电阻焊

合集下载

1、电阻焊基础知识

1、电阻焊基础知识

6、安全性高
第 1 页,共 4 页
2.6焊机工作原理
焊接电流 电极压力
பைடு நூலகம்
上 升 时 间 Tu
下 降 时 间 Td
初期加压时间Ts
通电时间Tw
保持时间Th
开放时间To
(1)初期加压时间:由电极开始下降到焊接电流开始的时间。是为保证通电之前电极压紧工件,防止因 加压不完全形成焊接缺陷而设计的。初期加压时间Ts设定范围为0 ~ 99周波。 (2)上升时间:自通电开始使电流缓升到设定电流的时间。通过工件缓慢加温使电镀钢板焊接处镀层 先粉化或对高强度钢退火,凸焊时多个凸焊点与平板均匀接触,使被焊工件接触处紧密结合,以 保证焊点大小稳定,各点加热一致,减少飞溅。上升时间Tu设定范围为 0 ~ 9周波。 (3)通电时间:根据金属的性能、厚度和所用焊机的功率,可采用强规范(大电流、短时间)或者 弱规范(小电流、长时间)通电方式。 通电时间Tw包括上升时间,其设定范围 0 ~ 99周波。 (4)下降时间:自焊接电流终了至焊接电流为零期间使电流逐渐降低的时间。通过电流逐渐降低来控 制焊接区域的冷却速度,可减少产生裂纹的倾向,同时对易感磁的工件还具有消磁的作用。下降时 间Td设定范围为 0 ~ 9 周波。 (5)保持时间:自焊接电流结束到电极开始上升的时间 。在此时间内,电极仍压着焊后熔化的金 属,可使金属晶粒变细,同时由于电极头的冷却作用,使熔核凝固并具有足够强度,以避免或减 少缩孔、裂缝,提高焊接处机械强度。保持时间Th设定范围为0 ~ 99 周波。
(6)开放时间:由电极开始提起到电极再次下落,准备在下一个待焊点压紧工件的时间。开放时间只 适用于焊接循环重复进行的场合。若开放时间设定为0周波,则进行单点焊接。开放时间To设定范 围为0 ~ 99周波。

电阻焊

电阻焊

电阻点焊熔核形成过程
(3) 电阻焊过程 预压、通电加热、在压力下冷却结晶或塑 性变形和再结晶。
电阻焊与电弧焊相比有如下两个特征: (1)热效率高 电弧焊是借助外部集中热源,从外部向焊件传导热能; 电阻焊是电阻热由高温区向低温区传导,属于内部热源。 因此,热能损失比较少,热效率比较高。 (2)焊缝致密 一般电弧焊的焊缝是在常压下凝固结晶的; 电阻焊的焊缝是在有外界压力的作用下凝固结晶的,具 有锻压的特征,属于压焊范畴,所以比较容易避免产生缩 孔、疏松和裂缝等缺陷,从而获得致密焊缝。
影响接触电阻的因素:
工件表面状态 表面愈粗糙、氧 化愈严重、接触电阻愈大。 电极压力 压力愈高、接触电阻愈 小。 焊前预热 焊前预热将会使接触 电阻大大下降。
(2) 力
静压力用来调整电阻大小,改善加热。产生塑性变形或 在压力下结晶。 冲击力(锻压力)用来细化晶粒,焊合缺陷等。其压力 变化形式有平压力,阶梯压力和马鞍形压力,其中马鞍形压 力较为理想。
2.焊接(F=FW ,I=IW)
焊件加热熔化形成熔核的阶段,最后输入热量与散失热量平衡时,熔核达 到稳定尺寸。这个过程是焊接的关键,焊点强度取决于熔核尺寸。
对点焊质量的要求 1.熔核尺寸的几个基本概念 1)熔核直径 d (mm) 或
d 2 3
d 5 板厚
c
h

d
2)焊透率 A(%)
2.接触电阻Rw
1)形成原因:焊件表面的微观凸凹不平及不良导体层。
接触电阻形成原因示意图
1 )焊件表面氧化膜或污物层,使电流受到较大阻碍, 过厚的氧化膜或污物层会导致电流不能导通。 2 )由于焊件表面是凹陷不平的,使焊件在粗糙表面形 成接触点。在接触点形成电流线的集中,因此增加了 接触处的电阻Rc。 电极压力增加或温度升高使金属达到塑性状态时, 都会导致焊件间接触面积增加,促使接触电阻Rc减小。 因此,当焊件表面较清洁时,接触电阻仅在通电时极 短时间内存在,随后就会迅速减小以至消失。 接触电阻尽管存在时间极短,但在点焊极薄的铝 合金时,对熔化核的形成仍有显著影响。

电阻焊

电阻焊

加压力过大
接触电阻减少,融合不良, 强度不足,压痕大。
通电时间
通电时间过长
热量损失大,材质变化
通电时间过短
焊接不充分,焊点强度差
2.电阻焊主要规范参数
2.1 焊接电流
2.2 电极压力
2.3 焊接时间
2.4 电阻 R
2.5 电极及夹头
2.6 工件
2-1. 焊接电流
由热量公式Q = I2Rt,可见电 流对产热的影响比电阻R和时间 t两者都大。因此焊接时必须保 证焊接电流的适宜和稳定。
电极材质应具有足够高的电导率、 热导率和高温硬度。电极的结构必须 有足够的强度、刚度以及充分冷却的 条件。
电极与工件的接触面积决定着电 流密度。电极本身电阻率和导热性关 系着热量的产生和散失,因而电极的 形状和材料对熔核的形成及焊接质量 有显著的影响,
端部 主体 冷却水孔 尾部
锥形电极
2-6. 工件表面
2-4. 电阻 R
根据热量公式Q = I2Rt可知焊接部位的电阻对阻 Nhomakorabea质量有着重
Rew
要的影响。其电阻的组成如下:
Rw
R= 2Rw + Rc + 2 Rew
Rc
Rw :被焊工件本身电阻
Rw
Rew
Rc : 两工件间接触电阻
Rew: 电极与工件间接触电阻
2-5. 电极
阻焊电极是保证阻悍质量的重要零 件,它应具备向工件传导焊接电流、 压力、散热等功能。
抗剪强度 Ft
电极压力 F
2-3. 通电时间
阻焊时为了保证熔核尺寸和焊点强度,根据热量公式 Q = I2Rt,焊接时间与焊接电流在一定范围内可以互为 补充,为了获得一定强度的焊点,可以采用大电流和短 时间(强条件,又称强规范),也可以采用小电流和长 时间(弱条件,又称弱规范)。选用强条件还是弱条件, 则取决于金属的性能、厚度和所用焊机的功率,但对于 不同性能和厚度的金属所需的电流和时间,都仍有一个 上、下限,超过此限,将无法形成合格的熔核。

电阻焊的原理

电阻焊的原理
它是最通用旳电极材料,广泛地用于点焊低碳钢、低合金钢、不 锈钢、高温合金、电导率低旳铜合金、以及镀层钢等。还合用于制造 轴、夹钳、台板、电极夹头、机臂等电阻焊机中多种导电构件。
第三类:导电较差,但强度(主要是高温强度)最佳,具有更高 旳力学性能,耐磨性好,如铬锌青铜、MЦ4合金、Mo、WCu、W。
合用于焊接强度及硬度较高旳不锈钢、高温合金等。
2)用预热脉冲提升金属旳塑性,使工件易于紧密贴合、预防飞 溅;
3)加大锻压力以压实熔核,预防产生裂纹或缩孔。
4)用回火或缓冷脉冲消除合金钢旳淬火组织,提升焊接点旳力 学性能,或在不加大锻压力旳条件下,预防裂纹和缩孔。
三. 实现焊接旳基本条件
1). 工件接触间一定旳接触电阻 : R 2). 接触电阻R上经过一定旳电流 : I 3) 接触电阻R上经过电流具有一定旳时间 : t 4). 工件上具有一定旳压力: P 5). 电极上具有一定旳冷却温度: T
4.电极压力 电极压力对两电极间总电阻R有明显旳影响,伴随电极压力旳增大,
R明显减小,而焊接电流增大旳幅度却不大,不能影响因R减小引起旳产 热降低。所以,焊点强度总伴随焊接压力增大而减小。处理旳方法是在 增大焊接压力旳同步,增大焊接电流,以弥补电阻减小旳影响,保持焊 接强度不变。电极压力过小,将引起飞溅,也会 使焊点强度降低。
反馈线圈
充电电路
半导晶体管组 电容组
电流分路器
电容储能焊接机
焊接电源
整流电路
脉冲变压器
焊接电极
充电电路
电容组
焊接电源
计数器
可控硅
焊接变压器
焊接头
六. 电阻热产生及其影响原因
电阻热 Q=IIRT 其中Q — 电阻点焊能量 I — 焊接电流 R — 电焊过程中旳动态电阻 T — 焊接时间

电阻焊

电阻焊
3. 锻压力: 冷却结晶时的压力
32
压力时间段与 电流时间段关系
通电开始时间 滞后于加压时间 目的:保证加压稳定时(接触电阻 稳定时) 放电
T1
T2
T3
加压结束时间滞后于通电结束时间, 目的: 保证在压力作用下结晶
33
放电时间过早
预压未稳定时就已先放电, 由于放电 时接触不稳 ,会将焊件烧穿
T1
影响焊接的工艺因素:
① 电流 ②通电时间
③电极压力
17
三.1 . 电阻 R :
1. RW : 焊件自身电阻 2. RC : 焊件间的接触电阻 3. Rew : 电极与焊件间电阻
18
1. RW :
加压增大时,接触面积增大, RW 减小
2. RC :
① 氧化物污物层电阻会增大 ② 微观不平局部接触电阻会增大
36
总结
1.公司所用焊材为紫铜件+镀锡紫铜片。所有焊材基本上在 1.0mm以下,镀锡铜片厚度在0.2mm ,因为紫铜本身属于H 级难焊材料,所以对电极头的材质要求较高。要求极头在 高温条件下不易和焊件形成合金;要求导电率好被污染难 度高的材质。 2.改善点焊的要素 A:规范作业,产品的作业标准要明确 B:极头材质要筛选对比,固定供货渠道。更改厂商要验证后 才可。 C:调机技术改进,点焊知识培训。 D:对小比量产品工程样品最好采用手工点焊,可在原先点焊 机电源上加装手工点焊台(成本为3K RMB) E:流程单记录产品具体不良数,产品不良超过目标时,可以 采用柏拉图方式取最大项进行改善。
37
③加压增大时,接触面积增大, RC减小
(虚焊或烧损影响大)
19
点焊过程中焊接区电阻的变化规律
20
微观粗糙表面

电阻焊 (1)

电阻焊 (1)

影响接触电阻的因素:
工件表面状态 表面愈粗糙、氧 化愈严重、接触电阻愈大。 电极压力 压力愈高、接触电阻愈 小。 焊前预热 焊前预热将会使接触 电阻大大下降。
(2) 力
静压力用来调整电阻大小,改善加热。产生塑性变形或 在压力下结晶。 冲击力(锻压力)用来细化晶粒,焊合缺陷等。其压力 变化形式有平压力,阶梯压力和马鞍形压力,其中马鞍形压 力较为理想。
3)影响因素: 综上所述,边缘效应、绕流现象,均使点焊 时焊件的导电范围不能只限制在以电极与焊件接 触面为底的圆柱体内,而要向外有所扩展,因而 使悍件的内部电阻比圆柱体所具有的电阻要小。 凡是影响电流场分布的因素必然影响内部电阻。 这些因素可归纳为; (1)金属材料的热物理性质
(2)机械性能
(3)点焊规范参数及特征
三、电流场及温度场分布
1.电流场分布对点焊加热的影响
点焊时的电场
其中电流线的含义是在它所限定的范围内的电流占总 电流的百分数,例如,80%的电流线是指它限定的范围 内通过的电流占总电流的80%。
点焊时各典型截面的电流密度分布
1)集中加热 点焊时,电流线在两焊件的贴合面处要产生集 中收缩,其结果就使贴合面处产生了集中加热效果, 而该处正是点焊时所需要连接的部位.
h A 100% c
3)压痕
A 30 ~ 70%
c
5~20%
3.维持(F>0,I=0)
由于熔核体积小,且夹持在水冷电极间,冷却速度极高, 无外力维持,冷却收缩时会产生三向拉应力,极易产生缩 孔、裂纹等缺陷。 对于厚板、铝合金、高温合金等可采用较大的顶锻力防 止缩孔、裂纹。这时应精确控制加顶锻力的时间,加早了会 使液态金属遭遇高压而飞溅,过晚已经凝固了。加后缓冷电 流可降低凝固速度,防止缩孔和裂纹的产生。 4.休止(F=0,I=0) 恢复到起始状态所需的时间。

电阻焊名词解释

电阻焊名词解释

电阻焊名词解释电阻焊是指一种特殊的焊接方式,又称为电阻焊接。

通常,在此焊接过程中,不使用任何外加的焊材,而是通过焊接前的夹具、极板、及热电偶的产生的电热效应,在目标焊点处融合所连接的金属材料,使其固定在一起。

电阻焊可以实现对各种金属材料,如铝、镍、锌等的焊接,将其融合成一体。

电阻焊首先需要一具夹具,以确保所连接的金属材料在特定地点被固定,并尽量避免因温度变化而造成焊接材料移动。

其次,需要热电偶,它是一种电气安全设备,它可以在接触到金属材料时产生电热效应,从而确保其达到足够的焊接温度。

这款电气安全设备的另一个作用是,它可以监控焊接过程中的电流大小,从而有效避免出现电火花。

最后,如果做深度焊接,还需要一个极板,它可以产生一定量的电流,以深入比较薄的金属材料中,以达到更完整的焊接效果。

另外,在电阻焊的过程中,需要严格控制焊接温度,以免造成焊接材料受损。

此外,还需要确保电火花的流量小于最低容许值,以免出现损坏的情况。

虽然电阻焊的技术要求较高,但它的优点显而易见,一是它可以对不同种类的金属材料进行焊接,另一个就是它可以焊接到薄弱的金属表面上,从而取得更好的结果。

由于电阻焊是一种使用电热效应的方法,因此它可以实现更低温度,在一定条件下,它可以取得更高的焊接速度和更好的焊接质量。

由此可见,电阻焊是一种技术要求较高的焊接方式,它的应用非常广泛。

它不仅可以用于焊接各种金属材料,还能够在较薄的金属材料上进行焊接,而且具有更低的温度和更高的焊接速率的优点。

由此可见,电阻焊的出现为焊接技术带来了极大的发展,为各行各业带来了巨大的方便。

总之,电阻焊是一种十分重要的焊接方式,它能够实现对各种金属材料的焊接,具有更低的温度,更高的焊接速度和更好的焊接质量。

它的应用已经遍及各行各业,为焊接技术的发展带来了极大的方便。

电阻焊简介介绍

电阻焊简介介绍
总结词
点焊是一种将两个金属板通过电流加热熔化接触点而连接在一起的焊接方法。
详细描述
点焊通常使用圆形或椭圆形的电极,通过电流在电极接触的两个金属板之间产 生电阻热,使接触点熔化并形成焊点。点焊常用于汽车车身、建筑结构等金属 制品的连接。
缝焊
总结词
缝焊是一种将两个金属板沿着预定轨迹连续焊接在一起的焊接方法。
建筑行业
钢筋焊接
在建筑行业中,钢筋的焊接是必 不可少的环节,电阻焊能够提供
高效、可靠的焊接方式。
钢结构焊接
建筑钢结构件的焊接也常常使用电 阻焊技术,以确保结构的稳定性和 安全性。
管道和支架焊接
在建筑行业中,管道和支架的焊接 也是重要的环节,电阻焊能够提供 高效、可靠的焊接方式。
03
电阻焊的类型
点焊
绿色环保生产
节能减排
通过优化焊接工艺和设备,降低电阻焊的能耗和 减少有害气体排放,实现绿色环保生产。
资源循环利用
采用可再生能源和资源循环利用技术,减少对自 然资源的消耗,降低生产成本。
环保材料
选用环保材料和低毒低害的焊接材料,降低对环 境和人体的危害。
THANKS
谢谢您的观看
电阻焊简介介绍
汇报人: 2024-01-03
目录
• 电阻焊定义 • 电阻焊的应用 • 电阻焊的类型 • 电阻焊的优缺点 • 电阻焊的发展趋势
01
电阻焊定义
什么是电阻焊
电阻焊是一种利用电流在金属内部产生的电阻热,将金属加 热至熔化或塑性状态,从而实现金属间连接的焊接方法。
电阻焊利用了金属导电和电阻随温度变化的特性,通过在电 极与工件之间施加电流,产生大量的热能,使工件表面熔化 或达到塑性状态,从而实现工件的连接。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电阻焊电阻焊是工件组合后通过电极施加压力,利用电流通过接头的接触面及邻近区域产生的电阻热进行焊接的方法,` 电阻焊的种类很多,按接头形式可分为搭接电阻焊和对接电阻焊两种。

结合工艺方法,搭接电阻焊又可分为点焊、缝焊和凸焊三种,对接电阻焊一般有电阻对焊和闪光对焊两种在点焊过程中,影响焊点质量的因素有:焊接电流、焊接压力、电极的端面形状、穿过电极的铁磁性物质及分流等。

特别在阻焊设备较多的焊接车间,同时工作的焊机相互感应,对电网产生影响,导致焊接质量的稳定性和一致性较差。

因此,电阻点焊控制技术显得尤为重要。

目前,控制模式已由单模式控制发展为多模式控制,调节参量已由初始的单变量调节发展为多变量调节,在焊接过程中可同时对焊接电流、焊接时间和焊接压力进行调节。

特点:(1)利用电流通过工件焊接处的电阻而产生的热量对工件加热。

即热量不是来源于工件之外,而是内部热源。

(2)整个焊接过程都是在压力作用校完成的,即必须施加压力。

(3)在焊接处不需加任何填充材料,也不需任何保护剂。

形成电阻焊接头的基本条件只有电极压力和焊接电流。

1.点焊点焊是利用在焊件间形成的一个个焊点来联接焊件的。

两焊件被压紧于两柱形电极之间并通以强大的电流,利用电阻热将工件焊接区加热到形成应有尺寸的熔化核心为止。

然后切断电流,熔核在压力作用下冷却结晶形成焊点。

点焊在车身制造中应用最广。

点焊的形式很多,但按供电方向来分只有单面点焊和双面点焊两种。

在这两种点焊中按同时完成的焊点数又可分为单点、双点和多点焊。

A.焊点质量的一般要求点焊结构靠单个或若干个合格的焊点实现接头的连接,接头质量的好坏完全取决于焊点质量及点距。

焊点质量除了取决于焊点尺寸外,还与焊点表面与内部质量有关。

焊点外观上要求表面压坑浅、平滑呈均匀过渡,无明显凸肩或局部挤压的表面鼓起;外表面没有环状或颈项裂纹,也无熔化、烧伤或粘附的铜合金。

从内部看,焊点形状应规则、均匀,无超标的裂纹和缩孔等内部缺陷及热影响区金属的组织与力学性能有无发生明显的变化等。

不同厚度板和多层板的焊接,点焊和板厚的关系点焊时产生的热量由下式决定: Q=12RtU工件表面的氧化物、污垢、油和其他杂质增大了接触电阻>局部的导通,由于电流密度过大,则会产生飞溅和表面烧损。

1。

当工件和电极一定时,工件的电阻取决与它的电阻率。

因此,电阻率是被焊材料的重要性能。

电阻率高的金属其导电性差,电阻率低的金属其导电性好。

因此,点焊不锈钢时产热易而散热难,点焊铝合金时产热难而散热易。

点焊时,前者可用较小电流,而后者就必须用很大电流。

电阻率不仅取决与金属种类,还与会属的热处理状态、加工方式及温度有关。

接触电阻存在的时问是短暂的,一般存在于焊接初期,由两方面原因形成:(1)工件和电极表面有高电阻系数的氧化物或脏物质层,会使电流遭到较大阻碍。

过厚的氧化物和脏物质层甚至会使电流不能导通。

(2)在表面十分洁净的条件下,由于表面的微观不平度,使工件只能在粗糙表面的局部形成接触点。

在接触点处形成电流线的收拢。

由于电流通路的缩小而增加了接触处的电阻。

2.,电流对产热的影响是平方关系,比电阻和时间两者都大。

因此,在焊接过程中,它是一个必须严格控制的参数。

引起电流变化的主要原因是电网电压波动和交流焊机次级回路阻抗变化。

阻抗变化是因为回路的几何形状变化,或因在次级回路中引入了不同量的磁性金属。

3.为了保证熔核尺寸和焊点强度,焊接时间与焊接电流在一定范围内可以相互补充。

为了获得一定强度的焊点,可以采用大电流和短时间。

4.电极压力对两电极问总电阻R有明显的影响,随着电极压力的增大,R显著减小,10但电流增加而使产热递增的幅度并不大,解决的办法是在增大焊接压力的同时,增大焊接电流。

但电极压力过大,容易在焊接过程中将液态会属挤到熔核周围,反而使点焊质量降低。

5.由于电极的接触面积决定着电流密度,电极材料的电阻率和导热性关系着热量的产生和散失,因此,电极的形状和材料对熔核的形成有显著影响。

随着电极端头的变形和磨损,接触面积增大,焊点强度将降低。

焊工艺参数选择点焊工艺的主要规范参数是焊接电流、焊接时问、电极压力。

通常是根据工件的材料和厚度,参考该种材料的焊接条件表选取,首先确定电极的端面形状和尺寸。

其次初步选定电极压力和焊接时间,然后调节焊接电流,以不同的电流焊接试样,经检查熔核直径符合要求后,再在适当的范围内调节电极压力,焊接时间和电流,进行试样的焊接和检验,直到焊点质量完全符合技术条件所规定的要求为止。

最厚板或淬火材料有时不能撕出圆孔和凸台,但可通过剪切的断口判断熔核的直径。

必要时,还需进行低倍测量、拉抻试验和X光检验,以判定熔透率、抗剪强度和有无缩孔、裂纹等。

3.1.1.电极压力对点焊质量的影响(,在通电电流和时问不变的钱提下,电极最大位移与点焊质量具有良好的对应关系,二者随压力的变化趋势基本一致。

随着焊接压力的增大,在一定范围内,点焊强度稍有增大,基本稳定在一定水平,波动很小;但随电极压力进一步增大时,焊接强度下降较快。

【2.电极压力F电极压力的大小一方面影响电阻的数值.从而影响析热t的多少.另一方面影晌烽件向电极的散热情况。

过小的电极压力将导致电阻增大、析热t过多且散热较差,引起前期飞溅;过大的电极压力将导致电阻减小、析热t少、散热良好、熔核尺寸缩小.尤其是焊透率显著下降。

因此从节能角度来考虑.应选择不产生飞溅的最小电极压力。

此值与电流值有关,可参照文献中广为推荐的临界飞溅曲线图。

目前均建议选用临界飞溅曲线附近无飞溅区内的工作点。

】3.1.2.通电电流对点焊质量的影响随着通电电流的升高,焊接质量总体上有提高的趋势。

根掘实验的记录情况,压力越大,越不容易出现飞溅,所以不同压力情况下的电流给定范围有所不同,我们是根掘出现飞溅时的电流值作为实验电流的上限。

电极最大位移基本随通电电流的增大而增大,和点焊强度具有较好的一致性,个别情况有位移减小的趋势,主要是因为出现较大飞溅引起的。

在电极压力和通电电流不变的情况下,电极最大位移和焊接质量随通电时间的增加而增加,焊接质量基本上由通电时间来决定。

【3.焊接时间通电时间的长短直接影响输入热的大小,在目前广为采用的同期控制点焊机上,通电时间是周的整倍数。

在其它参数固定的情况下,只有通电时间超过某最小值时才开始出现熔核,而后随通电时间的增长,熔核先快速增大,拉剪力亦提高。

当选用的电流适中时.进一步增加通电时间,熔核增长变慢.渐趋恒定。

但由于加热时间过长.组织变差,正拉力下降.会使塑性指标(延性比Fa 爪)下降。

当选用的电流较大时,则熔核长大到一定极限后会产生飞溅。

】3.1.3通电时间对点焊质量的影响显然,在电极压力和通电电流不变的情况下,电极最大位移和焊接质量随通电时间的增加而增加,焊接质量基本上由通电时间来决定。

【4.焊接电流助析出热t与电流的平方成正比,所以焊接电流对焊点性能影响最敏感。

在其它参数不变时,当电流小于某值熔核不能形成.超过此值后,随电流增加.熔核快速增大,焊点强度上升,而后因散热t的增大而熔核增长速度减缓,禅点强度增加缓、慢,如进一步提高电流,则导致产生飞溅,焊点强度反而下降。

所以一般建议选用对熔核直径变不敏感的适中电流来焊接。

】3.2焊接规范参数的确定原则l)保证焊核直径;2)3)尽量采用硬规范以提高生产节拍,提高接头综合性能。

以试样选择工艺参数时,要充分考虑试样和工件在分流、铁磁性物质影响,以及装配间隙方面的差异,并适当加以调整。

当采用工频交流电源时,点焊参数的选择应首先确定电极3.3 调整方法:1)根据工件厚度,选定焊机容量,确定焊点直径范围;2)选定焊钳型号和电极尺寸,焊钳的最大电极压力一般要求达到300oN(按管路气压为0.6MPa考虑);3)初步设定焊接时间,根据料厚及层数组合状况,一般可调为8至14周波;4)将焊接电流逐渐增大,直到焊点直径达到要求。

若焊点直径没有达到要求即产生飞溅,则适当减小焊接电流而增加通电时间,直至达到规定的直径。

以上参数调整过程中,同时注意保证压坑深度,一般压坑深度小于板厚的15%~20%,若压坑过深,则适当减小气压并视情况调整电流和焊接时间。

合工艺试验和车间生产的具体实际情况,我们归纳出低碳钢板的最佳规范如上表:4.1点焊质量保证焊点工艺设计在相当程度上决定采用的工装和设备、焊点质量和成本。

1.工艺设计时要充分考虑焊接设备的能力和本地区供电电网的品质,选择功率裕量足够的焊机和控制精度合适的焊接控制器,确保焊点质量及其稳定性。

2.焊点设计时尽量考虑使用双面点焊,特别是使用推挽双点技术。

实践证明,双面点焊比单面点焊焊接质量更可靠,易于保证。

3.尽量避免设计多层板(超过三层以上),特别是多层厚板的装配结构进行点焊。

4.焊点设计要充分考虑焊点的间距及边距,选择合适的焊接顺序,以减小焊接分流及焊接变形。

5.设计焊接回路时应尽量减小二次回路阻抗。

7.使用合适的测试仪表及工具。

4.1.2电极点焊电极是保证点焊质量的重要零件,由4部分组成:端部、主体、尾部、冷却水孔。

它的主要功能有:(1)向工件传导电流;(2)向工件传递压力;(3)迅速导散焊接区的热量4.1.3焊点的强度保证要得到具有足够强度的焊点,首先取决于是否根据焊件状况(板材厚度、层数、材质、镀层情况等)制定了合理的焊接规范;其次,取决于是否采取有效措施来克服影响焊接规范稳定性的各种因素。

这些因素主要有:a)网路电压的波动;b)铁磁性物质进人焊钳导致二次回路阻抗的变化;c)电极端面直径和性能的的变化(随着点焊次数的不断增加,电极端面直径被徽粗变大引起电流密度降低;电极沽污,特别是镀锌板焊接时电极端部铜锌合金引起电极导电导热性能下降)针对以上因素,目前可以采取以下措施:1)选用目前先进的微电脑阻焊控制器。

2)在焊装车间或焊装线上对焊机的通电焊接进行计算机群控管理和集中控制,可有效防止同时通电的焊机数量,避免电源电压下降过多,使压降在允许的范围3)在编制焊接工艺时,可利用微电脑阻焊控制器的电流阶梯递增功能和定点修磨电极的措施,避免电极端面直径被辙粗而引起的电流密度降低以及电极端部性能恶化对焊点强度的影响。

4.1.4焊点外观质量的保证焊点的外观质量主要指焊点的表面质量(要求压抗浅、平滑均匀过度、无明显的凸肩或局部挤压造成的表面鼓起,无毛刺、焊点表面没有熔化或粘附的铜合金以及裂纹等缺陷)、焊点的位置度以及点焊造成的工件变形。

焊点的外观质量除靠先进的设备和工艺参数来保证外,还可以采取以下措施来提高: l)在外观件表面一侧使用浮动电极垫板,如果在多点焊机上,可以使用平电极来减轻压坑、毛刺等缺陷;2)采用有浮动机构的焊钳以避免工件受非焊接压力的作用而变形;3)采用焊点导向块来保证焊点位置的准确性,并克服电极与工件不垂直而造成的工件变形。

相关文档
最新文档