发动机动力匹配方法
发动机动力匹配方法42页

变矩器的原始特性是研究λ1、λ2=f(i)的变化关系。
泵轮传递力矩的比例常数为λ1 ,涡轮传递力矩的比例常数 为λ2,它们也被分别叫做泵轮力矩系数和涡轮力矩系数。
泵轮力矩和涡轮力矩方程为:
M1= λ1γn12D5 M2= λ2γn12D5 泵轮力矩系数λ1和涡轮力矩系数λ2是在试验台测得数据求 得的。
1λ1=1M1/(γn12D5) 1λ2=1M2/(γn12D5) 而,i=1n2/n1,这样即得λ=f(i)曲线上两个点(1i、1λ1) 及(1i、1λ2),同样得方法类推,即可得变矩器原始特性曲线 λ1、λ2=f(i),如图(b)所示。 变矩器的原始特性曲线除了给出λ1、λ2=f1、2(i)外,还 要绘出K、η=f3、4(i)曲线,如下图。
Pe=Te.n/9550
式中,
Te—有效转矩(N.m);
n—曲轴转速(r/min)。
燃油消耗率:在上述试验 台上测出消耗一定量燃料 所经历的时间,用以换算 发动机每小时消耗油量B, 按下式计算燃油消耗率be。
be=B/Pe*103
发动机最小燃油消耗 率的相应转速一般是介于 最大转矩时转速和最大功 率时转速之间。
当转速达到1900时,有效功率达到最大值。功率是转矩与转 速的乘积。
在怠速和最大转矩转速范围内,Te和n都是逐渐增加,其乘积 也增加,故在此范围内,Pe也随n增加而增加;
在最大转矩和最大功率转速范围内,转速n增加,功率Pe虽 然增大,但Te却逐渐降低,不过降低较缓慢,Pe增加也缓慢。
超过最大功率转速时,n增加,Te下降较快,Pe也逐渐下降。
3.变矩器 液力变矩器的作用: a.使车辆能够自动适应外界载荷的变化。 当外界载荷突然增大时,车辆自动地减速,同时自动增大牵 引力,以克服增大的外载荷;反之,当外界载荷变小时,自动提 高车辆车速,同时,自动减小牵引力。 b.提高车辆的使用寿命。 变矩器利用液体作为工作介质,故能吸收并消除来自发动机和外 载荷的震动与冲击,因而提高了车辆的使用寿命。
变速器与发动机的匹配原则

变速器与发动机的匹配原则在汽车的动力系统中,发动机和变速器是两个不可或缺的部分。
发动机负责产生动力,而变速器则负责将发动机输出的动力传递到车轮以产生车辆的运动。
为了确保汽车的正常运行和提高燃油利用率,变速器与发动机需要进行合理的匹配。
本文将就变速器与发动机的匹配原则进行深入探讨。
1. 动力输出曲线匹配原则发动机的动力输出曲线是描述其输出动力随转速变化的曲线。
而变速器的工作原理是通过不同的齿轮组合来改变发动机输出转速和扭矩。
因此,为了实现最佳的动力输出和燃油经济性,变速器应该与发动机的动力输出曲线相匹配。
一般来说,发动机的输出扭矩应在变速器的工作范围内,以实现高效率的动力传递。
2. 驱动方式匹配原则根据车辆的驱动方式的不同,变速器与发动机的匹配也会有所区别。
前置前驱车辆通常采用横置发动机,而后驱车辆则采用纵置发动机。
对于前驱车辆,变速器常采用紧凑型设计,并且在重量和尺寸上要求较小。
而后驱车辆则可以采用更大型的变速器,以承载更大的扭矩和功率输出。
3. 车辆用途匹配原则不同的车辆用途对于动力输出和燃油经济性的要求也不同,因此变速器与发动机的匹配需要考虑车辆的用途。
例如,商用运输车辆通常需要高扭矩和低燃油消耗,因此需要与高扭矩发动机匹配的变速器。
而运动型轿车则需要高转速和高功率输出,因此需要与高转速发动机匹配的变速器。
4. 车辆载重匹配原则车辆的载重对于变速器与发动机的匹配也有影响。
载重较大的车辆需要更高的输出扭矩和功率,因此需要与更高功率的发动机匹配的变速器。
另外,载重较大的车辆也需要更耐用和可靠的变速器来承受更高的工作负荷。
5. 车速范围匹配原则不同车辆的使用环境和用途要求对车辆的最高速度和最低速度有一定的要求。
因此,变速器与发动机的匹配也需要考虑车辆的速度范围。
例如,一些需要高速行驶的车辆,如赛车,需要与高转速发动机匹配的变速器,以实现更高的车速。
总之,变速器与发动机的匹配是确保汽车正常运行和提高燃油利用率的重要因素。
对汽车发动机动力输出匹配的

总结本次研究内容与成果
本次研究主要对汽车发动机动 力输出匹配进行了深入探讨, 包括匹配原理、方法、影响因
素等方面。
通过理论分析和实验验证, 得到了汽车发动机动力输出 匹配的关键参数和优化方法
。
研究成果对于提高汽车动力性 、经济性和排放性能具有重要
意义。
对未来研究方向的展望
进一步研究汽车发动机动力输 出匹配的智能化技术,提高匹 配精度和效率。
案例三:某款车型燃油经济性匹配优化案例
总结词
通过优化车身结构、降低风阻系数等措施,提高车辆的燃油经济性。
详细描述
该款车型在城市道路行驶时,由于车身结构和外观设计不合理,导致风阻系数较 高,油耗较大。通过优化车身结构、改变外观设计等措施,降低风阻系数,减少 空气阻力,从而提高车辆的燃油经济性。
0具有 较高的热效率,但噪音较大,对燃油 要求较高。
柴油发动机类型与特点
直喷式柴油机
将燃料直接喷入汽缸内,具有较高的热效率,但噪音较大, 对燃油要求较高。
共轨式柴油机
采用共轨技术控制燃油喷射,具有较低的噪音和较好的燃油 经济性。
混合动力发动机类型与特点
并联式混合动力
案例二:某款车型传动系统匹配优化案例
总结词
通过优化传动系统设计,提高发动机动力与传动系统的匹配度,从而提高车辆动力性能和燃油经济性 。
详细描述
该款车型在加速时,传动系统与发动机的配合不佳,导致车辆加速缓慢、油耗增加。通过优化传动系 统设计,选择合适的变速器和离合器等部件,调整传动系统的传动比和效率,使发动机动力与传动系 统更加匹配,从而提高车辆动力性能和燃油经济性。
匹配方法与流程
01
匹配流程
02
1. 分析汽车行驶需求:了解汽车类型、用途、行驶 工况等信息,确定汽车的动力需求。
工程机械发动机选型动力匹配计算

轮式底盘基本参数一、发动机功率计算 1、平地行驶工况车辆在平地行驶时,由于行驶速度较低,忽略风阻对车辆行驶的影响。
故车辆主要的阻力来自于滚动阻力其中 ——车轮滚动阻力系数,不同工况下的数值见下表 ——车轮垂直于地面的载荷混凝土 冻结冰雪地 砾石路 坚实土路 松散土路 泥泞地、沙0.0180.0230.0290.0450.0700.09-0.18本设计中考虑选择隧道路况,=0.05 则=0.05x14x1000x9.8=6860 则在平地行驶发动机的功率为其中 ——发动机到驱动轮的总效率 ——车辆的最大行驶速度 取 =0.96x0.97x0.97x0.97=0.88 =20Km/h 则Kw v F P f Te 31.43360020686088.01360010max =⨯⨯=⋅⋅=η 2、爬坡工况图4 作用于车辆上的阻力车辆爬坡时所受阻力主要有行驶阻力、坡道阻力、风速阻力和加速阻力。
由于车辆行驶速度较低,且在爬坡时加速运动较少,故仅考虑行驶阻力与坡道阻力对车辆的影响。
2.1 滚动阻力计算:其中 ——车轮滚动阻力系数,不同工况下的数值见下表 ——车轮垂直于地面的载荷混凝土 冻结冰雪地 砾石路 坚实土路 松散土路 泥泞地、沙0.0180.0230.0290.0450.0700.09-0.18本设计中考虑选择隧道路况,=0.05 则=N 27.621725cos 8.910001405.0=⨯⨯⨯⨯ 2.2 坡道阻力计算N G F i 23.5798325sin 8.9101425sin 3=︒⨯⨯⨯=︒⋅=故车辆在爬坡工况时,牵引力应为行驶阻力与坡道阻力之和N F F F i f k 52.6442923.5798327.6217=+=+=2.3 爬坡功率计算其中 ——发动机到驱动轮的总效率 ——车辆爬坡速度取 =0.96x0.97x0.97x0.97=0.88 =3Km/h 则Kw v F P k Te 86.603600352.6442988.01360010max =⨯⨯=⋅⋅=η 3、取平地行驶工况与爬坡工况发动机功率的较大值为发动机的型号选取功率,即P=60.86Kw4、发动机的选取选用东风康明斯生产的工程机械用发动机,转速选取2200r/min,其B系列发动机参数如表1所示:表1 B系列发动机参数选用4BTA3.9-C100型柴油发动机作为轮式底盘动力发动机扭矩-转速特性曲线发动机功率-转速特性曲线发动机比油耗-转速特性曲线由上述三组发动机外特性曲线得出以下结论:1、发动机运行在1400rpm-1500rpm之间时,将输出最大扭矩,最大扭矩为410N.m,该转速适用于台车爬坡工况;2、发动机运行在2000rpm-2200rpm之间时,发动机将输出额定功率,即74KW,可考虑用在短距离转场工况,提高作业效率;3、发动机运行在1800rpm左右时,发动机的燃油经济性最好,可考虑用在远距离转场工况下达到节能需要。
发动机与各主要附件系统匹配设计说明

发动机及各主要附件系统匹配设计一、发动机:1、发动机分类及工作原理:发动机是汽车的动力源。
它是将某一形式的能量转变为机械能的机器。
按燃烧种类分类可分为汽油机、柴油机、燃气机及代用燃料机等。
按工作冲程分为四冲程发动机和二冲程发动机。
按工作原理和构造可分为点燃式内燃机、压燃式内燃机、混合式内燃机、转子发动机、燃气轮机、外燃机及电动机等。
也可按缸数、燃烧室型式等分类。
柴油机是内燃机的一种,是把柴油和空气混合后直接输入机器内部燃烧而产生热能,然后再转变为机械能。
它具有热效率高、体积小、便于移动、起动性能好等优点而得到广泛应用。
车用内燃机,根据其将热能转变为机械能的主要构件的形式,可分为活塞式内燃机和燃气轮机两大类。
活塞式内燃机按活塞运动方式分为往复活塞式和旋转活塞式两种,往复活塞式应用最广泛。
在发动机内每一次将热能转化为机械能,都必须经过空气吸入、压缩和输入燃料,使之着火燃烧而膨胀做功,然后将生成的废气排出这样一系列连续过程,称为发动机的一个工作循环。
对于活塞往复式发动机,可以根据每一工作循环所需活塞行程数来分类。
凡活塞往复四个单程完成一个工作循环的称为四冲程发动机,活塞往复两个单程即完成一个工作循环的称为二冲程发动机。
目前我厂产品所用发动机多为四冲程多缸柴油机。
2、柴油机的优缺点与汽油机比较,柴油机因压缩比高,燃油消耗率平均比汽油机低30%左右,且柴油价格相对较低,所以燃油经济性好。
柴油机的主要优点是热效率高、油耗低、可靠性高、耐久性好。
一般载质量7t 以上的货车大都用柴油机。
柴油机的缺点是转速较汽油机低,工作粗暴,噪声大,质量大,制造和维修费用高。
3、发动机选用:目前发动机以选用为主。
各发动机主管在会同整车总布置人员满足整车性能和布置要求的前提下与发动机厂确定技术状态。
不同的车型对匹配发动机的特性要求有一定差异,应在理论计算的基础上通过试验验证发动机是否满足要求,对不能满足使用要求的应通过发动机性能的优化和整车传动系速比的匹配使发动机与整车得到最优化匹配,在满足动力性要求的前提下取得较好的燃油经济性。
动力总成匹配试验测试方法

动力总成匹配试验测试方法一、引言动力总成是指由发动机、传动系统和相关控制系统组成的汽车动力装置。
为了确保动力总成的性能和可靠性,需要进行匹配试验测试。
本文将介绍动力总成匹配试验测试的方法和步骤。
二、试验前准备1. 确定试验目的:根据动力总成的设计要求和使用条件,确定试验目的和要求,包括动力输出、燃油消耗、排放等方面的指标。
2. 确定试验条件:根据动力总成的设计参数和使用条件,确定试验条件,包括环境温度、湿度、海拔高度等。
3. 准备试验设备:包括发动机试验台、传动系统试验台、测量仪器等。
三、试验步骤1. 发动机试验:首先进行发动机试验,包括动力输出、燃油消耗、排放等方面的测试。
通过改变发动机工况和负荷,测试发动机在不同工况下的性能指标。
2. 传动系统试验:然后进行传动系统试验,包括传动效率、换挡平顺性、噪声振动等方面的测试。
通过模拟实际驾驶情况,测试传动系统在不同工况下的性能指标。
3. 整车试验:最后进行整车试验,将发动机和传动系统安装到实际车辆上,测试整车的性能和可靠性。
包括加速性能、制动性能、悬挂系统等方面的测试。
四、试验参数和指标1. 动力输出:包括最大功率、最大扭矩等指标,用于评估动力总成的动力性能。
2. 燃油消耗:包括燃油经济性和排放指标,用于评估动力总成的燃油效率和环保性能。
3. 传动效率:用于评估传动系统的能量传输效率,包括传动损失和能量转换效率等指标。
4. 换挡平顺性:评估传动系统换挡的舒适性和平顺性,包括换挡时间、换挡冲击等指标。
5. 噪声振动:评估传动系统和整车的噪声和振动水平,包括噪声强度、振动幅值等指标。
6. 加速性能:评估整车的加速性能,包括0-100km/h加速时间等指标。
7. 制动性能:评估整车的制动性能,包括制动距离、制动稳定性等指标。
8. 悬挂系统:评估整车的悬挂系统性能,包括悬挂刚度、减震效果等指标。
五、试验数据处理与分析1. 试验数据采集:通过测量仪器和传感器,采集试验过程中的各项数据,包括转速、扭矩、温度、压力等。
混动汽车的发动机与电动机匹配

混动汽车的发动机与电动机匹配混动汽车已成为现代交通工具中的一大趋势,其采用发动机与电动机的组合,既可以提供高效燃烧,又可以减少尾气排放,具有更好的能源利用效率。
本文将介绍混动汽车的发动机与电动机匹配问题。
一、混动汽车的基本原理混动汽车是指同时搭载燃油发动机和电动机,通过智能控制系统根据不同工况的需求来选择合适的动力来源。
当车辆需要高功率输出时,发动机将主要提供动力;而在低速行驶、起步或者加速时,电动机则承担起主要动力供应的任务。
这种智能的动力分配方式,使得混动汽车既能享受传统汽车的动力性能,又能获得电动汽车的零排放和低油耗优势。
二、发动机与电动机的匹配选择1. 发动机类型选择:混动汽车中常用的发动机类型包括内燃机发动机和燃料电池发动机。
内燃机发动机分为汽油发动机和柴油发动机,燃料电池发动机则使用氢气与氧气的化学反应产生电能。
在选择发动机类型时,需考虑到动力输出和尾气排放两个方面的因素。
2. 发动机功率选择:混动汽车中,发动机的功率需要根据车辆使用情况和动力需求进行匹配。
发动机功率过大或过小都会影响车辆的燃油经济性和动力性能。
因此,在选择发动机的功率时,需要考虑到车辆自身的重量、行驶环境以及预计的使用需求。
3. 电动机的容量选择:电动机的容量决定了车辆的纯电动里程和加速性能。
一般而言,电动机容量越大,车辆的纯电动里程越长,加速性能越好。
然而,容量过大也会造成电池成本增加和车辆重量过大等问题。
因此,在选择电动机容量时,需要考虑到车辆的实际使用需求和电池技术的成熟程度。
4. 控制系统的优化:混动汽车的发动机与电动机匹配还需要依靠智能控制系统进行动力分配和能量管理。
通过合理调控发动机和电动机的工作方式,可以实现最佳的动力输出和燃油经济性。
因此,在开发混动汽车时,控制系统的优化也是至关重要的一环。
三、混动汽车的未来发展方向目前,混动汽车已经成为汽车行业的主流技术之一,但仍有很大的发展空间。
未来,混动汽车的发动机与电动机匹配将进一步优化,以提升燃油经济性和动力性能。
昂克赛拉气门匹配方法

昂克赛拉气门匹配方法
昂克赛拉是一款由马自达公司生产的车型,气门匹配方法是指发动机气门的开闭时间和曲轴的转速之间的关系。
一般来说,气门的开闭时间是由发动机控制单元(ECU)根据传感器提供的各种参数来控制的,如发动机转速、油门位置、进气温度等。
根据这些参数,ECU 会计算出一个理论的气门开闭时间,并通过控制电磁阀等部件来实际控制气门的开闭动作。
对于昂克赛拉车型,一般来说,气门匹配方法需要在发动机运行时的一些工况下进行调整,以使发动机的动力输出更为平顺和高效。
具体的匹配方法包括以下几个方面:
1. 汽门正时调整:这是指调整汽门的开启时间,使其与曲轴的转动角度相匹配。
一般来说,发动机正时的调整是在发动机的进气阀和排气阀的进、出气门开启时间上进行调整,以使气门的开闭时间与曲轴的旋转角度保持一定的相位关系。
2. 气门间隙调整:这是指调整气门的开闭间隙,使其在发动机工作时能够实现正确的气门开闭幅度。
具体的调整方法包括调整汽门扳手上的调整螺栓,使其达到规定的间隙要求。
3. 气门清理:定期清理气门和气门座,以减少气门的积碳和磨损,保持正常的
密封性和流量。
综上所述,昂克赛拉气门匹配方法主要包括汽门正时调整、气门间隙调整和气门清理。
车主可以在车辆保养时向专业的汽车维修店进行检查和调整,确保发动机的正常运行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
这样即得到输出特性M1、M2、n1、η =f(n2)曲线上与1i 相对应得一个点(1M1,1n2)、(1M2,1n2)、(1n1,1n2)、
(1η ,1η 2),多取几个i值,即可求得输出特性M1、M2、n1、
η =f(n2)曲线。 8.千转扭矩MBg 现在,我国目前多用千转扭矩MBg表示变矩器能容。 MBg=Mb/(Nb/1000)2 与软件中λ γ (104)=MBg*104/(10002*D5) 即变矩器特性参数给出的是:MBg、K、i、η
飞轮转速ne=n1,故M1=f(i)
就是发动机的负荷特性曲线。
7.变矩器的输出特性 变矩器的输出特性是研究M2、M1、n1、η =f(n2)的变化关
系。
当发动机油门全开时,则发动机的工作点就是发动机曲轴
输出扭矩特性曲线和M1=f(n1)曲线的交点A1、A2、A3、A4、A5、
A6、A7各点,如下图。 根据变矩器的原始特性和输入特性,即可求得变矩器和发 动机共同工作的输入特性。
匹配中用到的几个参数: 1.循环圆直径D: 由泵轮、涡轮和导轮组成封闭的环形空间,通常叫做循环圆, 它的直径就是循环圆直径。 2.变矩系数K: 涡轮轴输出力矩与泵轮轴输入力矩之比。即 K=M2/M1 式中,M1—泵轮轴上的输入力矩; M2—涡轮轴上的输出力矩。 (1)当制动工况时,涡轮停止转动,此时,变矩系数最大, 用K0表示 ,表示液力变矩器启动能力,克服超载能力。 3.变矩器的传动效率η
(3)燃油消耗率 发动机每发出1kW有效功率,在1h内所消耗的燃油质量(以g 为单位),称为燃油消耗率,用be表示,燃油消耗率越低,经济 性越好。发动机的性能是随着许多因素而变化的,其变化规律称 为发动机特性。 (4)怠速 柴油机的不带负载最低稳定转速,一般称为怠速。 (5)最高转速 柴油机在最大油门下不带负载转速,一般称为最高转速,一 般为额定转速的1.07~1.1倍。 (6)调速率 柴油机调速区段的转速范围,调速率计算公式为: 调速率=(最高转速-额定转速)/额定转速*100%
1λ 1λ 1= 2= 1M 1M 1 /(γ 2 /(γ
n1 2 D5 )
n1 2 D5 )
而,i=1n2/n1,这样即得λ =f(i)曲线上两个点(1i、1λ 1) 及(1i、1λ 2),同样得方法类推,即可得变矩器原始特性曲线 λ 1、λ 2=f(i),如图(b)所示。 变矩器的原始特性曲线除了给出λ 1、λ 2=f1、2(i)外,还 要绘出K、η =f3、4(i)曲线,如下图。
变矩器的传动效率η :即涡轮轴上输出功率与泵轮轴上输入 功率之比。 η =N2/N1=M2*n2/M1/n1=K*i 式中, N1—泵轮轴上的输入功率; N2—涡轮轴上的输出功率; 4.变矩器的传动比i 涡轮轴输出转速与泵轮轴转速之比,即 i=n2/n1 式中, n1—泵轮轴输入转速; n2—涡轮轴输出转速。
一、动力匹配的用途
1.研究变矩器与柴油机共同工作的目的在于检查变矩器的型 式与有效直径的选择是否合适,如何配合才能使整机获得良好 的性能。 一台装有变矩器的运输车辆或工程机械,其性能的好坏并 不单纯决定于液力变矩器的性能。它既与车辆的柴油机、机械 传动和行驶装置等本身的性能有关,又与和它们之间匹配的是 否合理有关。 2.车辆的牵引性能和经济性,在很大程度上取决于柴油机 与变矩器的配合。 3.确定液力机械传动系统中变速箱的排挡数目。 车辆上安装的液力变矩器其工作条件是复杂的,对它的力 矩要求和转速要求也是多样的。液力变矩器特性曲线工作范围 的宽度,将影响液力机械传动系统中变速箱的排挡数目。
η =η
max的工况称为最高效率工况,此时传动比iη η
、变矩系
数Kη 、力矩系数λ
,都作为评价指标。
3.高效工作区域 效率值η 不低于给定值(一般是75-80%)的区域称为高效工
作区域,作为评价指标的参数是高效区的最大变矩系数Kp以及高 效区域传动比的范围dp。
通常认为高效工作区域范围越宽(dp值越大),最高效率
5.能容 表示变矩器传递能量的能力,我国用泵轮力矩系数λ 1表示 变矩器传递能量的能力大小。 6.变矩器的原始特性 变矩器的原始特性是研究λ 1、λ 2=f(i)的变化关系。 泵轮传递力矩的比例常数为λ 1 ,涡轮传递力矩的比例常数 为λ 2,它们也被分别叫做泵轮力矩系数和涡轮力矩系数。 泵轮力矩和涡轮力矩方程为: M1= λ 1γ n12D5 M2= λ 2γ n12D5 泵轮力矩系数λ 1和涡轮力矩系数λ 2是在试验台测得数据求 得的。
参看下页图中, 在变矩器原始特性图
(a)上假定某一传
动比1i,然后找到对 应的1λ 1、1K、1η , 作出发动机负荷抛物 线,即变矩器输入特
Hale Waihona Puke 性,图(b),M1=1λ 1γ n12D5和柴油 机的速度特性的交点
1M
e、
1n
e,故 1= 1M e, 1n 1= 1n e
1M
而,1M2=1K·1M1=1K·1Me,1n2=1i·1n1=1i·1ne 这时,变矩器的传动效率1η 。
三、变矩器与发动机匹配的简单分析 研究变矩器和发动机共同工作的目的在于检查变矩器结构
型式和有效直径的选择是否合适,如何配合才能使整机获得良
好的性能。 发动机实际使用时,除带动发动机的辅助装置(风扇、水 泵、发电机、空气滤清器、消音器等)外,还须带动整车辅助 装置(包括工作装置用油泵、变速泵、转向泵、制动泵、气泵、 冷却泵等),故发动机的力矩曲线必须根据装载机的具体使用 情况,扣除带动这些装置的力矩确定。
液力变矩器,一定的工作液体,给定传动比下,λ 1γ D5=常数C, 故 M1=Cn12 M1是随n1变化,通过坐标原点的抛物线。 当i变化时,λ 1变化,形成一组泵轮负载抛物线,即变矩器 的输入特性曲线,如下图示。
得到变矩器的输入特性,
就可求得变矩器和发动机共
同工作时发动机的工作点。 装载机发动机飞轮和变 矩器泵轮直接连接,则发动 机发出力矩Me=M1,发动机的
3.变矩器 液力变矩器的作用: a.使车辆能够自动适应外界载荷的变化。 当外界载荷突然增大时,车辆自动地减速,同时自动增大牵 引力,以克服增大的外载荷;反之,当外界载荷变小时,自动提 高车辆车速,同时,自动减小牵引力。 b.提高车辆的使用寿命。 变矩器利用液体作为工作介质,故能吸收并消除来自发动机和外 载荷的震动与冲击,因而提高了车辆的使用寿命。 c.提高车辆的通过性能。 液力变矩器可以使车辆以任意小的速度行驶,牵引力可在附 着条件容许限度内得到很好地利用,从而提高了车辆的通过性能。
矩器时,一般使通过调整有效直径来达到;在为给定的变矩器选
择发动机时,一般是先画出变矩器的输入特性曲线,按工作需要 和机器所需功率选择一个与上述输入特性配合得较好的的发动机 特性曲线。 结论:对于安装液力变矩器的机器,选择性能比较好的发动机和
变矩器固然重要,但更重要的是二者的相互配合。
下面就FL958G配东风康明斯发动机、杭齿ZL40/50双变、徐州 美驰驱动桥的匹配过程作以简单说明。 第一步,输 入已知参数
2.发动机性能参数及性能曲线 发动机的性能参数即发动机的速度特性,指发动机的功 率、转矩和燃油消耗率三者随曲轴转速变化的规律。这个特 性是通过发动机在试验台架上进行试验求得,试验时,先保 持一定的发动机节气门开度,同时用测功器对发动机曲轴施 加一定的阻力矩,当发动机运转稳定后,即阻力矩与发动机 发出的有效转矩相等时,用转速表测出此时的稳定转速n,同 时在测功器上测出该转速下发动机有效转矩Te,根据下式计 算出有效功率Pe: Pe=Te.n/9550
η
max值越大,变矩器的性能越好。
按右图示,简单分析一下 如何配合为好:
1)发动机全功率匹配扭
矩曲线2,此时不与负荷抛物线
相交,发动机只能使用在部分
特性和调速特性上,即配合的不好。 2)发动机全功率匹配扭矩曲线3,发动机仅能在低转速下工
作,此时发动机不能发挥最大功率。
为了使两者联合工作的性能良好,在为给定的发动机选择变
从上图看,当发动机转速为1500时,发动机曲轴输出扭矩最 大,当发动机转速低于1500时,燃油燃烧不良,转速降低,每个 工作循环的时间增长,燃烧气体与气缸壁接触时间也增长,因而, 转矩变小。 转速高于1500转增加时,由于工作循环时间缩短,进气时间变短, 气流速度增高,阻力加大,充气量减小,而且摩擦损失也增大, 故输出扭矩也减小。 当转速达到1900时,有效功率达到最大值。功率是转矩与转 速的乘积。 在怠速和最大转矩转速范围内,Te和n都是逐渐增加,其乘积 也增加,故在此范围内,Pe也随n增加而增加; 在最大转矩和最大功率转速范围内,转速n增加,功率Pe虽 然增大,但Te却逐渐降低,不过降低较缓慢,Pe增加也缓慢。 超过最大功率转速时,n增加,Te下降较快,Pe也逐渐下降。
式中, Te—有效转矩(N.m); n—曲轴转速(r/min)。 燃油消耗率:在上述试验 台上测出消耗一定量燃料 所经历的时间,用以换算 发动机每小时消耗油量B, 按下式计算燃油消耗率be。 be=B/Pe*103 发动机最小燃油消耗 率的相应转速一般是介于 最大转矩时转速和最大功 率时转速之间。
二、动力匹配研究的对象和已知条件
1.发动机性能参数定义: 发动机的主要性能指标有动力性指标(有效转矩、有效功 率、转速等),经济性指标(燃油消耗率),运转性能指标 (排气品质、噪声和启动性能等)。 (1)有效转矩 发动机通过飞轮对外输出的转矩称为有效转矩,以Te表示, 单位N.m,有效转矩与外界施加于发动机曲轴上的阻力矩相平衡。 (2)有效功率 发动机通过飞轮对外输出的功率称为有效功率,用Pe表示, 它等于有效转矩与曲轴角速度乘积。发动机产品铭牌上标明的 功率及相应转速,称为额定功率和额定转速。
右图为变矩器 特性试验装置。 发动机 试验时,保持 或 泵轮转速恒定,改 变M2,测得M1、n2, 测功器 再根据上述力矩方 程,即可求得