两种藻类对水体氮磷去除效果

两种藻类对水体氮磷去除效果
两种藻类对水体氮磷去除效果

第52卷第4期 2006年8月武汉大学学报(理学版)

J.Wuhan Univ.(Nat.Sci.Ed.)Vol.52No.4 Aug.2006,487~491

收稿日期:2006202228 通讯联系人 E 2mail :Huzy @https://www.360docs.net/doc/2417330828.html,

基金项目:国家高技术研究发展计划(863)项目资助(2002AA601021);国家重点基础研究发展规划(973)项目资助(2002CB412309)作者简介:凌晓欢(19822),男,硕士生,现从事藻类水质净化研究.

文章编号:167128836(2006)0420487205

两种藻类对水体氮、磷去除效果

凌晓欢1,2,况琪军1,邱昌恩1,2,胡征宇1

(1.中国科学院水生生物研究所/淡水生态与生物技术国家重点实验室,湖北武汉430072;

2.中国科学院研究生院,北京100049)

摘 要:借助人工装置和露天水池,通过分析实验水体中氮、磷元素浓度的变化,研究了实验室条件下一种绿球藻(Chlorococcum sp.)和露天小型生态系统中寡枝刚毛藻(Cladophora oli goclona K ütz ).对污水中氮磷营养的去除效果.结果显示:绿球藻在高浓度氮和磷的污水中生长良好并维持较高的氮磷去除率,在6天处理期间,人工污水中总溶解性氮、硝酸盐氮、氨氮、总溶解性磷的去除率分别达到46.2%,37.8%,98.4%和79.3%;在对天然湖泊水的处理中,绿球藻对总溶解性磷的去除率在第5天为79.2%.室外条件下,该刚毛藻通过吸收水体中的氮、磷营养维持自身正常生长代谢,从而降低水体的电导率和改善水质.根据本次研究,结果两种被试藻类均可作为污水处理用藻类,其中Chlorococcum sp.适合用于静态水体的修复与改善,Cladop hora oli goclona 适合于流动水体的减负与治理.

关 键 词:绿球藻;刚毛藻;氮;磷;水质;净化中图分类号:X 171 文献标识码:A

0 引 言

应用藻类进行水质净化的研究,自20世纪50年代起,至今已有近60年的历史[1].早期主要是应用微型藻悬浮培养技术进行污水处理,相关技术有藻菌氧化塘、高效藻类塘、活性藻

[2]

等.由于微型藻

悬浮培养技术在实际应用中有诸如过量藻体不易收获、出水中仍有藻类细胞残留等问题,科学家们随之将研究的焦点更多地集中在固着藻类的研究与应用上,如:固定化藻类技术[3]和藻菌生物膜技术.Da Costa [4]的研究结果证明,固定化藻类不但能有效去

除污水中的氮磷营养,对去除镉和锌等重金属离子也效果显著.由于受限于固定藻类用载体的成本较高,以致该项技术仅停留在实验室规模的研究和探索阶段,至今未见大规模实际应用的报道.吴永红等[5]以高分子材料的人工水草作为藻菌生物膜载体,用于改善富营养化水体的水质,同样获得较为理想的水质净化效果.为了进一步挖掘和筛选能有效净化污水且藻细胞易于收获的藻种,拓展藻类在污水处理中的应用范围,本文研究了一种极为耐污的

绿球藻(Chlorococcum sp.)和寡枝刚毛藻

(Cl adop hora oli goclona K ütz )对氮磷的去除效果,对二者各自的应用前景作了简要分析,同时对藻类水质净化的优势进行了探讨.

1 材料和方法

1.1 室内实验藻种与培养条件

绿球藻(Chlorococcum sp.)采自美国亚里桑那州一家污水处理厂,应用微藻分离纯化的方法,用B G11琼脂培养基分离纯化后保种培养.在无菌条

件下,将琼脂培养基上的单个藻落转接到B G11液体培养基中,置L R H 22502G 光照培养箱中培养,培养温度(25±1)℃,光照强度35~40μmol/m -2?s -1,在获得足够生物量后用于污水处理试验.

实验污水分别为人工合成污水和天然富营养化湖泊水.人工合成污水配方为:NaNO 30.425g 、(N H 4)2SO 40.075g 、MgSO 4?7H 2O 0.025g 、Ca (H 2PO 4)20.03g 、Na HCO 30.30g 、FeCl 30.0015g ,用自来水定容至1L.天然富营养化湖泊水采自

武汉东湖茶港湖区,经25号浮游生物网过滤去除明

武汉大学学报(理学版)第52卷

显颗粒后使用.

实验装置为有机玻璃水槽,一次性加注污水,用空气泵曝气培养;4只20W日光灯提供光照.光照强度140μmol/m-2?s-1左右,水温分别为(25.5±0.5)℃(人工合成污水)和(22.5±0.5)℃(天然湖泊水).实验分别设处理组和对照组,其中人工合成污水和天然湖泊水处理组的绿球藻接种密度分别为2.88×105细胞/L和1.87×105细胞/L,对照组不投加藻种,用以扣除因光解和其他未知因素导致的营养减少,其他条件两组保持一致.依据处理系统中营养浓度的日减少量确定藻类对氮磷的去除效果. 1.2 室外实验藻种与实验设置

刚毛藻(Cl adop hora oli golona)采自东湖湖岸.以水生所标本馆楼前景观水池为实验水体,该水池底部布满鹅卵石.实验藻种采回后直接接种到水池一端,待藻类生长正常并达到足够生物量后,将池中枯枝落叶等杂物基本清除,用防水布将水池一隔为二,分别设为实验区和对照区,定点取样.实验区设藻类密集区和藻类稀少区两个采样点,无藻类对照区设一个采样点,用与对照区相比的减少量确定被试藻类对营养盐的去除效果.藻类密集区、藻类稀少区、对照区依次简记为一区、二区、三区.

实验时间为夏季,白天水温28~30℃,阳光直射的时间每天约5h.

1.3 检测项目及分析方法

实验期间,主要测定了总氮(TN)、氨氮(N H42 N)、硝酸盐氮(NO32N)、总磷(TP)、溶解性正磷酸盐(SRP)5项化学指标.其中,TN用过硫酸钾氧化2紫外分光光度法测定,N H42N用纳氏试剂光度法测定,NO32N用紫外分光光度法测定,TP用过硫酸钾消解-钼锑抗分光光度法测定,SRP用钼锑抗分光光度法测定[6].取样时,使用便携式p H计和电导率计现场测定水温、电导率、p H值三项理化指标.室内实验中,所有用于测定水化学指标的水样均先经0.45μm孔径滤膜抽滤,因此该部分实验数据中以总溶解性氮(TSN)和总溶解性磷(TSP)代替TN、TP.

2 结果与讨论

2.1 室内条件下绿球藻对N、P的去除效果

2.1.1 对人工合成污水的净化效果

如图1所示,实验期间悬浮培养的绿球藻对人工合成污水中的N、P均有明显去除效果,其中,对N H42N的去除最为迅速,扣除对照组的自然降解量,第1天的净去除率为92.1%,并最终将N H42N 浓度控制在0.30mg/L左右;对TSN和NO32N的去除率均显示随处理时间的延长呈稳步上升趋势,第1天的去除率不足10%,第6日分别达到29.1%和34.2%,这与作者早期报道的藻类优先利用氨态氮的结果极为吻合[7].绿球藻对TSP的去除效果较为明显,首日的去除率为61.0%,第4天即达到79.8%,第6天为77.5%,略有下降

.

与Tam[8]报道的悬浮培养的小球藻在一周处理期间可去除2/3以上氮和磷的结果相比,本实验中绿球藻悬浮培养系统在除氮方面有所不及,但除磷效果有明显优势.

实验过程中发现绿球藻的细胞个体较大,细胞壁较厚,24h曝气亦难以维持其均匀悬浮状态,尤其在实验后期,大量的藻类细胞粘附于处理系统的四壁或沉到底部,以致悬浮液中绿球藻的细胞数量逐渐减少,而在沉积物中的藻类细胞却显著增多.绿球藻的这种生长特性对藻类悬浮培养系统的污水处理效果有一定负面影响,但从另一角度来看,这一特性便于通过沉淀的方式从出水中除去藻类细胞,增加出水的透明度.

2.1.2 对富营养化湖泊水的净化效果

为了探讨绿球藻对富营养化湖泊水的处理效果,作者将取自武汉东湖茶港湖区的水代替人工污水做了进一步处理实验.由于取水时恰逢丰水期,原水中的TSN浓度仅0.8mg/L;而由对照组实验期间TSP最大值超过0.280mg/L可推知原水中TP 一定大于0.280mg/L.根据地表水环境质量标准[9],TP指标属于劣五类水质.说明该实验用水中磷营养达到富营养化水平,而氮含量相对偏低.

对藻类悬浮液吸光度的测定结果表明,实验过程中绿球藻的生物量增长不快,分析认为与实验湖水中氮磷比例失调有关.一般情况下,维持藻类正常生长的氮磷比例至少需7∶1~10∶1,而本实验原水

884

第4期凌晓欢等:两种藻类对水体氮、磷去除效果

中氮磷比仅有约3∶1.

加之本实验用藻在保种期间一直培养在TN 浓度高达75mg/L 以上的B G11液

体培养基中,当将其转入氮营养并不充足的天然湖泊水后,需要一定的时间逐渐适应.由于实验用湖泊水体中原始氮浓度不高,以致绿球藻对氮的去除率非常低,但对磷的去除效果显著(图2)

.

在实验期间,对照组的溶解性TSP 和SRP 水平第1天先上升,自第2天开始缓慢下降,最终依然高于初始值,而实验处理组的磷指标持续下降,TSP 和SRP 水平分别降低到初始值的约53%和17%,说明实验期间原水中的颗粒物分解后有部分磷释放到水体中.扣除对照组的自然降解量,绿球藻对天然湖泊水中TSP 的去除率持续上升,第5日达到79.2%;对SRP 的去除率第2日即达到86.6%,最高达94.1%.可见,本实验用绿球藻悬浮培养系统对天然富营养化湖泊水中磷的去除效果显著,值得注意的是,该藻在加以适当驯化处理前,不适合用于较低氮浓度污水的脱氮脱磷深度处理.同时本实验结果进一步印证了其他悬浮藻类水质净化研究中关于藻类不仅通过吸收转化过程,还通过改变水体理化条件来去除污水中氮、磷的推测[10,11].2.2 室外条件下刚毛藻对N 、P 的去除效果

图3、图4分别是实验期间水体中总氮的浓度变化及其去除率.数据显示:实验区的TN 、N H 42N 浓度较对照区的低.其中藻类密集区TN 的减少率波动在13.5%至45.8%之间,N H 42N 的减少率波动在33.3%至50.0%之间;藻类稀少区TN 的最低和最高减少率分别为11.9%和24.6%,N H 42N 的最低和最高减少率分别为8.3%和20.0%.实验期间,藻类对N H 42N 的去除率偶尔出现过负值,是否因人为操作有误,还是其他原因,有待进一步实验验证. 图5是实验期间水体中总磷的浓度变化,SRP 的浓度各采样点一直不超过最低检测限(0.

003

mg/L ).从表面上看,实验中刚毛藻对TP 与SRP

的去除效果不明显;深入分析后发现,实验水域底部沉积物丰富,并有大量鱼类及其他水生动物活动,尤以藻类密集区为多,实验区藻类及其他生物的代谢活动作用于沉积物引起的TP 释放要比对照区强得多,但在水域恢复稳定状态后藻类密集区的TP 浓度略低于另外两区,由此显示出刚毛藻密集区对磷的去除效果.从SRP 的数据看,无藻对照区和藻类稀少区水体中SRP 均未检测到,而藻类密集区却持续处于检测限水平.综合两项数据,藻类密集区TP 较低而SRP 较高,据此推断,在实验水域中磷经由以下途径得以去除:沉积物—水体TP —SRP —藻类吸收转化.在藻类密集区,由沉积物到SRP 的过程速度较快,刚毛藻生长迅速,并大量吸收转化水体中

9

84

武汉大学学报(理学版)第52卷

的SRP;而在对照区,从沉积物到SRP的过程相对缓慢,池内残余的少量各种藻类的吸收也能有效抑制水中的磷含量,这样才形成了实验所获得的数据分布情况.单从水样的测定结果来看,藻类的除磷效果并不明显;但从实验水域整个生态系统的尺度来考虑,刚毛藻确实有效地吸收了磷元素,并能将其从该生态系统中完全清除.目前,许多富营养化湖泊难以治理的一个关键原因就是超富营养化底泥的释放问题,从这一点来看,探讨藻类对沉积物中磷的吸收具有更重要的实际意义.

总的来说,在实验水域生态系统中,该刚毛藻能适应较高水温,在营养浓度不高的水体中仍能显示对氮、磷的去除效果,提高p H值,降低电导率.

3 结 论

根据本文研究结果并参考相关文献,两种被试藻类应用于水质净化,除具有藻类水质净化的一般优势外,还具有以下特点:

绿球藻虽是单细胞藻类,但其细胞体积大,易于获得足够生物量,其细胞壁较厚,在培养过程中表现出明显的附着和沉积特性,且能通过特殊生理反应耐受高浓度氮磷和重金属[12].

刚毛藻适应的营养浓度范围很广,无论在营养浓度很低的水源水还是在氮磷浓度极高的人工合成生活污水中,刚毛藻均可维持正常生长代谢并有效降低水体中的氮磷营养浓度[7].

综合以上分析,绿球藻可望在生活污水和工业废水的藻菌生物膜法处理中得到应用,而刚毛藻在改善富营养化水体的水质和污水处理厂二级出水的三级深度处理中均有较好应用前景.

在水环境污染日益严重、水资源日趋短缺的今天,藻类水质净化技术因其特有的优势,越来越受到各国环保学者的重视.无论是藻菌生物膜,还是作者已在探讨的大型丝状藻类和着生藻类水处理技术,对水质的净化效果均不容置疑[13,14].目前需要做的就是对这些藻类技术作进一步的完善,以尽早解决与实际应用相关的藻类保种和大规模培养的技术问题,使其产生巨大的环境和经济效益.

参考文献:

[1] Oswald W J,G otaas H B.Photosynthesis in Sewage

Treatment[J].T rans A m S oc Civ Eng,1957,122:732 105.

[2] Mc Griff C E,Mc K inney R E.The Removal of Nutri2

ents and Organics by Activated Algae[J].W at Res, 1972,6:115521164.

[3] Champagne C P,Lacroix C,Isabelle S G.Immobilized

Cell Technologies for the Dairy Industry[J].Critical Reviews in B iotechnolog y,1994,14(2):1092134. [4] Da Costa A C A,Leite S G F.Metals Biosorption by

Sodium Alginate Immobilized Chlorella Homosphaera Cells[J].B iotechnol L ett,1991,13:5592562.

[5] 吴永红,方 涛,丘昌强,等.藻2菌生物膜法改善富营

养化水体水质的效果[J].环境科学,2005,26(1):842

89.

Wu Y onghong,Fang tao,Qiu Changqiang,et al.Meth2 od of Algae2Bacterium Biofilm to Improve the Water Quality in Eutrophic Waters[J].Envi ronmental S ci2 ence,2005,26(1):84289(Ch).

[6] 国家环境保护总局.水和废水检测监测分析方法

[M].北京:中国环境科学出版社,2002.

State Environmental Protection Administration.A nal2 ysis Methods f or the Ex amination of W ater and

W astew ater[M].Beijing:Chinese Environmental Sci2 ence Publisher,2002(Ch).

[7] 况琪军,马沛明,刘国祥,等.大型丝状绿藻对N、P去

除效果研究[J].水生生物学报,2004,28(3):3232326.

Kuang Qijun,Ma Peiming,Liu Guoxiang,et al.Study on the Removal Efficiency of Nitrogen and Phosphorus by Filamentous Green Algae[J].A cta H y d robiologi2 cal S inica,2004,28(3):3232326(Ch).

[8] Tam N F Y,Wong Y S.Wastewater Nutrient Removal

by Chlorella p y renoi dosa and Scenedesm us s p[J].En2 vi ronmental Poll ution,1989,58(1):19234.

[9] 国家环境保护总局.G B383822002.地表水环境质量标

准[S].北京:中国标准出版社,2002.

State Environmental Protection Administration.

G B383822002.Envi ronmental Qualit y S tandards f or

S urf ace W ater[S].Beijing:Standards Press of China, 2002(Ch).

[10]Craggs R J.Wastewater Treatment by Algal Turf

Scrubbing[J].W ater Science and Technology,2001, 44(11212):4272433.

[11]马沛明,况琪军,刘国祥,等.底栖藻类对氮、磷去除效

果研究[J].武汉植物学研究,2005,23(5):4652469.

Ma Peiming,Kuang Qijun,Liu Guoxiang,et al.Study on Removal Efficiency of Nitrogen and Phosphorus by

Freshwater Benthic Algae[J].J ournal of W uhan B o2 tanical Research,2005,23(5):4652469(Ch).

[12]邱昌恩,况琪军,刘国祥,等.不同氮浓度对绿球藻生

长及生理特性的影响[J].中国环境科学,2005,25

(4):4082411.

Qiu Changen,Kuang Qijun,Liu Guoxiang,et al.Influ2

094

第4期凌晓欢等:两种藻类对水体氮、磷去除效果

ence of Different Nitrogen Concentrations on the

Growth and Physiological Characteristics of Chlorococ2 cum s p[J].China Envi ronmental Science,2005,25

(4):4082411(Ch).

[13]陈汉辉.冬季水网藻对源水水质的净化作用[J].上海

环境科学,2000,19(2):76278.

Chen Hanhui.Purification Ability of H y d rodict yon for Source Water in Winter[J].S hanghai Envi ron2 mental S cience,2000,19(2):76278(Ch).[14]王朝晖,江天久,杞 桑,等.水网藻对富营养化水样

中氮磷去除能力的研究[J].环境科学学报,1999,19

(4):4482452.

Wang Zhaohui,Jiang Tianjiu,Qi sang,et al.Studies on Nitrogen and Phosphorus Removal Capacity of H y d2 rodict yon reticulatum in Eutrophic Fresh Water Sam2 ples[J].A cta Scientiae Ci rcumstantiae,1999,19(4): 4482452(Ch).

R emoval E ff iciency of Nitrogen and Phosphorus in

W aste w ater by Tw o Species of Algae

L ING Xiaohuan1,2,KUANG Q ijun1,QIU Changen1,2,HU Zhengyu1

(1.Institute of Hydrobiology,Chinese Academy of Sciences/The State Key Laboratory of Freshwater

Ecology and Biotechnology,Wuhan430072,Hubei,China;

2.Graduate University of Chinese Academy of Sciences,Beijing100049,China)

Abstract:By analyzing t he concent ration changes of nitrogen and p ho sp horus in experimental water, bot h a laboratory st udy and an out door experiment have been conducted for testing t he removal efficiency of nutrient s by algae.The test alga for t he laboratory st udy is Chlorococcum sp.and for t he field experi2 ment is Cl adop hora oli goclona Kütz.respectively.The result s show t hat Chlorococcum sp.grow quite well and have high removal rates of nit rogen and p ho sp horus in t he sewage wit h very high concent rations of nit rogen and p ho sp horus.The removal rates of total soluble nit rogen,nit rate,ammonia and total solu2 ble p ho sp horus f rom synt hetic sewage were46.2%,37.8%,98.4%and79.3%in six days.The removal rate of total soluble p ho sp horus f rom crude lake water by t he alga was79.2%in five days.Cl a dop hora ol2 i goclona can grow normally and absorb relatively on nit rogen and p hosp horus f rom t he nat ural water in outdoor conditions.It plays an important role on reducing t he specific conductance and improving t he wa2 ter quality.According to t he result s obtained in t his st udy and referring to ot her relational research re2 port s,bot h Chlorococcum sp.and Cl adop hora oli goclona have ability for removing nut rient s f rom wastewater.Chlorococcum sp.is suitable for rehabbing and imp roving in static water and Cl adop hora oli2 goclona is suitable for t reating and p rotecting in flowing water.

K ey w ords:Chlorococcum sp.;Cl adop hora oli goclona;nitrogen;p hosp horus;water quality;p urifi2 cation

194

UNITANK工艺提高氮、磷去除率的研究

吴牛嘴等^jNlTANK工岂提高氮、磷去除率的研究73 整的运行周期由6个阶段组成,主体1一过渡l一沉降1一丰体2一过渡2一沉降2阶段。后3个阶段的污水流向恰好与前3个阶段相反(如图2)、 罔2uNITANK上艺的周期运钉过程 22试验用水及试验污泥 试验地点为南京市锁金村污水处理厂,试验水质为典型的城巾生活t;水,污水水质如表l。试验开始时,驯化污泥取自该厂曝气池的活性污泥。 表l试验水质(曝气沉砂池出水 3结果与讨论 3l主体阶段运行时间试验 本试验没置了3个主体阶段反应时间210min、120min和90nlin,过渡阶段和沉降阶段分别采用30min和60min。水力停留时间恒定为12h,水温在49℃范围内变化,泥龄控制为25—30d,容积负荷范同为0290.52奴CoD/m3-d。 主体阶段的时间对coD和TP处理效果的影响如图3。cOD的去除率随主体段时间的变化不显著,但TP的去除率则与主体段时间设置有一定关系。随着主体段时间的延长,TP的去除旱升高的趋势。, 主体阶段的时间对TP去除率的影响可从微生物活性的角度进行解释,微牛物菌群的活性依赖于其有利的生存研=境。上体阶段时间为210m;n、l2【)min和9()mm时活性污泥处于厌氧状态与好氧状态的时间比例分别为0.64、O50和043。厌氧阶段对于除磷菌的蕈要性是不言而喻的。厌氧时段的缩短将会影响除磷茼的活性,使除磷菌不能充分释磷,进而导致曝气阶段的吸磷能力受到影响,致使除磷率降低¨。此外,uNITANK采用连续进水,能保证厌氧池源源不断地产生挥发‘怍脂肪酸(VFA),满足释磷。因此,适当延长厌氧阶段的时间冉利于活性污泥充分释磷,而小会因内源损耗引起无效释磷。同时,随着反应的进行,搅拌池中的污泥不断被椎流进入曝气池。搅拌池巾残留的污泥越来越少,相对可利用的碳源增多,这更有利于这部分污泥的充分释磷。 手体阶段的时同(mm) 盥3主体段时间试验 总的来说,主体阶段时间对于cOD的降解无很大影响,适当延长主体段时问有利于TP的去除。但3个试验工况下NfE—N去除率都不商。 32过渡阶段运行时间试验 前述试验中,NHi—N去除率较低.分析其可能的原因如下:(1)过渡段曝气时间不足;(2)好氧泥龄低;(3)水温较低。 针对上述原困,本试验调整了过渡阶段的时间,并且延长污泥泥龄至40—50d,试验水温在18—25℃范围内。中间曝气池的DO浓度控制在30—40mg/L范围内,HRT控制在12h,uNITANK反应器的平均MLSs浓度为3500mg/L。试验中考察了过渡段时间为60min、90min、120mln和150一n时的N}“。N和TP去除的情况。主体段和沉降段时间分别设定为90min和60min。 图4足NH?一N和TP的去除率随过渡段时问

生态塘水生植物对受污染河水中氮磷的净化效果

生态塘水生植物对受污染河水中氮磷的净化效果 水生植物是水生态系统的重要组成部分,对水生态系统的物质循环和能量传递起到重要作用。水生植物可以通过自身的吸收、吸附和与微生物的协同作用,有效降低水体中氮、磷含量和有机污染物水平,净化水质。采用水生植物净化污水,具有处理效果好、投资少、管理成本低、景观美化等功能。本试验挑选狐尾藻、水白菜两种水生植物,应用到生态塘1—水平潜流人工湿地—生态塘2复合系统中的生态塘中,研究水生植物对受污染河水中氮磷的净化效果 一、材料与方法 1.1 试验装置 该复合系统由生态塘1、水平潜流人工湿地、生态塘2三个独立的系统串联而成,各级系统形成一定的高度差,用于保持系统处理的进出水在重力作用下顺畅流动,形成一个无能耗污水处理系统。该复合系统的基质填料为碎石和沙子,其中生态塘1和生态塘2从底部往上分别铺设5cm的大碎石(Φ=2~4cm)和沙子,水平潜流人工湿地从底部往上分别铺设大碎石20cm,小碎石(Φ=1~2cm)50cm,沙子10cm。各级系统分别种上植物(如图1、表1)。 1.2 生态塘植物 狐尾藻(MyriopHyllumverticillatum):被子植物门、双子叶植物纲、小二仙草科中的狐尾藻属,水生草本,均为沉水植物。中国狐尾藻属植物常见有4~5种,如小狐尾藻、穗花狐尾藻、轮叶狐尾藻、三裂叶狐尾藻等。狐尾藻可作水生态修复植物、观赏植物,全草为草鱼和猪的饲料。 水白菜:学名大薸(Pistiastratiotes),天南星科大薸属,多年生浮水生植物本。水白菜雌雄同株,繁殖迅速,原产巴西,20世纪50年代被作为猪饲料在我国推广栽培。水白菜有发达的根系,可直接从污水中吸收有害物质和过剩营养物质,净化水体。 1.3 运行方案 河水→高位水箱→生态塘1→水平潜流人工湿地→生态塘2→出水。 系统24h连续进水,按HRT=3d、2d、1d的顺序交替运行,每个HRT条件下复合系统运行5~7d,3个HRT时间连续运行一次为一个周期。每运行一个周期后,系统停止运行

如何提高A2O工艺的脱氮除磷效果

如何提高A2/O工艺的脱氮除磷效果 1.A2O池的检测与控制参数的确定 A2O生物除磷脱氮工艺处理污水效果与DO、内回流比r、外回流比R、泥龄SRT、污水温度及PH值等有关。一般厌氧池DO在0.2mg/l以下,缺氧池DO在0.5mg/l以下,而好氧池DO在2.0mg/l以上;污泥混合液的PH值大于7;SRT为8-15天。 然而A2O生物除磷脱氮过程,本质上是一系列生物氧化还原反应的综合,A2O生物池各段混合液中的ORP(氧化还原值)能够综合地反应生物池中各参数的变化。混合液中的DO越高,ORP值也越高;而当存在磷酸根离子和游离的磷时,ORP则随磷酸根离子和游离的浓度升高而降低。一般A-A-O生物除磷脱氮工艺处理过程中,厌氧段的ORP应小于-250mV,缺氧段控制在-100mV左右,好氧段控制在40mV以上。 如厌氧段ORP升高,表明DO值过大,可能与回流比过大带入更多的氧及回流污泥中带入太多的氮有关,还与搅拌强度太大产生空气复氧有关。 如缺氧段ORP升高,表明DO值过大,可能与回流比过大带入更多的氧有关,另外还与搅拌强度太大产生空气复氧有关。 根据以上说明的A2O池中各参数变化对污水除磷脱氮处理工艺的影响,合理选择检测仪表,对污水处理过程中各参数的变化情况进行检测,为污水处理厂的运行控制提供依据。一般A2O工艺中需要检测的数据为: 进水:进水量Q COD COD5 PH T A2O池厌氧段:溶解氧DO 氧化还原值ORP A2O池缺氧段:溶解氧DO 氧化还原值ORP A2O池好氧段:溶解氧DO 氧化还原值MLSS 出水:COD BOD5 根据以上推荐的典型仪表配置与工艺控制特点,我们提出以ORP和DO为主要控制参数,来对曝气系统、内回流系统、外回流系统、剩余污泥排放系统进行控制,以实现良好的除磷脱氮效果,有效地降低污水中的BOD5,同时最大限度地节约能源,使整个系统高效稳定地运行。 2.A2O污水处理工艺过程控制方法 A2O污水处理工艺A2O池传统的控制是:DO值的PID调节(进气量)、MLSS的PID调节(回流比)均为对单一参数的单一对象控制。然而污水处理过程是一个滞后量非常大的过程,影响过程的参数也很多,不可能依据某一具体参数来实现整个过程的控制。污水处理过程中,生物池的曝气系统控制、污流回流系统控制都是极其复杂的控制过程。采用独立的单一的闭环控制很难达到控制要求。随着控制技术的不断发展,同时在污水处理运行过程中不断积累了大量的运行数据,这就为控制过程的查表运算,实现模糊控制带来了可能。 (1) 曝气系统自动化控制 根据季节、进水水质、进水水温、进水水量、好氧池DO、出水COD、BOD5、NH3-N 、TOP、TKN、SS等情况不同,分别确定不同的供气量,即确定空气调节阀的开度和鼓风机的开启台数及其转速。自动对工艺过程控制进行自动修整,实现模糊控制。 A2/O工艺是将厌/好氧除磷系统和缺氧/好氧脱氮系统相结合而成,是生物脱氮除磷的基础工艺,可同时去除水中的BOD、氮和磷。 工艺为:原水与从沉淀池回流的污泥首先进入厌氧池,在此污泥中的聚磷菌利用原污水中的溶解态有机物进行厌氧释磷;然后与好氧末端回流的混合液一起进入缺氧池,在此污

两种藻类对水体氮磷去除效果

第52卷第4期 2006年8月武汉大学学报(理学版) J.Wuhan Univ.(Nat.Sci.Ed.)Vol.52No.4 Aug.2006,487~491 收稿日期:2006202228 通讯联系人 E 2mail :Huzy @https://www.360docs.net/doc/2417330828.html, 基金项目:国家高技术研究发展计划(863)项目资助(2002AA601021);国家重点基础研究发展规划(973)项目资助(2002CB412309)作者简介:凌晓欢(19822),男,硕士生,现从事藻类水质净化研究. 文章编号:167128836(2006)0420487205 两种藻类对水体氮、磷去除效果 凌晓欢1,2,况琪军1,邱昌恩1,2,胡征宇1 (1.中国科学院水生生物研究所/淡水生态与生物技术国家重点实验室,湖北武汉430072; 2.中国科学院研究生院,北京100049) 摘 要:借助人工装置和露天水池,通过分析实验水体中氮、磷元素浓度的变化,研究了实验室条件下一种绿球藻(Chlorococcum sp.)和露天小型生态系统中寡枝刚毛藻(Cladophora oli goclona K ütz ).对污水中氮磷营养的去除效果.结果显示:绿球藻在高浓度氮和磷的污水中生长良好并维持较高的氮磷去除率,在6天处理期间,人工污水中总溶解性氮、硝酸盐氮、氨氮、总溶解性磷的去除率分别达到46.2%,37.8%,98.4%和79.3%;在对天然湖泊水的处理中,绿球藻对总溶解性磷的去除率在第5天为79.2%.室外条件下,该刚毛藻通过吸收水体中的氮、磷营养维持自身正常生长代谢,从而降低水体的电导率和改善水质.根据本次研究,结果两种被试藻类均可作为污水处理用藻类,其中Chlorococcum sp.适合用于静态水体的修复与改善,Cladop hora oli goclona 适合于流动水体的减负与治理. 关 键 词:绿球藻;刚毛藻;氮;磷;水质;净化中图分类号:X 171 文献标识码:A 0 引 言 应用藻类进行水质净化的研究,自20世纪50年代起,至今已有近60年的历史[1].早期主要是应用微型藻悬浮培养技术进行污水处理,相关技术有藻菌氧化塘、高效藻类塘、活性藻 [2] 等.由于微型藻 悬浮培养技术在实际应用中有诸如过量藻体不易收获、出水中仍有藻类细胞残留等问题,科学家们随之将研究的焦点更多地集中在固着藻类的研究与应用上,如:固定化藻类技术[3]和藻菌生物膜技术.Da Costa [4]的研究结果证明,固定化藻类不但能有效去 除污水中的氮磷营养,对去除镉和锌等重金属离子也效果显著.由于受限于固定藻类用载体的成本较高,以致该项技术仅停留在实验室规模的研究和探索阶段,至今未见大规模实际应用的报道.吴永红等[5]以高分子材料的人工水草作为藻菌生物膜载体,用于改善富营养化水体的水质,同样获得较为理想的水质净化效果.为了进一步挖掘和筛选能有效净化污水且藻细胞易于收获的藻种,拓展藻类在污水处理中的应用范围,本文研究了一种极为耐污的 绿球藻(Chlorococcum sp.)和寡枝刚毛藻 (Cl adop hora oli goclona K ütz )对氮磷的去除效果,对二者各自的应用前景作了简要分析,同时对藻类水质净化的优势进行了探讨. 1 材料和方法 1.1 室内实验藻种与培养条件 绿球藻(Chlorococcum sp.)采自美国亚里桑那州一家污水处理厂,应用微藻分离纯化的方法,用B G11琼脂培养基分离纯化后保种培养.在无菌条 件下,将琼脂培养基上的单个藻落转接到B G11液体培养基中,置L R H 22502G 光照培养箱中培养,培养温度(25±1)℃,光照强度35~40μmol/m -2?s -1,在获得足够生物量后用于污水处理试验. 实验污水分别为人工合成污水和天然富营养化湖泊水.人工合成污水配方为:NaNO 30.425g 、(N H 4)2SO 40.075g 、MgSO 4?7H 2O 0.025g 、Ca (H 2PO 4)20.03g 、Na HCO 30.30g 、FeCl 30.0015g ,用自来水定容至1L.天然富营养化湖泊水采自 武汉东湖茶港湖区,经25号浮游生物网过滤去除明

污水处理脱氮、除磷的经验值汇总

污水处理脱氮、除磷的经验值汇总 1、脱氮除磷水质的要求 1、污水的五日生化需氧量与总凯氏氮之比是影响脱氮效果的重要因素之一。异养性反硝化菌在呼吸时,以有机基质作为电子供体,硝态氮作为电子受体,即反硝化时需消耗有机物。青岛等地污水厂运行实践表明,当污水中五日生化需氧量与总凯氏氮之比大于4时,可达理想脱氮效果;五日生化需氧量与总凯氏氮之比小于4时,脱氮效果不好。五日生化需氧量与总凯氏氮之比过小时,需外加碳源才能达到理想的脱氮效果。外加碳源可采用甲醇,它被分解后产生二氧化碳和水,不会留下任何难以分解的中间产物。由于城市污水水量大,外加甲醇的费用较大,有些污水厂将淀粉厂、制糖厂、酿造厂等排出的高浓度有机废水作为外加碳源,取得了良好效果。当五日生化需氧量与总凯氏氮之比为4或略小于4时,可不设初次沉淀池或缩短污水在初次沉淀池中的停留时间,以增大进生物反应池污水中五日生化需氧量与氮的比值。 2、生物除磷由吸磷和放磷两个过程组成,积磷菌在厌氧放磷时,伴随着溶解性可快速生物降解的有机物在菌体内储存。若放磷时无溶解性可快速生物降解的有机物在菌体内储存,则积磷菌在进入好氧环境中并不吸磷,此类放磷为无效放磷。生物脱氮和除磷都需有机碳,在有机碳不足,尤其是溶解性可快速生物降解的有机碳不足时,反硝化菌与积磷菌争夺碳源,会竞争性地抑制放磷。 污水的五日生化需氧量与总磷之比是影响除磷效果的重要因素

之一。若比值过低,积磷菌在厌氧池放磷时释放的能量不能很好地被用来吸收和贮藏溶解性有机物,影响该类细菌在好氧池的吸磷,从而使出水磷浓度升高。广州地区的一些污水厂,在五日生化需氧量与总磷之比为17及以上时,取得了良好的除磷效果。 3、若五日生化需氧量与总凯氏氮之比小于4,难以完全脱氮而导致系统中存在一定的硝态氮的残余量,这样即使污水中五日生化需氧量与总磷之比大于17,其生物除磷的效果也将受到影响。 4、一般地说,积磷菌、反硝化菌和硝化细菌生长的最佳pH在中性或弱碱性,当pH偏离最佳值时,反应速度逐渐下降,碱度起着缓冲作用。污水厂生产实践表明,为使好氧池的pH维持在中性附近,池中剩余总碱度宜大于70mg/L。每克氨氮氧化成硝态氮需消耗7.14g 碱度,大大消耗了混合液的碱度。反硝化时,还原1g硝态氮成氮气,理论上可回收3.57g碱度,此外,去除1g五日生化需氧量可以产生0.3g碱度。出水剩余总碱度可按下式计算,剩余总碱度=进水总碱度+0.3×五日生化需氧量去除量+3×反硝化脱氮量-7.14×硝化氮量,式中3为美国EPA推荐的还原1g硝态氮可回收3g碱度。当进水碱度较小,硝化消耗碱度后,好氧池剩余碱度小于70mg/L,可增加缺氧池容积,以增加回收碱度量。在要求硝化的氨氮量较多时,可布置成多段缺氧/好氧形式。在该形式下,第一个好氧池仅氧化部分氨氮,消耗部分碱度,经第二个缺氧池回收碱度后再进入第二个好氧池消耗部分碱度,这样可减少对进水碱度的需要量。 2、生物脱氮的经验值

10种水生植物的氮磷吸收和水质净化能力比较研究_金树权

农业环境科学学报2010,29(8):1571-1575Journal of Agro-Environment Science 摘 要:选取10种水生植物水罂粟、黄花水龙、大聚藻、香菇草、水芹、大薸、凤眼莲、美人蕉、黄菖蒲和鸢尾等为研究对象,于2009 年2月中旬至6月中旬在室内静水条件下对其吸收氮、磷和净化水质的能力进行了比较研究。结果表明:(1)不同水生植物的净增 生物量差异较大,变化范围为109.9~1511.1g ·m -2,其中香菇草净增生物量最高,是黄花水龙(最低)的13.7倍;(2)不同水生植物的氮、 磷含量差异较小,其氮、磷量变化范围分别为13.67~26.38mg ·g -1和1.16~3.50mg ·g -1;(3)不同水生植物的水质净化能力差异较大, 10种水生植物的水质氮、磷去除率范围分别为36.3%~91.8%和23.2%~94.0%,10种水生植物的氮、磷吸收贡献率分别占水质氮、磷去除率的46.3%~77.0%和54.3%~92.7%。水体氮、磷去除率与水生植物净增生物量存在较高相关性,而与植株氮、磷含量不存在相关性,因而氮、磷吸收量而不是植株氮、磷含量应作为水生植物筛选的一个重要指标。关键词:水生植物;氮、磷吸收;水质净化中图分类号: X173文献标志码: A 文章编号: 1672-2043(2010)08-1571-0510种水生植物的氮磷吸收和水质净化能力比较研究 金树权1,周金波1,朱晓丽2,姚永如3,蔡国成3,陈若霞1 (1.浙江省宁波市农业科学研究院生态环境研究所,浙江宁波315040;2.宁波市农村水利管理处,浙江宁波315000;3.宁波市鄞州区下应街道农办,浙江宁波315100)Comparison of Nitrogen and Phosphorus Uptake and Water Purification Ability of Ten Aquatic Macrophytes JIN Shu-quan 1,ZHOU Jin-bo 1,ZHU Xiao-li 2,YAO Yong-ru 3,CAI Guo-cheng 3,CHEN Ruo-xia 1 (1.Ecology and Environment Institute,Ningbo Academy of Agricultural Science,Ningbo 315040,China;2.Ningbo Rural Water Management Division,Ningbo 315000,China;3.Agriculture Office of Xiaying Street,Yinzhou Distract,Ningbo City,Ningbo 315100,China ) Abstract :Ten aquatic macrophytes uptake of nitrogen (N )and phosphorus (P )and their water purification capacity were investigated in hy -drostatic conditions from middle February 2009to middle June 2009,including Hydrocleys nymphoides,Jussiaea repens,Myriophyllum aquaticum,Hydrocotyle vulgaris,Oenanthe javanica,Pistia stratiotes,Eichhornia crassipes,Canna indica,Iris pseudacorus,Iris tectorum .Results showed that (1) the net accumulated biomass strongly changed from 109.9g ·m -2to 1511.1g ·m -2among different aquatic macro -phytes,with the highest biomass of Hydrocotyle vulgaris and the lowest of Jussiaea repens;(2)there was little difference in N and P concen -tration among different aquatic macrophytes,with the range of N and P contents 13.67~26.38mg ·g -1and 1.16~3.50mg ·g -1,respectively;(3)there was greater difference in the water purification ability among thsee ten aquatic macrophytes,with the range of N and P removal efficien -cy 36.3%~91.8%and 23.2%~94.0%,respectively.The uptake of N and P and their accumulation in macrophytes were the main mechanism for the water purification,which accounted for 46.3%~77.0%and 54.3%~92.7%of the nitrogen and phosphorus removal efficiency.N and P removal efficiency in water body was significantly correlated with plant net accumulated biomass,but not with N and P concentration in macrophytes,thus N and P absorption instend of N and P concentration should be an important index for aquatic macrophytes choosing.Keywords :aquatic macrophyte ;nitogen and phosphorus uptake ;water purification 收稿日期:2010-02-01基金项目:宁波市重大科技攻关择优委托项目(2008C50019);宁波市 鄞州区科技攻关项目(鄞科2009-99);宁波市科技局一般攻关项目(2010C10009) 作者简介:金树权(1981—),男,浙江嵊州人,博士,主要从事农村生态 环境研究。E-mail : jinshuq@126.com 通讯作者:陈若霞E-mail : crx900@163.com 水体富营养化是我国江河、湖泊、水库等地表水体的重要水环境问题之一,而水体中过高的氮、磷浓度是引起水体富营养化的主要原因[1-3]。控制和修复富营养化水体的生态工程有很多,如人工湿地[4-6]、植物 缓冲带[7-8]、生态浮(床)岛[9-10]等,在这些生态工程中水 生植物是不可缺少的一部分。水生植物不但能直接吸收水体中的营养物质,而且能输送氧气到根区为微生物的生长、繁殖和污染物降解创造适宜条件[11]。不同的水生植物具有不同的生长特性和氮、磷吸收能力,这就使得不同水生植物的水质净化能力存在较大的差异。目前大部分研究侧重于人工湿地系统、植物浮床系统的水质净化能力分析和系统中水生植物的氮、 磷吸收能力研究[4-5,10] ,在室内控制条件下也有一定的 相关研究[10, 12],但是很少有在室内控制条件下同时比

如何净化猪场养殖污水中的氮磷

如何净化猪场养殖污水中的氮磷 1 引言 养殖污水和液态排泄物是集约化畜禽养殖场污染物无害化处理的难点.目前,规模化畜禽养殖场的污水通常采用沼气池厌氧发酵进行处理,但产生的数量巨大的沼液中仍然含有高浓度的氮磷等营养盐.随着农村城镇化进程的推进,消纳沼液的耕地日渐不足,产生的沼液直排到水体中,将会导致自然水体严重富营养化.如何净化沼液越来越成为规模化畜禽养殖场可持续发展的制约因素. 微藻属于光合自养型生物,在自然界广泛分布,能有效吸收利用水体中的氮磷等营养物质,很早就被人们用以处理污水、净化环境.同时,微藻也是十分重要的生物资源,微藻细胞营养丰富,含多种生理活性物质,某些微藻在特定的培养条件下能选择性地蓄积高附加值的产品.利用微藻生产生物柴油或单细胞饲料蛋白源是当前微藻开发利用的热点.若能利用养殖场污水培养产油微藻,既可以利用微藻净化污水,还能为微藻生物柴油的生产提供资源,一举两得. 因此,本文选择了15株淡水微藻,在实验室条件下考察其在猪场养殖污水中的生长性能及其对污水中氮磷的去除效果,并检测利用猪场养殖污水培养的各株微藻的细胞蛋白含量和脂肪酸组成,以期为猪场养殖污水的无害化高效净化处理筛选出合适的藻株. 2 材料与方法 2.1 试验材料 2.1.1 猪场养殖污水 猪场养殖污水取自浙江嘉兴余新镇敦好农牧有限公司的养猪场.养殖污水经过厌氧发酵及露天氧化塘沉淀处理后,用于本试验.试验用污水的水质状况如表 1所示. 表1 试验用猪场养殖污水的水质状况 2.1.2 试验藻株 试验用15个藻株均取自上海海洋大学生物饵料研究室微藻种库,分别为纤维藻(Ankistrodesmus sp.)SHOU-F1、椭圆小球藻(Chlorella ellipsoidea)SHOU-F3、单生卵囊藻(Oocystis solitaria)SHOU-F5、多棘栅藻(Scenedesmus spinosus)SHOU-F7、多棘栅藻(S. spinosus)SHOU-F8、肥壮蹄形藻(Kirchneriella obesa)SHOU-F9、斜生栅藻(S. obliquus)SHOU-F17、淡水小球藻(Chlorella sp.)SHOU-F19、椭圆小球藻 (Ch.ellipsoidea)SHOU-F20、斜生栅藻(S.obliquus)SHOU-F21、四球藻(Tetrachlorella alternans)SHOU-F24、镰形纤维藻(A.falcatus)SHOU-F26、小球藻(Chlorella

大薸对水体中氮、磷成分净化作用的研究及探讨

大薸对富营养化水体中氮磷净化作用的研究 卢志远 (云南大学生命科学学院生态学专业 20091070008) 摘要:本文利用大薸水对富营养化水体中的氮磷的净化作用进行了研究和探讨。本实验将30株大薸分为两组在可控的静水条件下用不同的水样连续培养约60天,以探讨大薸对水体中氮、磷成分的净化作用。结果表明,大薸对富营养化水体中总氮的去除率为76.17%,总磷去除率为86.4%。 关键词:大薸、水体净化、总氮含量、总磷含量 大薸(Pistia stratiotes),又名水浮莲、水白菜、肥猪草,天南星科(Araceae)大薸属。多年生浮水草本植物,喜高温高湿,不耐严寒,,可直接漂浮于水面生长,根须深入水体中,生长力非常旺盛,具有很强的竞争优势[1]。大薸原产南美, 于20世纪50年代作为饲料引入中国,多生于我国南方湖泊、池塘、水渠等水质肥沃的静水或缓流的水面。 大薸可以用来净化多种废水,而且其净化周期短,效果显著。大薸常作为人工湿地的引种植物种植,可以起到绿化与治污的双重效应,不仅能提高人工湿地的净化能力和使用寿命,还能减少人工湿地的投资成本[2]。但大薸漂浮生长, 易在湖泊、水库和静水河湾等地方堵塞航道, 影响水产养殖, 导致沉水植物死亡,危害水生生态系统结构与功能, 目前已被我国列为入侵植物,其中大薸大肆入侵云南滇

池、福建闽江口库区[3]和广州潮州东丽湖[4]的现象就是最典型案例。 在本实验中,将大薸在室内可控静水条件下进行培养,通过对大薸在培养前后生物量的变化和水体、植物体中氮、磷的含量的变化进行测量和对比,探讨大薸对水体中氮、磷成分的净化作用,以期为构建健康水生态系统、净化水体及控制水体污染和富营养化的技术研究提供理论依据和实践措施。 1.材料与方法 1.1 材料来源 实验材料为大薸的野生品种,于2011年9月26日采自云南昆明老宝象河入滇河口附近,采集量约为80株,所采集大薸生长状况良好。另外,采集了约50L入滇口附近的滇池水样,用于大薸在室内可控静水条件下的培养。 1.2 试验场地 大薸的培养场是地位于云南大学呈贡校区内的一间温室,温室长约10米,宽约4米,三面玻璃窗,一面为有玻璃门和塑料墙壁的隔墙,屋顶为白色塑料板。四周有铁架供放置培养大薸所需容器,铁架靠近玻璃窗。室内光照充足,温度较高。培养用容器为透明的方形玻璃鱼缸,长约50cm,宽约40cm,深约35cm,每缸装水约50L。 1.3 实验准备及材料处理 采回大薸后,对其进行挑选,挑选原则为:植株健康,生长状况良好,长势接近,丛茎在10cm左右,植株完整性好,有不超过一片

人工湿地水生植物选择对氮磷去除效果的研究进展

人工湿地水生植物对污水中氮磷的去除效果的研究进展Studying progress on effects of Nitrogen and Phosphorus removal by Aquatic Plants in Constructed Wetland 摘要:与传统的二级活性污泥法处理工艺相比,人工湿地具有运行费用低,维护管理方便以及较强的氮磷处理能力等优点。又由于人工湿地中的水生植物对氮磷的处理效果显著,并且不同的水生植物对氮、磷的去除效果相异。因此,本文在综述人工湿地发展及应用现状的基础上,重点阐述了国内外学者对于水生植物筛选及组合在人工湿地中对氮磷的去除作用及效果的研究现状。最后提出了当前人工湿地水生植物研究的展望和提高人工湿地脱氮除磷能力的对策。 Abstract:Compared with the conventional activated sludge technology in secondary treatment ,there exists three advantages of constructed wetlands:low operating costs , easy maintenance and management,as well as the strong processing capacity of nitrogen and phosphorus. The removal rate of N and P by aquatic plants differ far from each other. This paper reviews the development and application status of CW and focuses on the current research situation of the role and effects of aquatic for nitrogen and phosphorus removal in wastewater treatment of constructed wetlands.Finally, the prospects and strategies to improve the NP removal capacity of wetland wetland aquatic plants are proposed. Key words:constructed wetland; aquatic plants ;wastewater treatment;studing progress. 1 介绍 1.1 人工湿地发展现状 自西德1974年首先建造人工湿地以来, 该污水处理工艺已在欧洲得到推广应用, 在美国和加拿大等国也得以迅速发展。我国在“七五期间”开始了人工湿地的研究,首例采用人工湿地处理污水的研究工作始于1988-1990年在北京昌平进行的处理量为 500t/d 生活污水和工业废水的表面流人工湿地。 它的原理是利用湿地中基质、水生植物和微生物之间的相互作用,通过一系列物理的、化学的以及生物的途径净化污水。应用人工湿地处理污水, 其投资和日常运行费用仅为常规二级污水处理场的1/10-1/2和1/5-1/3, 但其出水水质可达到或超过二级污水处理水平, 且适用面广, 除处理城镇生活污水外, 也能广泛应用于农业、畜牧业、食品、矿山等工农业废水的处理。 目前,人工湿地废水处理工艺主要有两种形式:

相关文档
最新文档