发动机匹配简述.doc
第八章发动机与整车性能匹配

q100 100B f va
B Pe be / 1000
Pe pmeiVs n / 30
q100
Pe be iVs ik i0 pmebe 0.00884 10 f va f r
4)传动效率及传动损失
Pe PT 100% Pe
Pe : E/G输出功率;P T : 传动系统内部功率损失
r
=0.5~0.6,道路附着系数,N:驱动轮垂直反力。
③ 根据最低稳定车速确定第一档速比: 越野车 松软路面上轮胎对地面的附着力最低车速amin
0.377n min r iI v a min i0 i
4)变速器各档传动比的确定 变速器最高档和最低档确定后,中间各档位初步 可按几何级数公比法确定: 几何公比,挡位数k
第八章 发动机与整车性能匹配
§8-1 汽车动力传动装置及主要参数的确定 §8-2 汽车行驶基本原理及特性 §8-3 发动机与传动装置性能匹配 §8-4 整车性能的改进途径
整车匹配的必要性:
整车的动力性、经济性及排放性E/G性能
E/G性能好≠汽车性能就好;
汽车性能:POWER TRAIN 匹配的结果。
1
确定主减速比时,考虑以下三个方面的因素:
① 满足汽车动力性和经济性的要求;
② 相啮合齿轮的齿数间没有公约数,保证主、从 动齿轮各齿之间都能正常啮合,起到自动磨合作 用; ③大小齿轮的齿数之和>40。保证重合系数和轮齿 的抗弯强度。 对轿车,一般小齿轮齿数Z1≥9;货车Z1≥6
5)差速器:汽车转弯时,左右轮转弯半径不同 旋转速度不同。差动装置就是适应这种左右车轮的 转速差同时向车轮传递动力。
1:主动叉所在平面与主从
发动机冷却系统的设计与匹配

发动机冷却系统的设计与匹配随着汽车技术的不断进步,发动机冷却系统的设计与匹配变得越来越重要。
发动机冷却系统负责将发动机中产生的过热能量散发出去,以保持发动机的工作温度在合理范围内,确保发动机的正常工作。
下面将介绍发动机冷却系统设计与匹配的几个重要方面。
首先,设计与匹配发动机冷却系统需要考虑的是发动机的散热需求。
发动机冷却系统的设计应该根据发动机的排量、功率以及使用环境等因素来确定冷却水的流量和温度。
通常情况下,发动机的散热需求与发动机的功率密切相关,功率越大,散热需求越大,因此冷却系统的设计应该满足发动机的散热需求。
其次,发动机冷却系统的设计与匹配还应考虑到冷却系统的稳定性和可靠性。
发动机在运行中产生的热量非常大,如果散热不及时或不稳定,容易导致发动机温度过高,甚至发生过热。
因此,冷却系统的设计应该考虑到温度传感器的安装位置、水泵的流量控制和风扇的控制等因素,以确保冷却系统的稳定性和可靠性。
此外,发动机冷却系统的设计与匹配还应考虑到节能和环保的要求。
传统的冷却系统主要依靠水泵和风扇来降低发动机的温度,但是这样会消耗大量的能量。
因此,在设计和匹配发动机冷却系统时,可以考虑使用电动风扇和电动水泵等节能环保的设备,以减少能量的消耗和对环境的污染。
在发动机冷却系统的设计与匹配中,还需要考虑到发动机的结构特点。
不同类型的发动机有不同的散热方式和散热需求,比如液冷发动机和空冷发动机的散热方式就不同。
在设计和匹配冷却系统时,应该根据发动机的结构特点来选择合适的冷却方式和散热器的类型。
最后,发动机冷却系统的设计与匹配还需要考虑到维护和保养的方便性。
发动机冷却系统是汽车的重要部件之一,因此在设计和匹配时,应该考虑到冷却系统的易维护性和保养性。
比如冷却系统的管路布局应该合理,以便于维护和检修;同时,还需要选择易于更换的冷却液和过滤器等设备,以便于冷却系统的保养。
综上所述,发动机冷却系统的设计与匹配需要考虑到多个方面的因素,包括发动机的散热需求、稳定性和可靠性、节能和环保、发动机的结构特点以及维护和保养等。
变速器与发动机的匹配原则

变速器与发动机的匹配原则在汽车的动力系统中,发动机和变速器是两个不可或缺的部分。
发动机负责产生动力,而变速器则负责将发动机输出的动力传递到车轮以产生车辆的运动。
为了确保汽车的正常运行和提高燃油利用率,变速器与发动机需要进行合理的匹配。
本文将就变速器与发动机的匹配原则进行深入探讨。
1. 动力输出曲线匹配原则发动机的动力输出曲线是描述其输出动力随转速变化的曲线。
而变速器的工作原理是通过不同的齿轮组合来改变发动机输出转速和扭矩。
因此,为了实现最佳的动力输出和燃油经济性,变速器应该与发动机的动力输出曲线相匹配。
一般来说,发动机的输出扭矩应在变速器的工作范围内,以实现高效率的动力传递。
2. 驱动方式匹配原则根据车辆的驱动方式的不同,变速器与发动机的匹配也会有所区别。
前置前驱车辆通常采用横置发动机,而后驱车辆则采用纵置发动机。
对于前驱车辆,变速器常采用紧凑型设计,并且在重量和尺寸上要求较小。
而后驱车辆则可以采用更大型的变速器,以承载更大的扭矩和功率输出。
3. 车辆用途匹配原则不同的车辆用途对于动力输出和燃油经济性的要求也不同,因此变速器与发动机的匹配需要考虑车辆的用途。
例如,商用运输车辆通常需要高扭矩和低燃油消耗,因此需要与高扭矩发动机匹配的变速器。
而运动型轿车则需要高转速和高功率输出,因此需要与高转速发动机匹配的变速器。
4. 车辆载重匹配原则车辆的载重对于变速器与发动机的匹配也有影响。
载重较大的车辆需要更高的输出扭矩和功率,因此需要与更高功率的发动机匹配的变速器。
另外,载重较大的车辆也需要更耐用和可靠的变速器来承受更高的工作负荷。
5. 车速范围匹配原则不同车辆的使用环境和用途要求对车辆的最高速度和最低速度有一定的要求。
因此,变速器与发动机的匹配也需要考虑车辆的速度范围。
例如,一些需要高速行驶的车辆,如赛车,需要与高转速发动机匹配的变速器,以实现更高的车速。
总之,变速器与发动机的匹配是确保汽车正常运行和提高燃油利用率的重要因素。
工程机械发动机选型动力匹配计算

轮式底盘基本参数一、发动机功率计算 1、平地行驶工况车辆在平地行驶时,由于行驶速度较低,忽略风阻对车辆行驶的影响。
故车辆主要的阻力来自于滚动阻力其中 ——车轮滚动阻力系数,不同工况下的数值见下表 ——车轮垂直于地面的载荷混凝土 冻结冰雪地 砾石路 坚实土路 松散土路 泥泞地、沙0.0180.0230.0290.0450.0700.09-0.18本设计中考虑选择隧道路况,=0.05 则=0.05x14x1000x9.8=6860 则在平地行驶发动机的功率为其中 ——发动机到驱动轮的总效率 ——车辆的最大行驶速度 取 =0.96x0.97x0.97x0.97=0.88 =20Km/h 则Kw v F P f Te 31.43360020686088.01360010max =⨯⨯=⋅⋅=η 2、爬坡工况图4 作用于车辆上的阻力车辆爬坡时所受阻力主要有行驶阻力、坡道阻力、风速阻力和加速阻力。
由于车辆行驶速度较低,且在爬坡时加速运动较少,故仅考虑行驶阻力与坡道阻力对车辆的影响。
2.1 滚动阻力计算:其中 ——车轮滚动阻力系数,不同工况下的数值见下表 ——车轮垂直于地面的载荷混凝土 冻结冰雪地 砾石路 坚实土路 松散土路 泥泞地、沙0.0180.0230.0290.0450.0700.09-0.18本设计中考虑选择隧道路况,=0.05 则=N 27.621725cos 8.910001405.0=⨯⨯⨯⨯ 2.2 坡道阻力计算N G F i 23.5798325sin 8.9101425sin 3=︒⨯⨯⨯=︒⋅=故车辆在爬坡工况时,牵引力应为行驶阻力与坡道阻力之和N F F F i f k 52.6442923.5798327.6217=+=+=2.3 爬坡功率计算其中 ——发动机到驱动轮的总效率 ——车辆爬坡速度取 =0.96x0.97x0.97x0.97=0.88 =3Km/h 则Kw v F P k Te 86.603600352.6442988.01360010max =⨯⨯=⋅⋅=η 3、取平地行驶工况与爬坡工况发动机功率的较大值为发动机的型号选取功率,即P=60.86Kw4、发动机的选取选用东风康明斯生产的工程机械用发动机,转速选取2200r/min,其B系列发动机参数如表1所示:表1 B系列发动机参数选用4BTA3.9-C100型柴油发动机作为轮式底盘动力发动机扭矩-转速特性曲线发动机功率-转速特性曲线发动机比油耗-转速特性曲线由上述三组发动机外特性曲线得出以下结论:1、发动机运行在1400rpm-1500rpm之间时,将输出最大扭矩,最大扭矩为410N.m,该转速适用于台车爬坡工况;2、发动机运行在2000rpm-2200rpm之间时,发动机将输出额定功率,即74KW,可考虑用在短距离转场工况,提高作业效率;3、发动机运行在1800rpm左右时,发动机的燃油经济性最好,可考虑用在远距离转场工况下达到节能需要。
摩托车及发动机中的匹配问题

摩托车及发动机中的匹配问题摩托车及发动机的设计和匹配是一个综合工程,任何一个细节都有可能导致其寿命的变化,本文是笔者多年工作中遇到的相关问题及心得,供读者参考。
一、摩托车部分1、蓄电池与车辆电路的匹配问题:先确定摩托车上使用多少伏的灯泡效果好,如使用启动电机的,蓄电池的规格就按启动电机的电压和电流来定,再根据摩托车全部灯泡的耗电量来确定蓄电池的规格,最后才是以此确定摩托车发电机的输出电压。
2、发电机与蓄电池的匹配问题:当确定了摩托车上直流电路匹配多少伏的电源后,再根据蓄电池的具体规格确定摩托车发电机的输出电压。
一般来说,发电机的输出充电电压最好不要超过蓄电池电压的180%,也不要低于蓄电池电压的120%,否则将会带来很多麻烦。
3、发电机与车辆电路的匹配问题:主要是迁就前大灯与蓄电池的使用电压,当摩托车上的直流电路电压确定后,就根据蓄电池与前大灯的电压来确定摩托车发电机的输出电压。
一般来说,发电机的输出电压比前大灯的电压要高,若不加稳压器,灯泡很容易被烧坏。
二、发动机部分1、连杆中的铅青铜与渗碳加高温淬火的钢制(镀铬或氮化处理)活塞销匹配比较理想,因为互容性,接触面金属会发生转移。
2、在工作温度下,应适当降低气门座材料的硬度,使其接近或稍高于气门的硬度,从而达到较好的匹配。
3、铸铁气缸套与铸铁活塞环硬度比值在1~1.2为宜,第一环镀铬或喷钼,可以使活塞环的寿命增大3倍~5倍,缸套的寿命增加1倍~1.5倍。
4、凸轮轴表面氮化处理后氮化层的摩擦系数应比淬火层小一半,从而有利于减少磨损。
5、气门座的锥度比气门的锥度大0.5º~1º,有利于增强密封性能。
6、活塞环长度公差为-0.1º~-0.2º,与环槽端隙在0.5mm以内,否则会引起销与卡环严重摩擦。
活塞销倒角为30º,长度为0.5mm,倒角过大或倒角长度过长都会使活塞销来回窜动,产生异响。
7、新发动机选用热值高一些的火花塞,旧发动机选用热值较低的火花塞。
增程器发动机匹配计算公式

增程器发动机匹配计算公式随着汽车工业的发展,发动机技术也在不断进步。
其中,增程器发动机作为一种新型的动力系统,受到了越来越多的关注。
增程器发动机可以在不改变原有发动机结构的情况下,提高发动机的功率和燃烧效率,从而提高汽车的性能和燃油经济性。
然而,要实现增程器发动机的优化匹配,需要进行一系列的计算和分析。
本文将介绍增程器发动机匹配计算公式,并探讨其在实际应用中的意义和作用。
增程器发动机匹配计算公式是指通过一系列的数学模型和计算方法,来确定增程器发动机的参数配置和优化方案。
这些参数包括增程器的尺寸、形状、进气压力、进气温度、燃油喷射量等。
通过合理的匹配计算,可以使增程器发动机在不同工况下都能够实现最佳的性能表现,从而达到节能减排、提高动力性能的目的。
在增程器发动机匹配计算中,有一些常用的公式和模型,可以帮助工程师们进行精确的计算和分析。
其中,最重要的是增程器的压气机和涡轮机的匹配计算公式。
这些公式通常包括增程器的进气量、压气机的压气比、涡轮机的膨胀比等参数。
通过这些公式的计算,可以确定增程器的最佳工作状态,从而提高发动机的功率输出和燃烧效率。
除了压气机和涡轮机的匹配计算公式外,还有一些其他的参数和模型需要考虑。
例如,增程器的进气管道和排气管道的长度和直径,燃油喷射系统的工作压力和喷射角度,增程器的控制系统和调节策略等。
这些参数都会对增程器发动机的性能产生影响,因此在匹配计算中都需要进行精确的分析和计算。
在实际应用中,增程器发动机匹配计算公式的意义和作用是非常重要的。
首先,通过匹配计算,可以确定增程器发动机的最佳参数配置,从而提高发动机的动力性能和燃油经济性。
其次,匹配计算可以帮助工程师们预测增程器发动机在不同工况下的性能表现,从而指导实际的设计和调试工作。
最后,匹配计算还可以为增程器发动机的优化设计提供理论依据和技术支持,为发动机制造商和汽车制造商提供参考和指导。
总之,增程器发动机匹配计算公式是实现增程器发动机优化设计和应用的重要工具。
发动机与各主要附件系统匹配设计说明

发动机及各主要附件系统匹配设计一、发动机:1、发动机分类及工作原理:发动机是汽车的动力源。
它是将某一形式的能量转变为机械能的机器。
按燃烧种类分类可分为汽油机、柴油机、燃气机及代用燃料机等。
按工作冲程分为四冲程发动机和二冲程发动机。
按工作原理和构造可分为点燃式内燃机、压燃式内燃机、混合式内燃机、转子发动机、燃气轮机、外燃机及电动机等。
也可按缸数、燃烧室型式等分类。
柴油机是内燃机的一种,是把柴油和空气混合后直接输入机器内部燃烧而产生热能,然后再转变为机械能。
它具有热效率高、体积小、便于移动、起动性能好等优点而得到广泛应用。
车用内燃机,根据其将热能转变为机械能的主要构件的形式,可分为活塞式内燃机和燃气轮机两大类。
活塞式内燃机按活塞运动方式分为往复活塞式和旋转活塞式两种,往复活塞式应用最广泛。
在发动机内每一次将热能转化为机械能,都必须经过空气吸入、压缩和输入燃料,使之着火燃烧而膨胀做功,然后将生成的废气排出这样一系列连续过程,称为发动机的一个工作循环。
对于活塞往复式发动机,可以根据每一工作循环所需活塞行程数来分类。
凡活塞往复四个单程完成一个工作循环的称为四冲程发动机,活塞往复两个单程即完成一个工作循环的称为二冲程发动机。
目前我厂产品所用发动机多为四冲程多缸柴油机。
2、柴油机的优缺点与汽油机比较,柴油机因压缩比高,燃油消耗率平均比汽油机低30%左右,且柴油价格相对较低,所以燃油经济性好。
柴油机的主要优点是热效率高、油耗低、可靠性高、耐久性好。
一般载质量7t 以上的货车大都用柴油机。
柴油机的缺点是转速较汽油机低,工作粗暴,噪声大,质量大,制造和维修费用高。
3、发动机选用:目前发动机以选用为主。
各发动机主管在会同整车总布置人员满足整车性能和布置要求的前提下与发动机厂确定技术状态。
不同的车型对匹配发动机的特性要求有一定差异,应在理论计算的基础上通过试验验证发动机是否满足要求,对不能满足使用要求的应通过发动机性能的优化和整车传动系速比的匹配使发动机与整车得到最优化匹配,在满足动力性要求的前提下取得较好的燃油经济性。
涡轮增压器与发动机的匹配与调整

涡轮增压器与发动机的匹配与调整1、涡轮增压器与发动机的匹配概述总的来说,发动机与增压器的匹配有三个⽅⾯,即发动机与压⽓机匹配、发动机与涡轮的匹配和压⽓机与涡轮的匹配。
细分的话,应该包括:增压器的压⽓机、增压器的废⽓涡轮、发动机的排⽓管系统、发动机的进⽓系统、中冷器、空⽓滤清器、消⾳器、进排⽓配⽓相位、运转⼯况参数、环境参数等。
2、发动机对压⽓机的要求a、发动机对压⽓机的要求:1)、压⽓机不但要求达到预定的压⽐,⽽且要具有⾼的效率。
即压⽓机效率越⾼,在同⼀增压压⼒时,空⽓温度越低,从⽽得到的增压空⽓的密度就越⾼,增压效果就越好。
2)、不同⽤途的发动机对压⽓机特性的要求也不同。
对于发电⽤的固定式发动机及按螺旋桨特性⼯作的船⽤发动机⼀般的压⽓机特性均能满⾜要求,⽽车⽤发动机由于转速范围宽⼴,故就要求相应的压⽓机特性具有宽⼴的流量范围,⽽且要有较宽的⾼效区。
怎样评价发动机与压⽓机的匹配:1)、需要经试验得出的压⽓机特性曲线,同时要有发动机各转速下耗⽓特性曲线,将发动机的耗⽓特性曲线与压⽓机的特性曲线相叠合就可以看出匹配情况。
2)、发动机的特性曲线应穿过压⽓机的⾼效区,⽽且最好使发动机的运⾏线与压⽓机的⾼效率的等效率圈相平⾏。
对于车⽤发动机,则要求最⼤扭矩点正好位于压⽓机最⾼效率区附近。
如果发动机运⾏线整个位于压⽓机特性右侧,则表明所选的压⽓机流量偏⼩,使联合⼯作时压⽓机处于低效区⼯作,在这种情况下就要重选较⼤型号的增压器,或加⼤压⽓机通流部分尺⼨,使压⽓机特性向右移动。
如果向反,发动机运⾏线整个偏于压⽓机特性左侧,则⼀⽅⾯发动机低转速时压⽓机效率降低,同时有可能出现喘振。
在这种情况下就要重选择较⼩型号的增压器或减⼩压⽓机通流部分尺⼨,使压⽓机特性向左移动。
3)、发动机的⽓耗特性线离开压⽓机喘振线有⼀定的距离。
否则如发动机耗⽓特性曲线离喘振线太近或甚⾄与之相交的话,在联合⼯作时就可能出现喘振。
⼀般,要求发动机低转速的耗⽓特性曲线离开压⽓机喘振线的距离也即所谓的喘振裕度约为10%Gcmin(喘振流量)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
发动机控制器匹配简述一.发动机匹配工作和发动机管理系统(EMS)一.发动机匹配工作的目标发动机匹配工作的目标:1 通过发动机台架的匹配,使发动机具有良好的稳态性能,在保证发动机工作可靠性(无爆震,无过热)的情况下,达到发动机的设计功率,扭矩和油耗性能。
2 通过对发动机在车辆上的匹配,使发动机与车辆其他系统(各种电器负载,传动系统,制动系统,三元催化转化器等等)协调工作,保证发动机在各种环境和工作条件下,都具有良好的起动怠速性能,良好的驾驶舒适性和排放性能。
同时还要进行完善的车载诊断系统(OBD)的匹配。
3 通过高温,高寒和高原等道路环境试验,对匹配好的各种性能进行全方位地验证,保证发动机和车辆在各种情况下都能达到既定的安全,环保和驾驶舒适性等严格的指标。
对于汽油机来说,技术上就是控制进气(合理的配气相位,节气门开度等)、喷油(最佳的空燃比)及点火(合适的点火提前角)三者的配合。
需要加以说明的是,发动机的动力性能和经济性能的最大潜力取决于发动机的本体设计,发动机匹配工作只不过是努力使这些潜力得到挖掘或协调。
例如,汽油机通过改变进气量来改变输出的扭矩和功率,进排气系统的设计决定了发动机的充气效率,因此当发动机结构确定时,一定工况下发动机的最大充气量就已确定,发动机的动力性能也就确定;又如,发动机的工作效率,即燃油经济性,决定于燃烧效率及机械效率,通过改变喷油时间、喷油量以及点火提前角可以改善燃油经济性,但是不能突破由于发动机设计限定的燃油经济性极限。
二.发动机管理系统(EMS)和电子控制单元(ECU)发动机管理系统(Engine Management System, 缩写为EMS):1979年,BOSCH公司将点火提前角电子控制与燃油定量电子控制融为一体,开发出Motronic,并引入爆震控制、排气再循环等,以满足更趋严格的性能和排放要求,其电子控制范围覆盖整个发动机,称为发动机电子管理系统,其核心是燃油定量和点火正时电子控制。
目前,各种发动机电子管理系统已经成为提高燃油经济性和满足更为严格的排放法规的决定性因素。
发动机管理系统以电子控制单元(Electronic Control Unit,以下简称ECU)为中心,ECU接受来自传感器的各种信息,经过处理、分析以后,发出控制信号给各种执行器。
在发动机匹配工作中,就是通过各种匹配实验,对ECU各种参数进行设置,从而达到发动机匹配工作的目标。
三.发动机匹配工作发动机匹配工作就是在某个确定的发动机管理系统(EMS)下,通过各种项目匹配,为发动机控制器(ECU)各类参数设置合适的值,以达到汽车的动力性、经济性、可靠性、安全性、排污性而确定的各工况最佳空燃比、最佳点火提前角的要求。
发动机匹配工作是为众多的匹配参数设置合适的值,匹配参数的数量随着系统的复杂程度、控制软件的先进程度的变化而变化的。
这些匹配参数有些是特性值,有些是一条二维特性曲线,有些则是矩阵(三维特性图),匹配参数的确定需要通过大量的试验和数据分析而得。
四. 发动机匹配的标准流程一般来说,在项目确定后,发动机匹配工作可以分为四个阶段,即:项目准备阶段、基本匹配阶段、精细匹配阶段和认可阶段,直至对最终匹配数据认可(SOP 阶段),一般需要18-24个月。
详见下面二表:二.发动机匹配工作主要内容:一.匹配准备在台架上安装发动机及其相关附件。
匹配车匹配检查和准备 :为了使匹配数据能覆盖制造上的公差,每一种状态的车型必须有两辆以上的匹配车。
二.发动机台架基本匹配(约40工作日)1.传感器信号检查 (约3 天)确定所有传感器(水温传感器,空气温度传感器,HFM 等)输入和输出信号准确。
ECU 通过A/D 转换能正确接受信号,各执行器工作正常(炭罐电磁阀,喷油嘴,点火线圈等)。
确保系统正常工作。
2.标定喷油结束时间 (约2天)18-24 月 SOP喷油结束时间决定了燃油的雾化即混合气形成的好坏,这将直接影响到发动机的燃烧情况。
标定喷油结束时间主要以尾气中的HC排放含量为指标。
确定最合适的喷油结束时间。
(a)空燃比脉谱图(b)点火定时脉谱图3.标定负荷模型(约15天)精确地判断进入汽缸的新鲜空气量是发动机控制的基础,由于进气脉动和汽缸中残余废气的存在,以及如废气再循环,曲轴箱通风和油箱通风等导致的进气量变化,使得完全依靠传感器来精确判断进气量已不可能。
负荷模型通过测量进气压力,燃油消耗量,原始排放和空燃比,以及各种环境和发动机参数,并通过一系列的数学模型和函数对各种工况下的进气特性进行计算和模拟,最终达到精确地判断进入汽缸的新鲜空气量的目的。
标定负荷模型所需的工作量随系统配置的复杂程度变化,如可变进气系统(进气长短管切换),可变气门正时系统,废气再循环系统废气涡轮增压系统等都会大大地增加负荷模型的匹配时间。
4.标定喷油量(约2天)在负荷模型匹配好以后,按照理论计算可以得到在各工况点让空燃比λ=1的喷油量,但是由于供油系统也存在偏差,导致在某些情况下空燃比偏离1,这需要在这里得到修正。
5.扭矩模型(约15天)发动机的扭矩是发动机控制系统的中心变量,因此首先要匹配发动机在各种转速和节气门开度下,在空燃比等于1以及各种点火提前角等条件下,发动机所能发出的最大扭矩,这是发动机扭矩控制的基础值(对应100%的空燃比效率和100%的点火角效率)。
然后通过测量在各种空燃比(一般从1.1到0.9)和各种点火角(从最大点火提前角一直推迟到失火)情况下的扭矩,可以得到关于空燃比的效率特性和关于点火角的效率特性。
这样以后在发动机控制中,只需要提到发动机的扭矩以及实现该扭矩的空燃比和点火提前角效率,发动机控制系统就可以计算出相应的进气量(节气门开度),喷油量和点火提前角。
6.标定点火提前角(约4天)在进行点火提前角标定前,一般应完成爆震控制的爆震识别部分的初步匹配(见三爆震控制匹配)。
匹配原则:在不同的转速和负荷点,控制λ=1,在不发生爆震的前提下寻找使输出扭矩最大的点火提前角。
7.匹配数据校验(约2 天)对试验数据进行分析,把相关的匹配数据填入模型,最后把数据模型的输出与实际发动机台架输出进行比较。
校正偏差。
8.外特性(约2 天)完成了爆震和三元催化器过热保护的匹配后,在节气门全开的条件下,在每个转速点通过调节λ(调节全负荷加浓系数),使发动机达到设计最大的功率和输出扭矩,同时尽可能地降低比油耗。
三.爆震控制匹配(约20工作日)爆震是一种非正常燃烧,强烈爆震会损坏发动机,而现代高压缩比的发动机导致更多的爆震倾向,因此爆震匹配是发动机匹配过程中必不可少的一个工作环节,为此发动机控制器中有一块专用的芯片用于爆震传感器信号的分析和处理。
爆震控制的匹配是一项非常复杂的工作,需要应用大量的专用工具和设备(如带燃烧压力传感器的火花塞,专用的爆震匹配控制器,爆震测量分析仪等等)。
1.爆震识别(约15 天)在台架上测量汽缸内的燃烧压力并应用爆震测量分析仪,可以准确地识别和判断爆震是否发生。
同时爆震传感器的信号输入到ECU,经过信号放大,带通滤波,整流,积分等一系列处理,最后的积分信号由ECU用来判断是否发生爆震,同时该信号还被用来确定信号放大倍数和带通滤波的中心频率。
2.动态爆震(约5 天)动态爆震指加速爆震、高速爆震,其识别的复杂性在于发动机转速、负荷的变化产生的振动和噪音会使其不易被识别出。
匹配方法:在各种动态工况点,如Tip in,急加速情况等震动和噪音较大的情况下识别爆震,通过推迟点火提前角避免发生爆震。
3.爆震功能诊断(约2 天)测试在故障状态和正常工作状态下传感器的输出,存储在控制器中用于诊断传感器的开路和短路四.热车性能匹配(约40工作日)1.氧传感器闭环控制(约10 天)氧传感器用于测定废气中的过量空气系数λ。
λ表示实际混合气空燃比与理论值(14.7:1)的偏离程度。
λ =吸入空气量/化学当量燃烧所需空气量λ =1:表示吸入空气量相当于理论要求量。
三元催化器在λ =1附近对HC,NOx和CO的转化效率最高。
氧传感器闭环控制的目标就是把λ精确控制在1±0.03,保证三元催化器有最高的催化转化效率,补偿λ预控偏差,补偿混合气浓度的动态偏移。
通过λ自学习,消除由于零件制造和燃油品质等造成的λ偏移。
若有下游传感器,其作用a)对KAT老化进行监测,b)提高氧传感器闭环控制的精度。
匹配时间也相应增加约10天。
2.排气温度模型和三元催化器保护(约10 天)排气温度模型用于模拟氧传感器周围(催化器前后)和催化器内部的温度在不同环境和发动机工作条件下随发动机负荷和转速变化而变化的情况。
通过实际测量,建立各工况点的排气系统温度模型。
高速大负荷,如发现三元催化器温度大于其温度限值,通过加浓混合气降低排气温度,保护三元催化器不受损坏。
同时与氧传感器加热控制结合,模拟排气系统露点阶段结束的条件,以保护氧传感器。
3.氧传感器加热控制(约5天)主要是为了防止氧传感器陶瓷体裂碎。
发动机起动后,排气系统管壁和氧传感器护套上会有水珠形成,这些水珠有可能随着废气而飞溅到氧传感器的陶瓷体上,如果氧传感器陶瓷体温度过高,则容易发生裂碎。
因此,此试验的要求是在排气管壁面温度达到60度时,氧传感器陶瓷体温度不能超过350度。
下图是20度起动试验,起动后43s, 排气管壁面温度60度时,氧传感器温度是280度。
4.过渡工况(约10天)当节气门开度变动时,由于负荷测量和相应的喷油量计算与实际的喷油时刻不同步,导致实际的空燃比过浓或过稀,严重地影响了发动机的排放性能和驾驶性能。
这种现象可以通过在不同负荷情况下在进气歧管上形成的不同燃油膜厚度来得到很好的解释,过渡工况匹配的目的就是要补偿这些变化,使得空燃比控制在一个合理的范围之内。
匹配的基本原则:加速加浓,减速减稀。
先在转鼓台上用踏板位置模拟器改变负荷。
模拟加速和减速的情况,增加和减少喷油以使得空燃比在一个合理的范围内(主要考虑排放和驾驶舒适性)。
然后在实际道路上进行加减速试验,进行匹配数据修正。
5.炭罐控制(10—30 天)由上图可见:汽油产生的污染物,除了排气排放以外,最主要的是油箱蒸发排放。
炭罐控制的匹配目的:为防止燃油蒸汽从油箱逸出造成污染,要使炭罐有足够的通风,同时维持λ的偏差在最小值。
在不同的工况点,设定炭罐开启时间(TEP),通过控制λ反馈控制,对喷油量进行修正。
在炭罐工作时,λ自学习停止。
五.起动怠速匹配(约40工作日)1.怠速控制(约10 天)匹配目的:控制λ=1,发动机转速稳定在怠速±20转。
在突加电器负载,空调开关以及动力转向机工作时,不允许出现明显的转速震荡和发动机抖动。
通常在怠速情况下不把点火提前角调节到最大,为了有一定的扭矩储备。