解方程的基本概念与技巧一、方程的定义与分类1. 方程的概念:含有未知数的等式。
2. 方程的分类:- 一元一次方程:ax + b = 0(a、b为常数,a≠0)- 一元二次方程:ax² + bx + c = 0(a、b、c为常数,a≠0)- 二元一次方程:ax + by = c(a、b、c为常数,a、b不同时为0)- 系数方程:含有未知数的系数的方程。
二、解一元一次方程1. 移项:将常数项移至等式右边,未知项移至等式左边。
2. 合并同类项:将等式左边的同类项合并。
3. 系数化为1:将未知数的系数化为1,求出解。
三、解一元二次方程1. 因式分解法:将一元二次方程因式分解,求出解。
2. 公式法:使用求根公式(x = [-b±√(b²-4ac)]/(2a))求解。
3. 配方法:将一元二次方程配成完全平方形式,求出解。
四、解二元一次方程1. 代入法:将一个方程的解代入另一个方程,求解。
2. 加减消元法:将两个方程相加或相减,消去一个未知数,求解。
3. 乘除消元法:将两个方程相乘或相除,消去一个未知数,求解。
五、解系数方程1. 分式方程:将分式方程转化为整式方程,求解。
2. 含绝对值方程:分情况讨论绝对值的正负,求解。
六、解方程的技巧1. 确定未知数:找出方程中的未知数,确定求解目标。
2. 化简方程:将方程化简为最简形式,便于求解。
3. 检验答案:将求得的解代入原方程,检验是否满足等式。
七、实际应用1. 比例问题:利用解方程解决比例问题。
2. 利润问题:利用解方程解决利润问题。
3. 面积问题:利用解方程解决几何图形面积问题。
4. 速度问题:利用解方程解决速度、时间、路程问题。
八、注意事项1. 注意方程的等式性质:解方程过程中,等式两边同时进行相同的运算。
2. 注意分类讨论:对于含有绝对值、分式等特殊方程,要进行分类讨论。
3. 注意检验答案:求得的解必须代入原方程检验,确保答案的正确性。
小升初数学复习专题《解方程》练习

x÷2.7=1.8×2 x÷2.7=3.6
x=3.6×2.7 x=9.72
12.【答案】(1) x+30%x=22 解: 1.1x=22
x=22÷1.1 x=20 (2) 12:0.3=x: 解:0.3x=12× x=10÷0.3 x= 13.【答案】(1)解:40%x= 40%x=0.1 x=0.1÷40% x=0.25 (2)解:4.2x=2.4× 4.2x=2.1 x=2.1÷4.2 x=0.5
(3)0.45(x-2)=9
24.解方程。 (1)x- x=2
(2)
둸 둸
=6:x
25.解方程 (1)x: = :4
(2)6.5:x=3.25:4 (3)x-0.25=
(4) x+ x=42
26.求未知数 x (1)5(x-2.8)=134
27.解比例。 (1) : :
28.解方程。
(1) 둸
둸
(2)
(2) =
(3) : = :x
5
37.解方程 (1)
小升初数学复习专题《解方程》练习
(2)
(3)
38.解方程: (1)0.5x+30%x=1
39.解方程 (1)x+ x=
40.解方程 (1) x=
41.解方程 (1)70%x+ x=
42.解方程。 (1) x÷2=
(2) x+ × =
(2)40%x- =
0.25x=3.2+0.4 0.25x=3.6
x=3.6÷0.25 x=14.4 32.【答案】(1)解: x-0.125x=10
0.125x=10 x=10÷0.125 x=80
(2)解:9x+2.5×6=18 9x+15=18 9x=18-15 x=3÷9 x=
小升初数学培优 列方程解决问题

即 一辆汽车已行驶了12000km,计划每月行驶800km,
学 即
几个月后这辆汽车行驶20800km?
练
解:设经过x个月,依题意有
12000+800x=20800 x=11
答:11个月后这辆汽车行驶20800km。
列方程解应用题步骤:
(1)找相等关系。 (2)设未知量为x。 (3)依据相等关系列方程。 (4)解方程。 (5)检验写答案。
答:女儿今年8岁。
融 例8:一台计算机已使用1700小时,预计每月使用150小时, 会 经过多少个月这台计算机的使用时间达到规定的检修时间 贯 2450小时?
通 相等关系: 1700+几个月使用时间=2450
解:设经过x个月,依题意有
1700+150x=2450
解,得 x=5
答:经过5个月这台计算机的使用时间达到规定的检修 时间245ห้องสมุดไป่ตู้小时。
小升初培优版
2
情境 激趣
思 例1、合唱队有80人,合唱队的人数比舞蹈队的3倍多14人,则舞蹈
维 探
队有多少人?
索
相等关系: 合唱队人数=舞蹈队人数×3+14
解:设舞蹈队有x人,依题意有
80=3x+14
解,得 x=22
答:舞蹈队有22人。
即 某班有女生25人,比男生的3倍少20人,这个班一共有多
0.3x+0.6(20-x)=9
解,得
x=10
20-10=10(支) 答:甲种铅笔买了10支,乙种铅笔买了10支。
即 学 即
把1400元奖金按照两种奖项发给22名学生,其中一等奖 每人200元,二等奖每人50元,获得一等奖的学生有多少?
练
小升初数学计算解方程口诀

小升初数学计算解方程口诀解方程一直是小学数学的重难点,类型多且容易混淆,如何快速有效的让学生掌解方程,以下是小编为大家整理了各类方程的解决的技巧,让我们一起来看看吧!口诀一般方程很简单,具体数字帮你办,加减乘除要相反。
特殊方程别犯难,减去除以未知数,加上乘上变一般。
若遇稍微复杂点,舍远取近便了然。
具体分析如下:我们可以把课本中出现的方程分为三大类:一般方程,特殊方程,稍复杂的方程。
形如:x+a=b , x-a=b , ax=b , x÷a=b 这几种方程,我们可以称为一般方程。
形如:a- x =b,a÷x =b这两种方程,我们可以称为特殊方程。
形如:ax+b=c , a(x-b)=c这两种方程,我们可以称为稍复杂的方程。
我们知道,对于一般方程,如果方程是加上a,在利用等式的性质求解时,会在方程的两边减去a,同样,如果方程是减去a,在利用等式的性质求解时,会在方程的两边加上a,乘和除以也是一样的,换句话说,加减乘除是相反的,并且加减乘除的都是一个具体的数字。
总结一句话就是:一般方程很简单,具体数字帮你办,加减乘除要相反。
对于特殊方程,减去和除以的都是未知数x,求解时,减去未知数那就加上未知数,除以未知数那就乘未知数,符号也是相反的,这样方程也就变换成了一般方程,总结为:特殊方程别犯难,减去除以未知数,加上乘上变一般。
对于稍复杂的方程,我教给孩子们的方法是,“舍远取近”的方法,意思是,离未知数x远的就先去掉,离未知数x、进的先看成整体保留,通过变换,方程就变得简单,一目了然。
总结为:若遇稍微复杂点,舍远取近便了然。
当然后面还有形如ax+bx=c等形式,能够学会上面这几种,对于孩子来说,这些方程就显得轻而易举了。
第六讲 方程的解和解方程-2023年六年级数学下册小升初专项复习(通用版)

2023年学校六班级小升初数学专项复习(6)——方程的解和解方程★★学学问问归归纳纳总总结结一、方程与等式的关系1.方程:含有未知数的等式,即:方程中必需含有未知;方程式是等式,但等式不肯定是方程。
2.方程是表示两个数学式(如两个数、函数、量、运算)之间相等关系的一种等式,通常在两者之间有一等号“=”。
3.方程不用按逆向思维思考,可直接列出等式并含有未知数。
例1:看图列等式,不解答。
【分析】依据等量关系:3根香蕉的重量=2个苹果的重量,列出等式即可。
依据等量关系:苹果的重量﹣香蕉的重量=60kg,列出等式即可。
【解答】解:【点评】本题的关键是找出等量关系。
例2:一个商店原有120千克苹果,又运来了10筐苹果,每筐重a千克.(1)用式子表示出这个商店里苹果重量的总数.(2)依据这个式子,当a=25时,商店一共有多少千克苹果?【分析】(1)用原来的重量120千克,加上又运来10筐苹果的重量10×a=10a千克;(2)把a=25时,代人式子求出来即可.【解答】解:(1)120+10a;(2)当a=25时,代人120+10a,120+10×25=120+250=370(千克);答:商店一共有370千克苹果.【点评】解题关键是依据已知条件得出数量关系,然后依据数量关系代人计算即可.例3:养殖场有789只鸡,比鸭少69只,鸭有几只?(先写等量关系式,再用两种方法列X解.)【分析】设鸭有X只,方法一:鸭的只数﹣鸡的只数=鸡比鸭少的只数;即X﹣789=69;方法二:鸭的只数﹣鸡比鸭少的只数=鸡的只数,即X﹣69=789.【解答】解:方法一:等量关系:鸭的只数﹣鸡的只数=鸡比鸭少的只数;设鸭有X只;X﹣789=69,X﹣789+789=69+789,X=858;方法二:等量关系:鸭的只数﹣鸡比鸭少的只数=鸡的只数,设鸭有X只;X﹣69=789,X﹣69+69=789+69,X=858;答:鸭有858只.【点评】解决本题,关键是找出等量关系,再依据等量关系列出方程解答.例4:将卡片与相应的台阶连线.【分析】等式是指用“=”连接的式子,方程是指含有未知数的等式;据此可知全部的方程都是等式,但等式不肯定是方程;从而连线解答.【解答】解:见下图【点评】此题考查等式和方程的辨识,熟记定义,才能快速辨识.二、方程的解和解方程1. 使方程左右两边相等的未知数的值,叫做方程的解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小升初数学专题之解方程
一.字母的运算 =+x x 2 =-x x 312 =-x x %354
3
=+x x 56
=-x x 5.0%75 =+a a 5.23 =+x x %33%25 =-x x 5
3
3
=++x t x 543 =-+t x t 243 =+--t x t x 27326 =-+x x 5
3
67
二.去括号(主要是运用乘法的分配律和加减法的运算性质) 1.=+)(c b a 2.=++)(c b a =-+)(c b a
3.=+-)(c b a
=--)(c b a
应用上面的性质去掉下面各个式子的括号,能进行运算的药进行运算 =-)3(3x
=-)326(21x =++)23(12x =-+)3
2
61(65x =--)3(5x =+-)1(27x =++)123(4183x x =--)3
1
2(36x x x
=+++)62(31)43(21x x =--+)2
12(21)58(41x x 三.等式的性质.
1.等式的定义: ,叫做等式;
2.等式的性质:
(1).等号的两边同时加上或减去同一个数,等号的左右两边仍相等; 用字母表示为:若a=b ,c 为任意一个数,则有a+c=b+c(a-c=b-c); (2).等号的两边同时乘以同一个数,等号的左右两边仍相等; 用字母表示为: ; (3).等号的两边同时除以同一个不为零的数,等号的左右两边仍相等. 用字母表示为: ; 四.方程
1.方程的定义:含有未知数的等式叫做方程;
2.方程的解:满足方程的未知数的值,叫做方程的解;
3.解方程:求方程的解的过程,叫做解方程. 五.解方程
1.运用等式的性质解简单的方程,
2
575
7557
5=-=-=-+=+x x x x 解:
3
39934
534
54435
43=÷==+=+=+-=-x x x x x x 解:
如果把画框的部分省略,我们把一个数从等号的左边移到右边的过程,叫做移项, 注意把一个数从方程的左边移到右边时,原来是加的变成减,原来是减的变成加号。
练习
552=-x 1264=-x 73
1
65%25⨯=-
x 5364+=-x x
2.典型的例子及解方程的一般步骤;
2
63173731317137==-==++==-x x x x x x 解:
5
.014771414714
7=÷====÷x x x x x 解: 11
34656453)32(2532
)32()53(=-=+-=+-=+=-÷+x x
x x x x x x x 解: 练习 7517=-x 7321=÷x 20484
3
3=-⨯x 3)13()511(=-÷-x x
3.解方程的一般步骤:
2
3
466
410
97237102937)5(2)3(3)
6
1
67(6)5(2)3(36
167)5(31)3(21=
÷==-+=-++=++-+=++-+⨯=++-+=++-x x x x x x x x x x x x x x x x x x 解:
1.去分母;(应用等式的性质,等号的两边同
时乘以公分母)
2.去括号;(运用乘法的分配律及加减法运算律)
3.移项;(把含有未知数的移到方程左边,不含未知数的移到方程右边)
4.合并;(就是进行运算了)
5.化未知数的系数为1
6.检验;(把求出来的x 的值代入方程的左右两边进行运算,看左边是否等于右边)
练习:
【方程强化训练题】
x x x 6523)74(32)53(21+=-++ 2)4
1
2(31)234(41=---x x
1352=+x 12)2(3=+x
3
1
52534=+x 756+=x x
698-=x x 3234+=-x x 25%25%50=-x x 25.1%25%15=-x
43%25%33+
=x x 8701.0=+x x x 1037+= 4
1
313197+=-x x
53515634=-⨯x x x 6159107-=+- 369=÷x 36)4
3
(9=-÷x
36)4
3
31(9=-÷x 2)63()52(=-÷+x x 12)1(3=+y
)43(31)35(21x x -=- 7)5.0(4+=+x x 1)3
2
(63=--x
1)15(61)32(31=--+x x x x 2]3
2
)21(2[23=+-
7.08.22
3
=+-x x 144334=-+-x x
81079+=-x x
44
1
2.021+=-x x x
1)23(5)14(3)12(7-+=---x x x 22)]2(49[2)7(3=----x x。