构造含30角的直角三角形解题

合集下载

含30度角的直角三角形的性质应用典型练习题

含30度角的直角三角形的性质应用典型练习题

【题型6】含30°角的直角三角形如图,Rt △ABC 中,∠C=90°,∠A=30°,AB=8,CD 是斜边AB 上的高,CE 是中线.求DE 长.【变式训练】1.在Rt △ABC 中,∠C=90°∠A=30°,若AB=4cm ,则BC=_______________.2.等腰三角形一底角是30°,底边上的高为9cm ,则其腰长为________,顶角是__________.3.在△ABC 中,∠B=∠C=15°,AB=2cm ,CD ⊥AB 交BA 的延长线与点D ,则CD 的长为__________.4.一辆汽车沿30°角的山坡从山底开到山顶,共走了4000米,这座山的高度是 米.5.如图,在△ABC 中,∠ACB=90°,AD=BD ,∠A=30°.求证:△BDC 是等边三角形.6.如图,在△ABC 中,AB=AC ,∠BAC=120°,AD ⊥AC 交BC 于点D.求证:BC=3AD.7.如图,在△ABC 中,AB=AC, ∠BAC=120°,D 是BC 上的一点,DE ⊥AB,DF ⊥AC ,垂足分别为E 、F.求证:DE+DF=21BC.D CAB8.如图,△ABC 为等边三角形,AE =CD ,AD ,BE 相交于点P ,BQ ⊥AD 于Q ,PQ =3,PE =1. (1)求证:AD =BE ;(2)求AD 的长.9.如图,公路MN 和公路PQ 在点P 处交汇,且∠QPN =300,点A 处有一所中学,AP =160米,假设汽车行驶时,周围100米以内会受到噪声的影响,那么汽车在公路MN 上沿PN 方向行驶时,学校是否会受到噪声的影响?请计算说明.10.如图,一艘轮船以15海里/时的速度由南向北航行,在A 处测得小岛P 在北偏西15°方向上,两小时后,轮船在B 处测得小岛P 在北偏西30°方向上,在小岛周围18海里内有暗礁,若轮船不改变方向仍继续向前航行,问:有无触礁的危险?并说明你的理由.Q。

含30度的角的直角三角形的性质

含30度的角的直角三角形的性质

30°,CD是斜边AB上的高,AD=3cm,则AB的
长度是(D )
A.3cm
B.6cm
C.9cm D.12cm
解析:在Rt△ABC中,∵CD是斜边AB上的高,∴∠ADC=90°, ∴∠ACD=∠B=30°.在Rt△ACD中,AC=2AD=6cm,在 Rt△ABC中,AB=2AC=12cm.∴AB的长度是12cm.故选D.
则△ABD 是等边三角形.
又∵AC⊥BD, ∴BC = 1 BD.
2

BC
=
1 2
AB.
B
整理课件
C
D
6
证明2: 在BA上截取BE=BC,连接EC.
∵ ∠B= 60° ,BE=BC. ∴ △BCE是等边三角形,
证明方法:
∴ ∠BEC= 60°,BE=EC.
截半法
∵ ∠A= 30°,
A
∴ ∠ECA=∠BEC-∠A=60°-30° = 30°.
B D
A
E
C
想一想: 图中BC、DE 分别是哪个直角三角形的直角边?
它们所对的锐角分别是多少度?
整理课件
16
解:∵DE⊥AC,BC ⊥AC, ∠A=30 °,
∴BC= 1 AB,
1
DE= AD.
B
2
2
∴BC= 1 AB= 1 ×7.4=3.7(m). D
22
又AD=
1
AB,
2
A
E
C
∴DE=
1
1
AD=
∴CD= 1 AC= 1×20=10. 22
整理课件
18
方法总结:在求三角形边长的一些问题中,可以构造 含30°角的直角三角形来解决.本题的关键是作高, 而后利用等腰三角形及外角的性质,得出30°角,利 用含30°角的直角三角形的性质解决问题.

人教版初中数学七年级下册含30度角的直角三角形的性质教案

人教版初中数学七年级下册含30度角的直角三角形的性质教案

课题 14.3.2.2等边三角形(第2课时)刘莹教学任务分析教学过程设计ACB=90°,∠A=30°CD ⊥AB ,AB=4,则BC= ,∠BCD= , BD=2、如图1,∠ABC=30°,AC ⊥BC ,AB=4cm , (1) 求AC 的长,(2) 如图2,若D 是AB 中点,连结DC ,求DC 的长 (3) 如图3,若D 是AB 中点,DE ⊥BC ,求DE 的长如图1如图2 4、如图是屋架设计图的一部分, 点D 是斜梁AB A 的中点,立柱BC 、DE 垂直于横梁AC , AB=7.4 m ,∠A=30°,立柱BC 、DE 要多长? 追问:(1)若D 变成AB 上使CD ⊥AB 于D 的点,其它条件不变,如图a ,你能分解出 30°角的直角三角形吗?求出那些线段的长? (2)如图a ,BD 与AB 有何数量关系,此结论与AB 的长度有关吗?(课后讨论) 课堂练习:1、填空:C .(1)、(3)D .(2)、(4)学生仔细读题,分析其中的数量关系 教师提示:要准确选择直角三角形 请个别学生板演详细过程,强调解题格式要规范 如图3 分析:观察图形可以发现在Rt △AED 与Rt △ACB 中,由于∠A=30°,所以DE=1/2AD ,BC=1/2AB ,又由D 是AB 的中点,所以DE=1/4AB . 解:∵DE ⊥AC ,BC ⊥AC ,∠A=30°, ∴ BC=1/2AB ,DE=1/2AD , ∴BC=1/2×7.4=3.7(m). 又∵AD=1/2AB , ∴DE=1/2AD=1/2×3.7=1.85(m). 答:立柱BC 的长是3.7 m ,DE 的长是1.85 m . 图a 直角三角形是正确解题的关键课堂练习反馈调控综合应用,巩固提高课本例题涉及的线段、角较多,学生不易找到解题的突破口,因此设计该分层推进的补充题,为解答以下例题做好铺垫帮助学生进一步认识直角三角形的性质 因为它由角的特殊性,揭示了直角三角形中的直角边与斜边的关系,鼓励学生积极参与数学活动,A BCA B E CD C AD B A BE C D BA E C D。

专题2.6含30°的直角三角形的性质【十大题型】-2024-2025学年八年级数学上(1)[含答案]

专题2.6含30°的直角三角形的性质【十大题型】-2024-2025学年八年级数学上(1)[含答案]

专题2.6含30°的直角三角形的性质【十大题型】【苏科版】专题2.6 含30°的直角三角形的性质【十大题型】【题型1 由含30°的直角三角形的性质求线段长度】【题型2 由含30°的直角三角形的性质求角度】【题型3 由含30°的直角三角形的性质求面积】【题型4 由含30°的直角三角形的性质求最值】【题型5 由含30°的直角三角形的性质求坐标】【题型6 由含30°的直角三角形的性质进行证明】【题型7 由含30°的直角三角形的性质解决折叠问题】【题型8 由含30°的直角三角形的性质解决旋转问题】【题型9 由含30°的直角三角形的性质解决动点问题】【题型10 含30°的直角三角形的性质的实际应用】知识点:含30°的直角三角形的性质在直角三角形中,30°角所对的边等于斜边的一半.【题型1 由含30°的直角三角形的性质求线段长度】【例1】(23-24八年级·山东济宁·期末)1.如图,在等边ABC V 中,点D E 、分别在边BC AC 、上,且AE CD =,BE 与AD 相交于点P ,BQ AD ^于点Q .(1)求证:BE AD =;(2)若4PQ =,求BP 的长.【变式1-1】(23-24八年级·黑龙江牡丹江·期中)2.在等边三角形ABC V ,若AB 边上的高CD 与边BC 所夹得角为30°,且3BD =,则ABC V 的周长为( )A .18B .9C .6D .4.5【变式1-2】(23-24八年级·山东泰安·期末)3.如图所示,ABC V 是等边三角形,D 为AC 的中点,DE AB ^,垂足为E .若3AE =,则ABC V 的边长为( )A .12B .10C .8D .6【变式1-3】(2024八年级·江苏·专题练习)4.如图,在ABC V 中,60ABC Ð=°,以AC 为边在ABC V 外作等边ACD V ,过点D 作DE BC ^.若 5.4AB =,3CE =,则BE = .【题型2 由含30°的直角三角形的性质求角度】【例2】(2024·吉林长春·八年级期末)5.如图所示,把两块完全相同的等腰直角三角板如图所示的方式摆放,线段AC 在直线MN 上.若点F 恰好是线段AB 中点,则AFD Ð的大小为 °.【变式2-1】(23-24八年级·湖北武汉·期中)6.如图,在ABC V 中,45ACB Ð=°,点M 为边BC 上的动点,当2AM CM +最小时,则CAM Ð的度数为( )A .60°B .45°C .30°D .15°【变式2-2】(2024八年级·江苏·专题练习)7.如图,ABC V 中,AC BC =,且点D 在ABC V 外,D 在AC 的垂直平分线上,连接BD ,若30DBC Ð=°,12ACD Ð=°,则A Ð= °.【变式2-3】(2024·安徽·八年级期末)8.已知在等腰ABC V 中,AD BC ^,垂足为点D ,12AD BC =,则C Ð的度数有( )A .5种B .4种C .3种D .2种【题型3 由含30°的直角三角形的性质求面积】【例3】(2024·山东聊城·八年级期末)9.如图,在ABC V 中,90ABC Ð=°,60BAC Ð=°,以点A 为圆心,以AB 的长为半径画弧交AC 于点D ,连接BD ,再分别以点B ,D 为圆心,大于12B D 的长为半径画弧,两弧交于点P ,作射线AP 交BD 于点M ,交BC 于点E ,连接DE ,则:CDE ABC S S △△的值是( )A .1:2B 3C .2:5D .1:3【变式3-1】(23-24八年级·重庆·期末)10.如图,在Rt ABC △中,90A Ð=°,点D 是AB 上一点,且6,15BD CD DBC ==Ð=°,则BCD △的面积为( )A .9B .12C .18D .6【变式3-2】(23-24八年级·辽宁辽阳·期末)11.如图,在ABC V 中,90,30C B Ð=°Ð=°,D 是BC 上一点,连接AD ,若AD 平分BAC Ð,设ADB V 和ADC △的面积分别是1S ,2S ,则12:S S =( )A .1:1B .2:1C .3:1D .3:2【变式3-3】(23-24八年级·湖南永州·期中)12.如图,在ABC V 中,6AB =,将ABC V 绕点B 按逆时针方向旋转30°后得到111A B C △,求阴影部分的面积.【题型4 由含30°的直角三角形的性质求最值】【例4】(23-24八年级·湖北荆门·期末)13.如图,CA ^直线l 于点A ,4CA =,点B 是直线l 上一动点,以CB 为边向上作等边MBC △,连接MA ,则MA 的最小值为( )A .1B .2C .3D .4【变式4-1】(23-24八年级·黑龙江齐齐哈尔·期末)14.如图,已知60AOB Ð=°,OC 平分AOB Ð,点P 在OC 上,PD OA ^于点D ,6OP =,点E 是射线OB 上的动点,则PE 的最小值为( )A .4B .2C .5D .3【变式4-2】(23-24八年级·江苏苏州·期中)15.如图,边长为6的等边三角形ABC 中,M 是高CH 所在直线上的一个动点,连接MB ,将线段BM 绕点B 逆时针旋转60°得到BN ,连接HN .则在点M 运动过程中,线段HN 长度的最小值是 .【变式4-3】(23-24八年级·浙江金华·期末)16.如图,在等腰三角形ABC 中,4AB AC ==,30BAC Ð=°,AG 是底边BC 上的高,在AG 的延长线上有一个动点D ,连接CD ,作150CDE Ð=°,交AB 的延长线于点E ,CDE Ð的角平分线交AB 边于点F ,则在点D 运动的过程中,线段EF 的最小值( )A .6B .4C .3D .2【题型5 由含30°的直角三角形的性质求坐标】【例5】(23-24八年级·北京朝阳·期末)17.如图,在平面直角坐标系xOy 中,Rt OAB V 的斜边OB 在x 轴上,30ABO Ð=°,若点A 的横坐标为1,则点B 的坐标为 .【变式5-1】(23-24八年级·湖南长沙·期中)18.如图,等边ABC V 的三个顶点都在坐标轴上,()30A -,,过点B 作BD AB ^,交x 轴于点D ,则点D 的坐标为 .【变式5-2】(2024·山东泰安·八年级期末)19.如图,在平面直角坐标系中,点O 的坐标为()00,,点M 的坐标为()30,,N 为y 轴上一动点,连接MN .将线段MN 绕点M 逆时针旋转60°得到线段MK ,连接NK OK ,.求线段OK 长度的最小值( )A .32B C .2D .【变式5-3】(23-24八年级·广东东莞·期末)20.如图,在平面直角坐标系xOy 中,已知点A 的坐标是(0,1),以OA 为边在右侧作等边三角形1OAA ,过点1A 作x 轴的垂线,垂足为点1O ,以11O A 为边在右侧作等边三角形112O A A ,再过点2A 作x 轴的垂线,垂足为点2O ,以22O A 为边在右侧作等边三角形223O A A L ,按此规律继续作下去,得到等边三角形202120212022O A A ,则点2021A 的纵坐标为 .【题型6 由含30°的直角三角形的性质进行证明】【例6】(23-24八年级·山东烟台·期末)21.在Rt ABC △中,90ACB Ð=°,30BAC Ð=°,AD 平分BAC Ð,交BC 于点D .(1)用尺规作出线段AD 的垂直平分线交AD 于点M ,交AB 于点N .(保留作图痕迹,不写作法);(2)在(1)的条件下,求证:12CD AN =.【变式6-1】(23-24八年级·重庆江津·期中)22.如图,在等腰ABC V 中,AC BC =,4ACB B =∠∠,点D 是AC 边的中点,DE AC ^,交AB 于点E ,连接CE .(1)求BCE Ð的度数;(2)求证:3AB CE =.【变式6-2】(2024八年级·江苏·专题练习)23.如图,在ABC V ,90ACB Ð=°,30A Ð=°,AB 的垂直平分线分别交AB 和AC 于点D E ,.(1)若6cm AC =,求CE 的长度;(2)连接CD ,请判断BCD △的形状,并说明理由.【变式6-3】(23-24八年级·安徽阜阳·开学考试)24.如图,已知在等边三角形ABC 中,D ,E 分别是边BC ,AC 上的点,且AE DC =,连接AD ,BE 相交于点P ,过点B 作BQ AD ^,Q 为垂足,求证:2BP PQ =.【题型7 由含30°的直角三角形的性质解决折叠问题】【例7】(23-24八年级·山东济宁·期末)25.如图,三角形纸片ABC 中,90BAC Ð=°,4AB =,30C Ð=°.沿过点A 的直线将纸片折叠(折痕为AF ),使点B 落在边BC 上的点D 处;再折叠纸片,使点C 与点D 重合,折痕交AC 于点E (折痕为EG ),则FG 的长是( )A .3B .4C .6D .8【变式7-1】(23-24八年级·湖北武汉·期中)26.如图所示,在ABC V 中,9030C A Ð=°Ð=°,,将BCE V 沿BE 折叠,使点C 落在AB边D 点,若6cm EC =,则AC =( )cm .A .12B .16C .18D .14【变式7-2】(2024·山东滨州·八年级期末)27.如图,点O 是矩形纸片ABCD 的对称中心,E 是BC 上一点,将纸片沿AE 折叠后,点B 恰好与点O 重合.若3BE =,则折痕AE 的长为 .【变式7-3】(23-24八年级·广西南宁·阶段练习)28.如图,在ABCD Y 中,将ADC △沿AC 折叠后,点D 恰好落在DC 的延长线上的点E 处.若602B AB Ð=°=,,则BC 为 .【题型8 由含30°的直角三角形的性质解决旋转问题】【例8】(23-24八年级·陕西西安·阶段练习)29.如图,在ABC V 中,90C Ð=°,30ABC Ð=°,5cm AC =,将ABC V 绕点A 逆时针旋转至AB C ¢¢△的位置,点B 的对应点为点B ¢,点C 的对应点C ¢恰好落在边AB 上.设旋转角为a .(1)a 的度数为 °;(2)求ABB ¢V 的周长.【变式8-1】(2024·新疆乌鲁木齐·三模)30.如图,将ABC V 绕点A 旋转得到ADE V ,若90B Ð=°,30C Ð=°,2AB =,则AE 的长为 .【变式8-2】(2024八年级·浙江·专题练习)31.如图,AB C ¢¢△是ABC V 绕点A 旋转180°后得到的,已知90B Ð=°,1AB =,30C Ð=°,则CC ¢的长为 .【变式8-3】(2024·河北秦皇岛·八年级期末)32.如图,在等边ABC V 中,10AB =,P 为BC 上一点(不与点B ,C 重合),过点P 作PM BC^于点P ,交线段AB 于点M ,将PM 绕点P 顺时针旋转60°,交线段AC 于点N ,连接MN ,有三位同学提出以下结论:嘉嘉:PNC △为直角三角形.淇淇:当2AM =时,7AN =.珍珍:在点P 移动的过程中,MN 不存在平行于BC 的情况.下列说法正确的是( )A .只有嘉嘉正确B .嘉嘉和淇淇正确C .淇淇和珍珍正确D .三人都正确【题型9 由含30°的直角三角形的性质解决动点问题】【例9】(23-24八年级·湖南岳阳·期中)33.如图:ABC V 是边长为3cm 的等边三角形,动点P 、Q 同时从A 、B 两点出发,分别沿AB 、BC 方向匀速移动,它们的速度都是1cm/s ,当点P 到达B 时,P 、Q 两点停止运动,当点P 到达B 时,P 、Q 两点停止运动.设点P 运动的时间为(s)t .当t 为 时,PBQV 是直角三角形.【变式9-1】(23-24八年级·山西晋中·期中)34.如图,在ABC V 中,90,30,8cm B A AC Ð=°Ð=°=,动点P 、Q 同时从A 、C 两点出发,分别在AC 、BC 边上匀速移动,它们的速度分别为2cm /s,1cm /s P Q v v ==,当点P 到达点C 时,P 、Q 两点同时停止运动,设点P 的运动时间为s t .(1)当t 为何值时,PCQ △为等边三角形?(2)当t 为何值时,PCQ △为直角三角形?【变式9-2】(2024八年级·全国·专题练习)35.已知:如图,ABC V 是边长3cm 的等边三角形,动点P 、Q 同时从A 、B 两点出发,分别沿AB BC 、方向匀速移动,它们的速度都是1cm/s ,当点P 到达点B 时,P 、Q 两点停止运动,设点P 的运动时间为s t .(1)当动点P 、Q 同时运动2s 时,则BP = cm ,BQ = cm .(2)当动点P 、Q 同时运动s t 时,分别用含有t 的式子表示;BP = cm ,BQ = cm .(3)当t 为何值时,PBQ V 是直角三角形?【变式9-3】(23-24八年级·辽宁朝阳·期末)36.如图,在ABC V 中,60A Ð=°,4cm AB =,12cm AC =.动点P 从点A 开始沿AB 边以1cm/s 的速度运动,动点Q 从点C 开始沿CA 边以3cm/s 的速度运动.点P 和点Q 同时出发,当点P 到达点B 时,点Q 也随之停止运动.设动点的运动时间为()s 04t t <<,解答下列问题:(1)用含t 的代数式表述AQ 的长是______.(2)在运动过程中,是否存在某一时刻t ,使APQ △是直角三角形?若存在,求出t 的值;若不存在,请说明理由.【题型10 含30°的直角三角形的性质的实际应用】【例10】(23-24八年级·安徽合肥·期末)37.如图①,设计一张折叠型方桌,其示意图如图②,若50cm AO BO ==,30cm CO DO ==.现将桌子放平,两条桌腿需要叉开的角度AOB Ð应为120°,则AB 距离地面CD 的高为 cm .【变式10-1】(23-24八年级·广西玉林·期中)38.某游乐场部分平面图如图所示,点C 、E 、A 在同一直线上,点D 、E 、B 在同一直线上,DB AB ^.测得A 处与E 处的距离为70m ,C 处与E 处的距离为35m ,90C Ð=°,30BAE Ð=°.(1)请求出旋转木马E 处到出口B 处的距离;(2)判断入口A 到出口B 处的距离与海洋球D 到过山车C 处的距离是否相等?若相等,请证明;若不相等,请说明理由.【变式10-2】(23-24八年级·河北廊坊·期末)39.如图,嘉琪想测量一座古塔CD 的高度,在A 处测得15CAD Ð=°,再往前行进60m 到达B 处,测得30CBD Ð=°,点 A ,B ,D 在同一条直线上,根据测得的数据,这座古塔CD 的高度为( )A .40mB .30mC .D .50m【变式10-3】(23-24八年级·山东济宁·期中)40.图①所示的是某超市入口的双翼闸门,如图②,当它的双翼展开时,双翼边缘的端点A 与B 之间的距离为7cm ,双翼的边缘80cm AC BD ==,且与闸机侧立面夹角30ACP BDQ Ð=Ð=°,求当双翼收起时,可以通过闸机的物体的最大宽度.1.(1)见解析(2)8【分析】本题考查了全等三角形的判定和性质、含30°角的直角三角形的性质、等边三角形的性质,熟练掌握以上知识点并灵活运用是解此题的关键.(1)证明ABE CAD V V ≌即可得证;(2)求出30PBQ Ð=°,再根据含30°角的直角三角形的性质即可得出答案.【详解】(1)证明:∵ABC V 为等边三角形,∴60AB AC BAC C =Ð=Ð=°,,在ABE V 和CAD V 中AB AC BAE ACD AE CD =ìïÐ=Ðíï=î,∴()SAS V V ≌ABE CAD ,∴BE AD =.(2)解:∵ABE CAD V V ≌,∴ABE CAD Ð=Ð,∴60BPQ ABP BAP CAD BAP BAC Ð=Ð+Ð=Ð+Ð=Ð=°,又∵BQ AD ^,∴90BQP Ð=°,∴18030PBQ BPQ BQP Ð=°-Ð-Ð=°,∴2BP PQ =,又∵4PQ =,∴8BP =.2.A【分析】由30度角的性质可求出26BC AB ==,然后利用等边三角形的性质求解即可.【详解】解:如图,∵CD AB ^,∴90CDB Ð=°.∵30BCD Ð=°,3BD =,∴26BC AB ==.∵ABC V 是等边三角形,∴ABC V 的周长为6318´=.故选A .【点睛】本题考查了等边三角形的性质,含30度角的直角三角形的性质,掌握含30度角的直角三角形的性质是解答本题的关键.3.A【分析】本题主要考查了等边三角形的性质:等边三角形的三个内角都相等,且都等于60°;在直角三角形中30°角所对应的边是斜边的一半是解题的关键.根据题意可知60A Ð=°,在直角三角形ADE 中求得AD 的长,即可求得AC 的长.【详解】解:∵ABC V 是等边三角形,D 为AC 的中点,DE AB ^,垂足为点E .若3AE =,∴在直角三角形ADE 中,60A Ð=°,90AED Ð=°,30ADE Ð=°,∴26AD AE ==,又∵D 为AC 的中点,∴212AC AD ==,∴等边三角形ABC 的边长为12,故选:A .4.7.8【分析】此题主要考查了等边三角形的性质,熟练掌握等边三角形的性质,正确地作出辅助线,构造全等三角形和含有30°角的直角三角形是解决问题的关键.过点C 作CP AB ^于P ,根据60ABC Ð=°得120BAC BCA Ð+Ð=°,再根据等边三角形性质得AC CD =,60ACD Ð=°,则120DCE BCA Ð+Ð=°,由此得BAC DCE Ð=Ð,据此可依据“AAS ”判定APC △和CED △全等,从而得3AP CE ==,则 2.4BP AB AP =-=,进而在根据直角三角形性质得2 4.8BC BP ==,据此可得BE 的长.【详解】解:过点C 作CP AB ^于P ,如图所示:60ABC Ð=°Q ,180120BAC BCA ABC \Ð+Ð=°-Ð=°,ACD QV 为等边三角形,AC CD \=,60ACD Ð=°,180120DCE BCA ACD Ð+Ð=°-Ð=°Q ,BAC DCE \Ð=Ð,CP AB ^Q ,DE BC ^,90APC CED \Ð=Ð=°,在APC △和CED △中,90APC CED BAC DCEAC CD Ð=Ð=°ìïÐ=Ðíï=î,(AAS)APC CED \V V ≌,3AP CE \==,5.43 2.4BP AB AP \=-=-=,在Rt BCP △中,60ABC Ð=°,30BCP \Ð=°,22 2.4 4.8BC BP \==´=,4.837.8BE BC CE \=+=+=.故答案为:7.85.15【分析】本题考查了三角形中位线,含30°的直角三角形,平行线的性质,熟练掌握以上知识是解题的关键.过点F 作CD 的垂线,垂足为H ,先证明FH 为ABC V 的中位线,和45B HFA Ð=Ð=°,再根据直角三角形中30°所对的直角边为斜边的一半即可得出30FDH Ð=°,继而求出HFD Ð,以及AFD Ð的度数.【详解】过点F 作CD 的垂线,垂足为H ,如图:∵点F 恰好是线段AB 中点,FH AC ^,90BCA Ð=°,∴BC FH ∥,2BC FH =,∴45B HFA Ð=Ð=°,∵两块等腰直角三角板完全相同,∴BC FD =,∴2BC FD FH ==,∵90FHD Ð=°,∴30FDH Ð=°,∴60HFD Ð=°,∵45B HFA Ð=Ð=°,∴604515AFD HFD HFA Ð=Ð-Ð=°-°=°,故答案为:15.6.D【分析】本题主要考查了直角三角形的性质,垂线段最短,三角形内角和定理的应用,解题的关键是作出辅助线,熟练掌握相关的性质.在BC 下方作30BCN Ð=°,过点A 作AF CN ^于点F ,过点M 作ME CN ^于点E ,根据含30度角的直角三角形的性质得出12ME CM =,根据()12222AM CM AM CM AM ME æö+=+=+ç÷èø,两点之间线段最短,且垂线段最短,得出当A 、M 、E 三点共线,且AE CN ^时,AM ME +最小,即2AM CM +最小,求出此时CAM Ð的度数即可.【详解】解:在BC 下方作30BCN Ð=°,过点A 作AF CN ^于点F ,过点M 作ME CN ^于点E ,如图所示:则12ME CM =,∴()12222AM CM AM CM AM ME æö+=+=+ç÷èø,∵两点之间线段最短,且垂线段最短,∴当A 、M 、E 三点共线,且AE CN ^时,AM ME +最小,即2AM CM +最小,∴当点E 在点F 时,2AM CM +最小,∵90AFC Ð=°,453075ACE ACB BCE Ð=Ð+Ð=°+°=°,∴=9075=15CAF а-°°,即此时15CAM Ð=°.故选:D .7.72【分析】过C 作CM BD ^,交BD 的延长线于M ,过D 作DN AC ^于N ,证明()Rt Rt HL DNC DMC V V ≌,得12DCM ACD Ð=Ð=°,求出ACB Ð的度数,则根据等腰三角形的内角和,可求出A Ð的度数.【详解】解:如图,过C 作CM BD ^,交BD 的延长线于M ,过D 作DN AC ^于N ,∵点D 在AC 的垂直平分线上,∴DN 垂直平分AC ,∴12NC AC =,∵AC BC =,∴12NC BC =,在Rt BMC △中,30DBC Ð=°,∴12CM BC =,∴CM CN =,在Rt DNC △和Rt DMC V 中,∵CD CD CN CM =ìí=î,∴()Rt Rt HL DNC DMC V V ≌,∴12DCM ACD Ð=Ð=°,∵30DBC Ð=°,∴60MCB Ð=°,∴6012236ACB Ð=°-°´=°,又∵AC BC =,∴()118036722A Ð=´°-°=°,故答案为:72.【点睛】本题考查了等腰三角形的性质,含30°角直角三角形的性质,全等三角形的判定与性质,解题时要熟知等腰三角形的两个底角相等,需要作辅助线,构建全等三角形,利用全等三角形的对应角相等.8.A【分析】根据题意分两种情况:AD 落在ABC V 内部和AD 落在ABC V 外部,然后分别根据等腰三角形的概念和三角形内角和定理求解即可.【详解】(1)当AD 落在ABC V 内部时,①如图,当AB AC =时,∵AD BC ^,12AD BC =,∴AD BD DC ==,即45C Ð=°.②如图,当AB CB =时,∵AD BC ^,12AD BC =,∴12AD AB =.∴30B Ð=°,∴()()11180180307522C B Ð=´°-Ð=´°-°=°③如图,当AC BC =时,∵AD BC ^,12AD BC =,∴12AD AC =.∴30C Ð=°.(2)当AD 落在ABC V 外部时,④当AB AC =时,此时不存在.⑤如图,当AB CB =时,∵AD BC ^,12AD BC =,∴12AD AB =.∴30ABD Ð=°,则11301522C ABD Ð=Ð=´°=°.⑥如图,当AC BC =时,∵AD BC ^,12AD BC =,∴12AD AC =.∴30ACD Ð=°,则18030150ACB Ð=°-°=°,即150C Ð=°.综上,C Ð的度数可能为15°,30°,45°,75°,150°,共5种可能,故选:A .【点睛】此题考查了等腰三角形的性质,含30°角直角三角形的性质,三角形内角和定理等知识,解题的关键是根据题意分情况讨论.9.D【分析】先根据30°角的直角三角形的性质得到12AB AC =,证明()SAS ABE ADE △≌△,再根据全等三角形的判定和性质定理即可得到结论.【详解】解:∵90ABC Ð=°,60BAC Ð=°,∴90906030C BAC Ð=°-Ð=°-°=°,∴12AB AC =,由题意得:AB AD =,AP 平分BAC Ð,∴BAE DAE Ð=Ð,在ABE V 与ADE V 中,AB AD BAE DAE AE AE =ìïÐ=Ðíï=î,∴()SAS ABE ADE △≌△,∴ABE ADE S S =△△,∵12AD AB AC ==,∴AD CD =,∴ADE CDE S S =V V ,∴3ABC CDE S S =△△,∴:1:3CDE ABC S S =△△.故选:D .【点睛】本题考查作图—基本作图,直角三角形两锐角互余,30°角的直角三角形,全等三角形的判定和性质,角平分线的定义,等底同高的三角形面积相等.掌握基本作图及全等三角形的判定和性质是解题的关键.10.A【分析】本题考查等边对等角,三角形的外角,含30度角的直角三角形,根据等边对等角结合三角形的外角,求出30ADC Ð=°,进而求出AC 的长,利用三角形的面积公式求出BCD △的面积即可.【详解】解:∵6,15BD CD DBC ==Ð=°,∴15DCB B Ð=Ð=°,∴30ADC B BCD Ð=Ð+Ð=°,∵90A Ð=°,∴132AC CD ==,∴BCD △的面积为1163922BD AC ×=´´=;故选A .11.B【分析】本题考查了直角三角形的性质,等角对等边,三角形的面积等知识,先求出30BAD CAD Ð=Ð=°,得出AD BD =, 从而1122CD AD BD ==,然后根据三角形面积公式可得结论.【详解】解:∵90,30C B Ð=°Ð=°,∴903060BAC Ð=°-°=°.∵AD 平分BAC Ð,∴1302BAD CAD BAC Ð=Ð=Ð=°,∴B BAD Ð=Ð,∴AD BD =, ∴1122CD AD BD ==,∴1211::2:122S S BD AC CD AC =××=.故选B .12.9【分析】根据旋转的性质得到11ABC A BC V V ≌,16A B AB ==,所以1A BA V 是等腰三角形,依据130A BA Ð=°得到等腰三角形的面积,由图形可以知道1111A BA A BC ABC A BA S S S S S =+-=V V V V 阴影,最终得到阴影部分的面积.本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.运用面积的和差关系解决不规则图形的面积是解决此题的关键.【详解】解:在ABC V 中,6AB =,将ABC V 绕点B 按逆时针方向旋转30°后得到111A B C △,∴11ABC A BC V V ≌16A B AB \==,\1A BA V 是等腰三角形,130A BA Ð=°,如图,过1A 作1A D AB ^于D ,则11132A D AB ==,116392A BA S \=´´=△,又1111A BA A BC ABC A BA S S S S S =+-=V V V V Q 阴影,11A BC CBA S S =V V ,19A BA S S \==V 阴影.13.B【分析】本题考查了等边三角形的性质,旋转的性质,全等三角形的判定与性质,直角三角形的性质,熟练掌握全等三角形的判定与性质是解题的关键.以AC 为边作等边三角形ACE ,连接ME ,过点A 作AF ME ^于点F ,证明(SAS)BCA MCE V V ≌,由全等三角形的性质得出BA ME =,90BAC MEC Ð=Ð=°,由直角三角形的性质可得出答案.【详解】解:如图,以AC 为边作等边三角形ACE ,连接ME ,过点A 作AF ME ^于点F ,MBC QV 和ACE △为等边三角形,BC CM \=,AC CE =,60BCM ACE Ð=Ð=°,BCA MCE \Ð=Ð,在BCA V 和MCE △中,BC MC BAC MCE AC CE =ìïÐ=Ðíï=î,(SAS)BCA MCE \V V ≌,BA ME \=,90BAC MEC Ð=Ð=°,906030AEF \Ð=°-=°,B Q 是直线l 的动点,M \在直线ME 上运动,MA \的最小值为AF ,4AE AC ==Q ,122AF AE \==.故选:B14.D【分析】题考查了垂线段最短以及角平分线的性质,解题的关键是掌握角平分线的性质及垂线段最短的实际应用.过P 作PH OB ^,根据垂线段最短即可求出PE 最小值.【详解】解∶∵60AOB Ð=°,OC 平分AOB Ð,∴30AOC Ð=°,∵PD OA ^,6OP =,∴132PD OP ==,过P 作PH OB ^于点H ,∵PD OA ^,OC 平分AOB Ð,∴3PD PH ==,∵点E 是射线OB 上的动点,∴PE 的最小值为3,故选:C .15.32【分析】取BC 的中点,连接MG ,根据等边三角形的性质和旋转可以证明MBG NBH V V ≌,可得MG NH =,根据垂线段最短,当MG CH ^时,MG 最短,即HN 最短,进而根据30度角所对直角边等于斜边的一半即可求得线段HN 长度的最小值.本题考查了旋转的性质、等边三角形的性质、全等三角形的判定与性质、垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.【详解】解:如图,取BC 的中点,连接MG ,Q 线段BM 绕点B 逆时针旋转60°得到BN ,60MBH HBN \Ð+Ð=°,又ABC QV 是等边三角形,60ABC \Ð=°,即60MBH MBC Ð+Ð=°,HBN GBM \Ð=Ð,CH Q 是等边三角形的高,12BH AB \=,BH BG \=,又BM Q 旋转到BN ,BM BN \=,(SAS)MBG NBH \△≌△,MG NH \=,根据垂线段最短,当MG CH ^时,MG 最短,即HN 最短,此时160302BCH Ð=´°=°,116322CG BC ==´=,1322MG CG \==,32HN \=.\线段HN 长度的最小值是32.故答案为:3216.D 【分析】此题考查了全等三角形的判定即性质,等腰三角形的三线合一的性质,角平分线的性质,含30度角的直角三角形的性质.作DM AB ^于M ,作DN AC ^于N ,证明()ASA MDE NDC V V ≌,推出DE DC =,再证明()SAS EDF CDF V V ≌,推出EF CF =,得到当CF AB ^时CF 有最小值,即EF 有最小值,由30BAC Ð=°,4AC =,求出CF .【详解】解:作DM AB ^于M ,作DN AC ^于N ,AB AC =Q , AG BC ^,AG \平分BAC Ð,即AD 平分BAC Ð,DM AB ^Q ,DN AC ^,DM DN \=,30BAC Ð=°Q ,90AMD AND Ð=Ð=°,150MDN Ð\=° ,150CDE Ð=°Q ,150MDE CDM ÐÐ\=°- NDC Ð=,(ASA MDE NDC \V V ≌),DE DC \=,DF Q 平分CDE Ð,EDF CDF \Ð=Ð,连接CF ,DF DF =Q ,()SAS EDF CDF \V V ≌,EF CF \=,\当CF AB ^时CF 有最小值,即EF 有最小值,此时,30BAC Ð=°Q ,4AC =,\122CF AC ==,故选:D .17.()4,0【分析】本题主要考查了含30度角直角三角形的特征,解题的关键是掌握含30度角的直角三角形,30度角所对的边是斜边的一半.过点A 作x 轴的垂线,垂足为点C ,先得出30OAC Ð=°,则22OA OC ==,进而得出24OB OA ==,即可解答.【详解】解:过点A 作x 轴的垂线,垂足为点C ,∵Rt OAB V 中30ABO Ð=°,∴60AOB Ð=°,∵AC OB ^,∴30OAC Ð=°,∵点A 的横坐标为1,∴1OC =,∴22OA OC ==,∵30ABO Ð=°,∴24OB OA ==,∴点B 的坐标为()4,0,故答案为:()4,0.18.()90,【分析】本题考查了坐标与图形,等边三角形的性质,含30度角的直角三角形的性质.利用等边三角形的性质求得AB 的长,再利用含30度角的直角三角形的性质求得AD 的长,继而求得OD 的长,即可求解.【详解】解:∵ABC V 是等边三角形,且BO AC ^,∴60AO OC BAC =Ð=°,,∵()30A -,,∴3AO =,∴26AB AC AO ===,∵BD AB ^,∴90ABD Ð=°,∴30ADB Ð=°,∴212AD AB ==,∴9OD AD OA =-=,∴点D 的坐标为()90,.故答案为:()90,.19.A【分析】如图所示,将MOK V 绕点M 顺时针旋转60度得到MQN △,连接OQ ,由旋转的性质可得60OK NQ OM QM OMQ ===°,,∠,证明OMQ V 是等边三角形,得到60QOM OQ OM =°=∠,,推出30NOQ Ð=°;由垂线段最短可知,当NQ y ^轴,NQ 最小,即OK 最小,此时点N 与点N ¢重合,由此即可得到答案.【详解】解:如图所示,将MOK V 绕点M 顺时针旋转60度得到MQN △,连接OQ ,由旋转的性质可得60OK NQ OM QM OMQ ===°,,∠,∴OMQ V 是等边三角形,∴60QOM OQ OM =°=∠,,∴30NOQ Ð=°,∵点M 的坐标为()30,,∴3OQ OM ==,由垂线段最短可知,当NQ y ^轴,NQ 最小,即OK 最小,此时点N 与点N ¢重合,∴1322OK NQ OQ ===最小值最小值,故选A .【点睛】本题主要考查了旋转的性质,等边三角形的性质与判定,坐标与图形,含30度角的直角三角形的性质,正确作出辅助线是解题的关键.20.202112【分析】此题主要考查了点的坐标,等边三角形的性质,直角三角形的性质,熟练掌握等边三角形的性质,理解在直角三角形中, 30°的角所对的边等于斜边的一半是解决问题的关键.首先根据点A 的坐标及等边三角形的性质得111,60,OA OA AOA ==Ð=°进而得1130,A OO Ð=°再根据直角三角形的性质得 11111,22A O OA ==点1A 的纵坐标为 12,依次类推得到点n A 的纵坐标为 12næöç÷èø即可解题.【详解】∵点A 的坐标是()0,1,1OAA V 是等边三角形,111,60OA OA AOA \==Ð=°,1111906030A OO AOO AOA \Ð=Ð-Ð=°-°=°,11A O x ^Q 轴,∴在11Rt A OO V 中, 1130,A OO Ð=°则 1111122A O OA ==,∴点1A 的纵坐标为 12,同理:2221111,22A O A O æö==ç÷èø 3332211,22A O A O æö==ç÷èø 4443311,22A O A O æö==ç÷èø...,以此类推, 12n n n A O æö=ç÷èø,∴点2A 的纵坐标为 21,2æöç÷èø点 A ₃的纵坐标为31,2æöç÷èø点 A ₄的纵坐标为 41,2æöç÷èø……,以此类推,点n A 的纵坐标为 12n æöç÷èø,∴点 2021A 的纵坐标为 202120211122æö=ç÷èø.故答案为: 202112.21.(1)见解析(2)见解析【分析】(1)根据尺规作一条线段垂直平分线的方法,进行作图即可;(2)过D 点作DE AB ^于E 点,连接DN ,由角平分线的性质和定义得到1152BAD BAC ==°∠,DC DE =,再由线段垂直平分线的性质得到NA ND =,进而得到30DNE NDA NAD Ð=Ð+Ð=°,则12DE DN =,由此即可证明结论.【详解】(1)解:如图,MN 为所求作的线段AD 的垂直平分线;(2)证明:过D 点作DE AB ^于E 点,连接DN ,∵30BAC Ð=°,AD 平分BAC Ð,DC AC ^,DE AB ^,∴1152BAD BAC ==°∠,DC DE =,∵MN 是AD 的垂直平分线,∴DN AN =,∴15NDA NAD Ð=Ð=°,∴30DNE NDA NAD Ð=Ð+Ð=°,在Rt DNE △中,12DE DN =,∵DN AN =,DC DE =,∴12CD AN =.【点睛】本题主要考查了,尺规作一条线段的垂直平分线,角平分线的性质,含30度角的直角三角形的性质,线段垂直平分线的性质,等边对等角,三角形外角的性质,解题的关键是作出辅助线,熟练掌握相关的性质.22.(1)90BCE °Ð=;(2)证明见解析.【分析】(1)证明ECD EAD V V ≌,可得A ECD Ð=Ð,设B x Ð=,可得2BEC x Ð=,得出23180x x x ++=°,解得30x =°,则BCE Ð可求出;(2)由直角三角形的性质可得2BE CE =,AE CE =,则结论可得出.【详解】(1)解: Q 点D 是AC 边的中点,DE AC ^,90EDC EDA \Ð=Ð=°,DC DA =,ED ED =Q ,()SAS ECD EAD \V V ≌,A ECD \Ð=Ð,设B x Ð=,∵AC BC =,B A x \Ð=Ð=,2BEC A ECA x \Ð=Ð+Ð=,4ACB B Ð=ÐQ ,3BCE x \Ð=,180B BEC BCE Ð+Ð+Ð=°Q ,23180x x x \++=°,解得30x =°,90BCE \Ð=°;(2)解:30B Ð=°Q ,90BCE Ð=°,2BE CE \=,CE AE =Q ,3AB BE AE CE \=+=.【点睛】考查了全等三角形的判定与性质,等腰三角形的判定与性质,直角三角形的性质,三角形内角和定理等知识.熟练掌握运用基础知识是解题的关键.23.(1)2cm(2)等边三角形,理由见解析【分析】本题主要考查线段垂直平分线的性质、含30°角的直角三角形,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.(1)连接BE ,由垂直平分线的性质可求得30CBE ABE A Ð=Ð=Ð=°,在Rt BCE V 中,由直角三角形的性质可证得2BE CE =,则可得出结果;(2)由垂直平分线的性质可求得AD BD =,根据含30°角的直角三角形可得12BC AB =,因此BCD △为等腰三角形,进一步由题意可知60ABC Ð=°,即可证明BCD △为等边三角形.【详解】(1)解:如图,连接BE ,DE Q 是AB 的垂直平分线,AE BE \=,30ABE A \Ð=Ð=°,30CBE ABC ABE \Ð=Ð-Ð=°,在Rt BCE V 中,2BE CE =,2AE CE \=,6cm AC =Q ,2cm CE \=.(2)BCD △是等边三角形,理由如下:连接CD ,DE Q 垂直平分AB ,∴D 为AB 中点,AD BD \=,在Rt ABC △中,30A Ð=°,12BC AB =∴,AD BD BC \==,又60ABC Ð=°Q ,∴BCD △是等边三角形.24.见详解【分析】根据全等三角形的判定定理SAS 可判断两个三角形全等;根据全等三角形的对应角相等,以及三角形外角的性质,可以得到30PBQ Ð=°,根据直角三角形的性质即可得到.本题考查了全等三角形的判定与性质、等边三角形的性质以及含30度角直角三角形的性质,熟记全等三角形的判定与性质是解题的关键.【详解】解:ABC QV 为等边三角形.AB AC \=,60BAC ACB Ð=Ð=°,在BAE V 和ACD V 中,AE CD BAC ACB AB AC =ìïÐ=Ðíï=î,(SAS)BAE ACD \V V ≌,ABE CAD \Ð=Ð,BPQ ÐQ 为ABP V 外角,60BPQ BAD ABE CAD BAD BAC \Ð=Ð+Ð=Ð+Ð=Ð=°,BQ AD ^Q ,30PBQ \Ð=°,2BP PQ \=.25.B【分析】根据折叠的性质可得,BF FD =,CG GD =,即12FG BC =,再由30°角所对的直角边是斜边的一半,即可求解,本题考查了折叠的性质,含30°角的直角三角形的性质,解题的关键是:熟练掌握折叠的性质.【详解】解:由折叠可知,BF FD =,CG GD =,12FG BC \=,在ABC V 中,90BAC Ð=°,4AB =,30C Ð=°,2248BC AB \==´=,118422FG BC \==´=,故选:B .26.C【分析】本题主要考查了折叠的性质,含30°角的直角三角形的直角.理解直角三角形中30°角所对边是斜边的一半是解题的关键.【详解】解:根据折叠的性质6cm DE EC ==,90EDB C Ð=Ð=°,∴90EDA Ð=°,∵30A Ð=°,∴212cm AE DE ==,∴18cm AC AE EC =+=,故选C .27.6【分析】此题考查了中心对称,矩形的性质,以及翻折变换,熟练掌握各自的性质是解本题的关键.由折叠的性质及矩形的性质得到OE 垂直平分AC ,得到AE EC =,根据AB 为AC 的一半确定出30ACE Ð=°,进而得到OE 等于EC 的一半,求出EC 的长,即为AE 的长.【详解】解:由题意得:AB AO CO ==,即2AC AB =,且OE 垂直平分AC ,AE CE \=,30ACB Ð=°,在Rt OEC △中,30OCE Ð=°,12OE EC BE \==,3BE =Q ,3OE \=,6EC =,则6AE =,故答案为:6.28.4【分析】本题考查了折叠的性质,平行四边形的性质,三角形内角和定理,含30°的直角三角形.解题的关键在于对知识的熟练掌握与灵活运用.由折叠的性质与题意可得,=90ACD а,由ABCD Y ,可知260BC AD CD AB D B ===Ð=Ð=°,,,则18030CAD ACD D Ð=°-Ð-Ð=°,24AD CD ==,进而可求BC 的值.【详解】解:由折叠的性质可得,=90ACD а,∵ABCD Y ,∴260BC AD CD AB D B ===Ð=Ð=°,,,∴18030CAD ACD D Ð=°-Ð-Ð=°,∴24AD CD ==,∴4BC =,故答案为:4.29.(1)60(2)30cm【分析】本题主要考查了旋转的性质,直角三角形的性质,等边三角形的判定和性质,解题的关键是熟练掌握旋转的性质.(1)根据90C Ð=°,30ABC Ð=°,求出903060BAC Ð=°-°=°,即可求出结果;(2)根据直角三角形的性质得出210cm AB AC ==,根据旋转得出60BAB ¢Ð=°,AB AB ¢=,证明ABB ¢V 是等边三角形,求出结果即可.【详解】(1)解:∵在ABC V 中,90C Ð=°,30ABC Ð=°,∴903060BAC Ð=°-°=°,根据旋转可知:60BAB BAC a =Ð=Ð=¢°;(2)解:∵90C Ð=°,30ABC Ð=°,5cm AC =,∴()22510cm AB AC ==´=,∵将ABC V 绕点A 逆时针旋转a 角度至AB C ¢¢△的位置,∴60BAB ¢Ð=°,AB AB ¢=,∴ABB ¢V 是等边三角形,∴ABB ¢V 的周长是()331030cm AB =´=.30.4【分析】由直角三角形的性质可得24AC AB ==,由旋转的性质可得4AE AC ==.本题考查了旋转的性质,直角三角形的性质,掌握旋转的性质是解题的关键.【详解】解:90B Ð=°Q ,30C Ð=°,24AC AB \==,Q 将ABC V 绕点A 旋转得到ADE V ,4AE AC \==,故答案为:431.4【分析】本题考查了旋转的性质,含30度角的直角三角形的性质,根据题意得出2AC =,进而根据旋转的性质,即可求解.【详解】在Rt ABC △中,1AB =,30C Ð=°,∴22AC AB ==.。

初中数学_含30度角的直角三角形的性质教学设计学情分析教材分析课后反思

初中数学_含30度角的直角三角形的性质教学设计学情分析教材分析课后反思

含30度角的直角三角形性质教学设计教学内容:含30°角的直角三角形的性质(人教版八年级数学上P80-81)知识目标:1.理解掌握有一个角为30°的直角三角形的性质。

2.有一个角为30°的直角三角形的性质的简单应用.能力目标:1.经历“探索——发现——猜想——证明”的过程,培养学生观察、分析、归纳问题的能力。

2.通过运用性质解决有关的问题,提高运用知识和技能解决问题的能力,发展应用意识。

情感目标:引导学生对图形的观察、发现,激发学生的好奇心和求知欲.重点:含30°角的直角三角形的性质的发现与应用.难点:含30°角的直角三角形性质的探索与证明.复习提问:等边三角形的性质与判定。

新课:(一)活动问题1.1、我们刚才回答了等边三角形是轴对称图形,沿着对称轴折叠,得到一个什么三角形?今天,我们来研究这个含30度角的的直角三角形,看它的边具有什么性质.板书课题:含30°角的直角三角形的性质2、观察你的30°角的直角三角尺,角有什么性质?边有什么数量关系?30°角所对的直角边是斜边的一半.(或者说:30°角所对的直角边是斜边的2倍)3.、用直尺把斜边和30°角所对的直角边量一量,你有什么发现?30°角所对的直角边是斜边的一半.(或者说:30°角所对的直角边是斜边的2倍)4、对于任意大小的含30°角的直角三角形,是不是也具备这个性质?大家画一画,量一量,说一说。

(二)活动问题21、刚才我们通过猜想,测量,得到了性质,那怎样推理证明呢?请同桌把两个含30°角的直角三角形拼一拼,组成平面图形,有几种拼法?学生动手拼图,互相交流,找一学生演示。

学生观察摆出的两个三角形.讨论并回答,同学们从不同的角度说明,拼成的是等边三角形.2、探究:在这些图形中,重点说拼成的等边三角形。

若学生不能单独回答可以先与同伴交流结论成立的理由。

「初中数学」利用含30°角的直角三角形解题的几种技巧.doc

「初中数学」利用含30°角的直角三角形解题的几种技巧.doc

「初中数学」利用含30°角的直角三角形解题的几种技巧在初中数学中有这样一个定理:在直角三角形中,若一个锐角为30°,则它所对的边是斜边的一半.它通过角的关系揭示出了边的关系,从角的类别跨出到了边的类别,建立了不同类别之间的联系,所以非常重要,那么在证明线段之间的倍分关系时,我们就要注意提醒自己,题中是否含有30°、60°或120°的特殊角,或者通过某种方法构造含30°的直角三角形.这一定理运用比较广泛,下面结合八年级的习题分别说明。

一.直接运用含30°角的直角三角形的性质1.如图,在等边三角形ABC中,AE=CD,AD,BE相交于点P,BQ⊥AD于点Q.求证:BP=2PQ.【分析】由等边三角形ABC知,AB=AC=BC,∠BAC=∠ABC=∠ACB=60°且AE=CD,显然△ACD≌△BAE.结论要证BP=2PQ,想到在直角三角形BQP中,找30°角或60°,而∠BPQ=∠ABP+∠BAP,由△ACD≌△BAE,可知∠ABP=∠CAD,所以∠BPQ=∠BAP+∠CAD=∠BAC=60°则达到目的.证明:∵△ABC为等边三角形,∴AC=AB,∠C=∠BAC=60°,又AE=CD,∴△ACD≌△BAE,∴∠CAD=∠ABE,∵∠CAD+∠BAP=∠BAC=60°,∴∠ABE+∠BAP=∠BPQ=60°,∵BQ⊥AD,∴∠BQP=90°,∴∠PBQ=90°一∠BPQ=30°,∴BP=2PQ.2.如图,在△ABC中,AB=AC,∠BAC=90°,BD=AB,∠ABD=30°.求证:AD=DC.【分析】欲证,AD=CD,想到什么:等腰三角形三线合一;想到证底角相等?不管你想到哪个定理和性质,还得联系其他条件,条件有,等腰直角三角形BAC,有∠ABD=30°,这些条件又与结论怎样联系呢?那我们就要画辅助线试着分析一下,因为∠ABD=30°,AB=BD,可得,∠BAD=∠BDA=75°,过点A作AE⊥BD于E,E为垂足,使30°的角处于直角三角形中,则有∠EAD=15°,AE=AB/2,又分析出∠CAD=15°,则AD是∠CAE的角平分线,而DE⊥AE,于是想到过点D作DF⊥AC于F,则可证△EAD≌△FAD,得AF=AE=AB/2=AC/2,∴F是AC的中点,∴DF垂直平分AC,∴AD=DC,得证.如图证明:过点A作AE⊥BD于E,过点D作DF⊥AC于F,∴∠AEB=∠AED=∠AFD90°则在Rt△AEB中,∵∠ABD=30°,∴AE=AB/2,又∵AB=AC,则AE=AC/2,在△ABD 中,∵AB=BD,∠ABD=30°,∴∠BAD=1/2(180°一30°)=75°,∵∠BAC=90°,∴∠DAC=15°,而在Rt△AED中,可知∠BAE=60°,∴∠EAD=15°,所以根据∠DAC=∠EAD=15°,∠AED=∠AFD=90°,AD=AD,可得△EAD≌△FAD,∴AF=AE=AC/2,即F是AC的中点,∴DF垂直平分AC,∴AD=DC.那么依据∠DAC=∠DCA是否也可证AD=DC呢?只要同学们善于分析,还是可以的,下面给出一种作辅助线的方法,希望同学们仔细体会.以BC为边在△ABC的同侧作等边三角形BEC,连接AE,如图,由于正三角形,等腰直角三角形的对称性可知,EA平分∠BEC,所以∠BEA=30°,由于∠ABC=60°,∠ABC=45°,∠ABD=30°,所以∠EBA=∠CBD=15°,而AB=BD,BE=BC,∴△EBA≌△CBD,∴∠BCD=∠BEA=30°,则∠ACD=15°,由上边证得知∠DAC=15°,∴∠DAC=∠DCA,∴AD=DC,此法关键是作出一个等边三角形,有同学要问,你怎么就知道作等边三角形呢?显然我也是学来的,多总结,多归纳,多记忆,多体会,你也会知道这种辅助线。

七下简单的轴对称图形KO含30度角的直角三角形

七下7.2简单的轴对称图形KO含30度角的直角三角形填空+解答七下7.2简单的轴对称图形KO含30度角的直角三角形填空+解答一.填空题(共27小题)1.(2013?普陀区一模)如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=4,则BC= _________ .2.(2013?哈尔滨模拟)如图,在△ABC中.∠B=90°,∠BAC=30°.AB=9cm,D是BC延长线上一点.且AC=DC.则AD= _________ cm.3.(2012?香坊区二模)在△ABC中,AB=AC=6cm,BD为AC边上的高,∠DAB=60°,则线段CD的长为_________ .4.(2012?泰顺县模拟)正△ABC的边长为1,点P在AB上,PQ⊥BC,QR⊥AC,RS⊥AB.其中P、Q、R、S为垂足,若SP=,则AP的长是_________ .5.(2012?海淀区一模)如图是某超市一层到二层滚梯示意图.其中AB、CD 分别表示超市一层、二层滚梯口处地面的水平线,∠ABC=150°,BC的长约为12米,则乘滚梯从点B到点C上升的高度h约为_________ 米.6.(2012?广陵区二模)在△ABC中,∠ABC=30°,AB边长为10,AC边的长度可以在3、5、7、9、11中取值,满足这些条件的互不全等的三角形的个数是_________ 个.7.(2012?广西模拟)某校在一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米a元,则购买这种草皮至少要_________ 元.8.(2011?镇海区模拟)△OAB是直角三角形,∠AOB=30°,过A作AP⊥OB 于P,在AP延长线上取一点C,使∠BOC=30°;过P作PQ⊥OC于P,在PQ延长线上取一点D,使∠COD=30°;…;按此方法操作,最终得到△OMN,此时ON在OA 上.若AB=2a,则ON= _________ .(可用式子表示)9.(2011?青浦区一模)如图是某商场一楼和二楼之间的手扶电梯示意图.其中AB、CD分别表示一楼、二楼地面的水平线,∠ABC=150°,BC的长是a米,则乘电梯从点B到点C上升的高度h是_________ 米.10.(2011?金堂县二模)已知在△ABC中,∠C=90°,AD是∠BAC的平分线交BC于点D,BD:DC=2:1,则∠B的度数是_________ .11.(2011?鄂州模拟)Rt△ABC中,∠ACB=90°,∠A=30°,CD⊥AB于点D,则△BCD与△ABC的周长之比为_________ .12.(2011?白云区一模)如图,△ABC中,∠C=90°,∠B=30°,AC=2,则AB长为_________ .13.(2009?徐汇区一模)如图,在△ABC中,AB=AC=4,∠A=30°,那么S△ABC=_________ .14.(2009?滕州市一模)已知等腰三角形一腰上的高线等于腰长的一半,那么这个等腰三角形的顶角等于_________ .15.(2009?上海一模)在△ABC中,已知AB=4,BC=10,∠B=30°,那么S△ABC=_________ .16.(2008?上海模拟)在△ABC中,AB=AC=4cm,∠A=30°,那么腰AB上的高为_________ cm.17.(2008?南汇区一模)在Rt△ABC中,∠C=90°,AB=4,AC=2,D是边BC 上一点,且AD=BD,那么CD= _________ .18.(2007?晋江市质检)如图,∠AOB=30°,射线OA上有一动点H(点H 不与点O重合),PH⊥OA交OB于点P,线段PH沿着射线OA方向平移,则线段OP 与线段PH之间始终存在数量关系:OP= _________ PH.19.(2005?松江区二模)已知在△ABC中,∠ACB=90°,∠B=30°,AB=2,则AC= _________ .20.如图,Rt△ABC≌Rt△A′B′C′,∠A=∠A′=30°.观察分析图形,把你发现的正确结论至少写出三个._________ .21.如图,在△ABC中,∠C=90°,∠A=30°,∠ABC的平分线交AC于D,过D作DE⊥AB于E,若CD=4cm,则AC= _________ .22.AD是△ABC的角平分线,若∠BAC=60°,AD=8cm,AC=10cm,则△ACD的面积是_________ cm2.23.如图,在△ABC中,∠ACB=90°,AB的垂直平分线DE交AB于E,交AC 于D,∠DBC=30°,BD=4.6,则D到AB的距离为_________ .24.如图,在△ABC中,∠C=90°,∠B=30°,AB的垂直平分线交BC于点D,交AB于点E,CD=2,则BC= _________ .25.如图,在Rt△ABC中,∠B=90°,∠A=30°,DE垂直平分AC,交AC于点E,交AB于点D,连接CD.若AD=4cm,则DB的长是_________ .26.如图,∠ACD=90°,∠D=15°,B点是边AD的垂直平分线与CD的交点,若AC=3,则BD= _________ .27.如图,在△ABC中,AB=AC,∠B=30°,AB的垂直平分线EF交AB于点E,交BC于点F,EF=2,则BC的长为_________ .二.解答题(共3小题)28.(2013?温州)如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.29.(2004?呼和浩特)如图,在△ABC中,BA=BC,∠B=120°,AB的垂直平分线MN交AC于D,求证:AD=DC.30.(1997?南京)已知:如图,边长为2的等边三角形ABC,延长BC到D,使CD=BC,延长CB到E,使BE=CB,求△ADE的周长.七下7.2简单的轴对称图形KO含30度角的直角三角形填空+解答参考答案与试题解析一.填空题(共27小题)1.(2013?普陀区一模)如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=4,则BC= 2 .考点:含30度角的直角三角形.3824674分析:根据含30度角的直角三角形的性质直接求解即可.解答:解:根据含30度角的直角三角形的性质可知:BC=AB=2.故答案为:2.点评:本题考查了含30度角的直角三角形的性质,比较容易解答,要求熟记30°角所对的直角边是斜边的一半.2.(2013?哈尔滨模拟)如图,在△ABC中.∠B=90°,∠BAC=30°.AB=9cm,D是BC延长线上一点.且AC=DC.则AD= 18 cm.考点:含30度角的直角三角形.3824674专题:计算题.分由AC=CD,利用等边对等角得到一对角相等,在直角三角形ABC中,由两锐角析:互余求出∠ACB的度数,由外角性质求出∠D为30°,利用30°角所对的直角边等于斜边的一半即可求出AD的长.解答:解:∵AC=CD,∴∠CAD=∠D,在Rt△ABC中,∠B=90°,∠BAC=30°,∴∠ACB=60°,∵∠ACB为△ACD的外角,∴∠CAD=∠D=30°,∴AD=2AB=18cm.故答案为:18点评:此题考查了含30度直角三角形的性质,外角性质,以及等腰三角形的性质,熟练掌握性质是解本题的关键.3.(2012?香坊区二模)在△ABC中,AB=AC=6cm,BD为AC边上的高,∠DAB=60°,则线段CD的长为3cm或9cm .考点:含30度角的直角三角形.3824674专题:分类讨论.分析:因为BD在三角形内外不明确,所以分①△ABC是锐角三角形时,判断出△ABC 是等边三角形,然后根据等边三角形的性质可得CD=AC,②ABC是钝角三角形时,先求出∠ABD=30°,根据直角三角形30°角所对的直角边等于斜边的一半求出AD的长度,再根据CD=AD+AC解答.解答:解:①如图1,△ABC是锐角三角形时,∵AB=AC,∠DAB=60°,∴△ABC是等边三角形,∴CD=AC=×6=3cm,②ABC是钝角三角形时,∵∠DAB=60°,∴∠ABD=90°﹣60°=30°,∵AB=6cm,∴AD=AB=×6=3cm,∴CD=AD+AC=3+6=9cm,综上所述,线段CD的长为3或9cm.故答案为:3cm或9cm.点评:本题考查了30°角所对的直角边等于斜边的一半的性质,难点在于要根据BD 的位置的不同分情况讨论求解.4.(2012?泰顺县模拟)正△ABC的边长为1,点P在AB上,PQ⊥BC,QR⊥AC,RS⊥AB.其中P、Q、R、S为垂足,若SP= ,则AP的长是或.考点:等边三角形的性质;含30度角的直角三角形.3824674 专题:分类讨论.分析:根据题意画出图形,如图1,设AS=x,由于△ABC是等边三角形故可得出∠ARS=30°,故AR=2x,RC=1﹣2x,在Rt△QCR中,QC=2RC=2﹣4x,故BQ=4x ﹣1,在Rt△BPQ中,BP=2BQ=8x﹣2,由于AB=1,故AS+PS+BP=1,故可得出x 的值,进而得出结论;同理,如图2,当点P在x轴的上方时,同上即可得出AP的长.解答:解:如图1,∵△ABC是等边三角形,∴∠B=∠A=∠C=60°,设AS=x,在Rt△ASR中,∵RS⊥AB,∴∠ASR=90°,∴∠ARS=30°,∴AR=2AS=2x,∴RC=1﹣AR=1﹣2x,在Rt△QCR中,∵QC=2RC=2﹣4x,∴BQ=4x﹣1,在Rt△BPQ中,BP=2BQ=8x﹣2,∵AB=1,∴AS+PS+BP=1,即x++8x﹣2=1,解得x=,∴AP=AS+PS=+=;如图2,当点P在点S的上方时,同上可得,AS+BP﹣PS=1,即x+8x﹣2﹣=1,解得x=,∴AP=AS﹣PS=﹣=.故答案为:或.点评:本题考查的是等边三角形的性质,含30度角的之间三角形,三角形的内角和定理等知识点的理解和掌握,根据题意得出BP=2BQ、CQ=2CR、AR=2AS是解此题的关键.5.(2012?海淀区一模)如图是某超市一层到二层滚梯示意图.其中AB、CD分别表示超市一层、二层滚梯口处地面的水平线,∠ABC=150°,BC的长约为12米,则乘滚梯从点B到点C上升的高度h约为 6 米.考点:含30度角的直角三角形.3824674分析:先过点C作CE⊥AB,交AB的延长线于E,易求∠CBE=30°,在Rt△BCE中可知CE=BC,进而可求CE.解答:解:过点C作CE⊥AB,交AB的延长线于E,如右图,∵∠ABC=150°,∴∠CBE=30°,在Rt△BCE中,∵BC=12,∠CBE=30°,∴CE=BC=6.故答案是6.点评:本题考查了含30°角的直角三角形的性质,解题的关键是作辅助线构造直角三角形.6.(2012?广陵区二模)在△ABC中,∠ABC=30°,AB边长为10,AC边的长度可以在3、5、7、9、11中取值,满足这些条件的互不全等的三角形的个数是7 个.考点:含30度角的直角三角形;垂线段最短;全等三角形的判定.3824674分析:过A作AE⊥BC于E,求出AE,再根据三角形判断即可.解答:解:过A作AE⊥BC于E,∵∠AB=10,∠B=30°,∴AE=AB=5,即AE是A到直线BC的最短距离,当AC=3时,此时三角形不存在;当AC=5时,此时三角形有1个;当AC=7此时三角形有2个;当AC=9时,此时三角形有2个;当AC=11时,此时三角形有2个;即存在三角形1+2+2+2=7个,故答案为:7.点评:本题考查了全等三角形的判定,含30度角的直角三角形性质等知识点的应用,主要考查的推理和辨析能力.7.(2012?广西模拟)某校在一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米a元,则购买这种草皮至少要150a 元.考点:含30度角的直角三角形.3824674专题:应用题.分析:先做△ABC的高AD,求出∠ABD=30°,再得出AD=AB,再根据S△ABC=BCAD求出三角形的面积,最后根据这种草皮每平方米a元,即可得出答案.解答:解:做△ABC的高AD,∵∠ABC=150°,∴∠ABD=30°,∴AD=AB=×20=10(m),∴S△ABC=BCAD=×30×10=150(m2),∵这种草皮每平方米a元,∴购买这种草皮至少要150a元,故答案为;150a.点评:此题考查了含30度角的直角三角形,关键是做出辅助线,求出三角形的高和面积,用到的知识点是30度角的直角三角形的性质和三角形的面积公式.8.(2011?镇海区模拟)△OAB是直角三角形,∠AOB=30°,过A作AP⊥OB于P,在AP延长线上取一点C,使∠BOC=30°;过P作PQ⊥OC于P,在PQ延长线上取一点D,使∠COD=30°;…;按此方法操作,最终得到△OMN,此时ON在OA 上.若AB=2a,则ON= 4×()11a .(可用式子表示)考点:含30度角的直角三角形;等边三角形的性质.3824674 专题:规律型.分析:利用含30度角的直角三角形的性质,正三角形的性质和AB=2a,求得OP的长,然后逆时针旋转30°后可以求得OQ的长,直至线段ON与线段OA重合,一共旋转了12次,从而可以求得ON的长.解答:解:∵∠A=90°,∠AOB=30°,AB=2a,∴BO=4a,OC=OA=×4a,∵OP为等边三角形的高,且等边三角形的边长为×4a,∴OD=OP=()2×4a,以此类推,当ON与OA重合时,一共旋转了12次,∴ON的长为()11×4a=4×()11a.故答案为:4×()11a.点评:本题考查了含30度角的直角三角形的性质和正三角形的性质,解题的关键是正确地得到一共旋转了多少次.9.(2011?青浦区一模)如图是某商场一楼和二楼之间的手扶电梯示意图.其中AB、CD分别表示一楼、二楼地面的水平线,∠ABC=150°,BC的长是a米,则乘电梯从点B到点C上升的高度h是米.考点:含30度角的直角三角形.3824674专题:计算题.分析:过C作CE⊥AB于E,求出∠CBE的度数,根据含30度角的直角三角形性质求出CE=BC,代入求出即可.解答:解:过C作CE⊥AB于E,∴∠CEB=90°,∵∠CBE=180°﹣∠ABC=30°,∴h=CE=BC=a,故答案为:a.点评:本题考查了含30度角的直角三角形性质的应用,求出∠CBE=30°,根据直角三角形的性质求出CE式解此题的关键.10.(2011?金堂县二模)已知在△ABC中,∠C=90°,AD是∠BAC的平分线交BC于点D,BD:DC=2:1,则∠B的度数是30°.考点:含30度角的直角三角形.3824674专题:计算题.分析:先根据角平分线定理得出AB:AC=2:1,再根据直角三角形的一条直角边等于斜边的一半,则该条直角边对应的角为30°,即可得出答案.解答:答:∵AD是角平分线,∴BD:DC=AB:AC=2:1,根据直角三角形的一条直角边等于斜边的一半,则该条直角边对应的角为30°,∴∠B=30°.故答案为:30°.点本题考查了含30度角的直角三角形的知识,属于基础题,同时要注意角平分评:线定理的灵活运用.11.(2011?鄂州模拟)Rt△ABC中,∠ACB=90°,∠A=30°,CD⊥AB于点D,则△BCD与△ABC的周长之比为.考点:含30度角的直角三角形.3824674专题:计算题.分析:由已知Rt△ABC中,∠ACB=90°,∠A=30°,CD⊥AB于点D,可得∠BCD=∠A=30°,根据含30度角的直角三角形的性质,可得:BC=AB,BD=BC,CD=AC,从而求出△BCD与△ABC的周长之比.解答:解:已知Rt△ABC中,∠ACB=90°,∠A=30°,∵CD⊥AB,∴∠BCD=∠A=30°,∴BC=AB,BD=BC,CD=AC,∴BC+BD+CD=(AB+BC+AC),则=,∴△BCD与△ABC的周长之比为:,故答案为:.点评:此题考查的知识点是含30度角的直角三角形,关键是先由已知得出∠BCD=∠A=30°,再根据含30度角的直角三角形的性质求解.12.(2011?白云区一模)如图,△ABC中,∠C=90°,∠B=30°,AC=2,则AB长为4..考含30度角的直角三角形.3824674点:分析:根据直角三角形的性质,因为∠B=30°,可得AC为斜边AB的一半,结合题意,即可得出AB=2AC=4.解答:解:在△ABC中,∠C=90°,∠B=30°,AC=2,故有AB=2AC=4.故答案为:4.点评:本题主要考查了含30°角的直角三角形的性质,即30°所对的直角边等于斜边的一半.13.(2009?徐汇区一模)如图,在△ABC中,AB=AC=4,∠A=30°,那么S△ABC= 4 .考点:含30度角的直角三角形;三角形的面积.3824674 专题:计算题.分析:过B作BD⊥AC于D,根据含30度角的直角三角形性质求出BD,根据三角形面积公式求出即可.解答:解:过B作BD⊥AC于D,∵BD⊥AC,∴∠ADB=90°,∵∠A=30°,∴BD=AB=×4=2,∴S△ABC=AC×BD=×4×2=4,故答案为:4.点评:本题主要考查对含30度角的直角三角形,三角形的面积等知识点的理解和掌握,能求出高BD的长是解此题的关键.14.(2009?滕州市一模)已知等腰三角形一腰上的高线等于腰长的一半,那么这个等腰三角形的顶角等于30°或150°.考点:含30度角的直角三角形;等腰三角形的性质.3824674 专题:计算题;分类讨论.分析:题中只说明是等腰三角形没有指明是锐角三角形还是钝角三角形,所以应该分两情况进行分析.解答:解:①如图,△ABC中,AB=AC,CD⊥AB且CD=AB,∵△ABC中,CD⊥AB且CD=AB,AB=AC,∴CD=AC,∴∠A=30°.②如图,△ABC中,AB=AC,CD⊥BA的延长线于点D,且CD=AB,∵∠CDA=90°,CD=AB,AB=AC,∴CD=AC,∴∠DAC=30°,∴∠A=150°.故答案为:30°或150°.点评:此题主要考查等腰三角形的性质及含30度的直角三角形的性质的综合运用,注意分类讨论思想的运用.15.(2009?上海一模)在△ABC中,已知AB=4,BC=10,∠B=30°,那么S△ABC=10 .考点:含30度角的直角三角形.3824674分析:作BC边上的高AD,根据直角三角形30°所对的直角边等于斜边的一半,求出AD,根据三角形的面积公式即可求出.解答:解:如图,过A作AD⊥BC于D,∵AB=4,∠B=30°,∴AD=AB=2,又BC=10,∴S△ABC=BC?AD=×10×2=10.点作BC边上的高,构造直角三角形,再利用30°角所对的直角边等于斜边的一评:半的性质求出高.16.(2008?上海模拟)在△ABC中,AB=AC=4cm,∠A=30°,那么腰AB上的高为 2 cm.考点:含30度角的直角三角形.3824674分析:作出图形,然后根据30°角所对的直角边等于斜边的一半解答.解答:解:如图,∵AC=4cm,∠A=30°,∴AB边上的高CD=AC=×4=2cm.故答案为:2.点评:本题考查了直角三角形30°角所对的直角边等于斜边的一半的性质,熟记性质是解题的关键,作出图形更形象直观.17.(2008?南汇区一模)在Rt△ABC中,∠C=90°,AB=4,AC=2,D是边BC上一点,且AD=BD,那么CD=.考点:含30度角的直角三角形;线段垂直平分线的性质.3824674 专题:计算题.分析:作出草图,根据直角三角形30°角所对的直角边等于斜边的一半求出∠B=30°,然后求出∠CAB=60°,再根据等边对等角的性质求出∠DAB=30°,从而得到∠CAD=30°,在Rt△ACD中,利用勾股定理列式求解即可得到CD的长度.解答:解:如图,∵∠C=90°,AB=4,AC=2,∴∠B=30°,∴∠CAB=90°﹣30°=60°,∵AD=BD,∴∠DAB=∠B=30,∴∠CAD=60°﹣30°=30°,∴AD=2CD,在Rt△ACD中,AD2=AC2+CD2,∴(2CD)2=22+CD2,解得CD=.故答案为:.点评:本题主要考查了30°角所对的直角边等于斜边的一半的性质,等边对等角的性质,作出图形,利用数形结合的思想求解更形象直观,有利于问题的解决.18.(2007?晋江市质检)如图,∠AOB=30°,射线OA上有一动点H(点H不与点O重合),PH⊥OA交OB于点P,线段PH沿着射线OA方向平移,则线段OP 与线段PH之间始终存在数量关系:OP= 2 PH.考点:含30度角的直角三角形.3824674专题:动点型.分析:由于∠AOB=30°,根据30°所对的直角边是斜边的一半,可得OP=2PH.解答:解:如图,∵∠AOB=30°,PH⊥OA交OB于点P,∴OP=2PH.故填:2.点评:此题考查了直角三角形的性质:30°所对的直角边是斜边的一半.19.(2005?松江区二模)已知在△ABC中,∠ACB=90°,∠B=30°,AB=2,则AC= 1 .考点:含30度角的直角三角形.3824674分析:作出草图,根据直角三角形30度角所对的直角边等于斜边的一半求解即可.解答:解:如图,∵∠ACB=90°,∠B=30°,AB=2,∴AC=AB=×2=1.故答案为:1.点评:本题主要考查了含30度角的直角三角形的边的关系,作出草图,数形结合更形象直观.20.如图,Rt△ABC≌Rt△A′B′C′,∠A=∠A′=30°.观察分析图形,把你发现的正确结论至少写出三个.BC=B′C′,∠B=∠B′,AC′=A′C(答案不唯一).考点:全等三角形的性质;含30度角的直角三角形.3824674专题:开放型.分析:根据全等三角形对应边相等,对应角相等,直角三角形30°角所对的直角边等于斜边的一半解答即可.解答:解:∵Rt△ABC≌Rt△A′B′C′,∴AC=A′C′,AB=A′B′,BC=B′C′,∠B=∠B′,∴AC﹣CC′=A′C′﹣CC′,即AC′=A′C,∵∠A=∠A′=30°,∴BC=AB,B′C′=A′B′,所以,正确的结论有:AC=A′C′,AB=A′B′,BC=B′C′,∠B=∠B′,AC′=A′C,BC=AB,B′C′=A′B′(任写三个即可).故答案为:BC=B′C′,∠B=∠B′,AC′=A′C(答案不唯一).点评:本题考查了全等三角形的性质,30°角所对的直角边等于斜边的一半的性质,是基础题,熟记性质是解题的关键,是开放型题目,答案不唯一.21.如图,在△ABC中,∠C=90°,∠A=30°,∠ABC的平分线交AC于D,过D作DE⊥AB于E,若CD=4cm,则AC= 12cm .考点:角平分线的性质;含30度角的直角三角形.3824674 专题:计算题.分析:根据角平分线的性质易得DE=DC=4cm,然后在Rt△AED中根据含30°的直角三角形三边的关系可得到AD,利用AC=AD+DC即可得到答案.解答:解:∵DB平分∠ABC,∠C=90°,DE⊥AB,∴DE=DC=4cm,在Rt△AED中,∠A=30°,∴AD=2DE=8cm,∴AC=AD+DC=12cm.故答案为12cm.点评:本题考查了角平分线的性质:角平分线上的点到角的两边的距离相等.也考查了含30°的直角三角形三边的关系.22.AD是△ABC的角平分线,若∠BAC=60°,AD=8cm,AC=10cm,则△ACD的面积是20 cm2.考点:角平分线的性质;含30度角的直角三角形.3824674分析:首先根据题意作图,然后过点D作DE⊥AC于E,由AD是△ABC的角平分线,∠BAC=60°,即可求得∠DAC的度数,又由AD=8cm,即可求得DE的长,继而可得△ACD的面积.解答:解:过点D作DE⊥AC于E,∵AD是△ABC的角平分线,∠BAC=60°,∴∠DAC=∠BAC=30°,在Rt△ADE中,DE=AD=×8=4(cm),∴S△ACD=AC?DE=×4×10=20(cm2).故答案为:20.点评:此题考查了角平分线的性质与直角三角形的性质.此题难度不大,解题的关键是注意数形结合思想的应用,注意辅助线的作法.23.如图,在△ABC中,∠ACB=90°,AB的垂直平分线DE交AB于E,交AC于D,∠DBC=30°,BD=4.6,则D到AB的距离为 2.3 .考点:线段垂直平分线的性质;角平分线的性质;含30度角的直角三角形.3824674分析:先根据线段的垂直平分线的性质得到DB=DA,则有∠A=∠ABD,而∠C=90°,∠DBC=30°,利用三角形的内角和可得∠A+∠ABD=90°﹣30°=60°,得到∠ABD=30°,在Rt△BED中根据含30°的直角三角形三边的关系即可得到DE= BD=2.3cm.解答:解:∵DE垂直平分AB,∴DB=DA,∴∠A=∠ABD,∵∠C=90°,∠DBC=30°,∴∠A+∠ABD=90°﹣30°=60°,∴∠ABD=30°,在Rt△BED中,∠EBD=30°,BD=4.6,∴D E=BD=2.3,即D到AB的距离为2.3.故答案为2.3.点评:本题考查了线段的垂直平分线的性质:线段垂直平分线上的点到线段两端点的距离相等.也考查了含30°的直角三角形三边的关系.24.如图,在△ABC中,∠C=90°,∠B=30°,AB的垂直平分线交BC于点D,交AB于点E,CD=2,则BC= 6 .考点:线段垂直平分线的性质;含30度角的直角三角形.3824674分析:首先根据三角形内角和计算出∠CAB的度数,再根据线段垂直平分线的性质可得AD=BD,进而计算出∠CAD的度数,然后根据直角三角形的性质可以计算出AD的长度,进而得到BD的长度,从而得到BC的长.解答:解:∵在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°,∵AB的垂直平分线交BC于点D,∴AD=BD,∴∠B=∠DAB=30°,∴∠DAC=30°,∵CD=2,∴AD=4,∴BD=4,∴CB=4+2=6,故答案为:6.点评:此题主要考查了线段垂直平分线的性质,以及直角三角形的性质,关键是掌握线段垂直平分线上的点到线段两端点距离相等.25.如图,在Rt△ABC中,∠B=90°,∠A=30°,DE垂直平分AC,交AC于点E,交AB于点D,连接CD.若AD=4cm,则DB的长是2cm .考点:线段垂直平分线的性质;含30度角的直角三角形.3824674分析:由DE垂直平分AC,根据线段垂直平分线的性质,可求得CD=AD=4cm,又由等边对等角,可求得∠ACD的度数,继而求得∠BCD的度数,然后由含30°角的直角三角形的性质,求得DB的长.解答:解:∵DE垂直平分AC,AD=4cm,∴CD=AD=4cm,∴∠ACD=∠A=30°,∵在Rt△ABC中,∠B=90°,∠A=30°,∴∠ACB=90°﹣∠A=60°,∴∠BCD=∠ACB﹣∠ACD=30°,∴BD=CD=2(cm).故答案为:2cm.点评:此题考查了线段垂直平分线的性质、等腰三角形的性质以及含30°角的直角三角形的性质.此题难度不大,注意掌握数形结合思想的应用.26.如图,∠ACD=90°,∠D=15°,B点是边AD的垂直平分线与CD的交点,若AC=3,则BD= 6 .考点:线段垂直平分线的性质;含30度角的直角三角形.3824674分析:由B点是边AD的垂直平分线与CD的交点,根据线段垂直平分线的性质,可得AB=BD,继而可求得∠BAD=∠D=15°,然后又三角形外角的性质,求得∠ABC 的度数,继而求得BD的长.解答:解:∵B点是边AD的垂直平分线与CD的交点,∴AB=BD,∴∠BAD=∠D=15°,∴∠ABC=∠BAD+∠D=30°,∵∠ACD=90°,AC=3,∴AB=2AC=6,∴BD=6.故答案为:6.点评:此题考查了线段垂直平分线的性质、等腰三角形的性质以及含30°角的直角三角形的性质.此题难度不大,注意掌握数形结合思想的应用.27.如图,在△ABC中,AB=AC,∠B=30°,AB的垂直平分线EF交AB于点E,交BC于点F,EF=2,则BC的长为12 .考线段垂直平分线的性质;等腰三角形的性质;含30度角的直角三角形.点: 3824674 专题:计算题.分析:连接AF,根据等腰三角形性质求出∠C=∠B=30°,根据线段垂直平分线求出AF=BF=2EF=4,求出CF=2AF=8,即可求出答案.解答:解:连接AF,∵AC=AB,∴∠C=∠B=30°,∵EF是AB的垂直平分线,∴AF=BF,∴∠B=∠FAB=30°,∴∠CFA=30°+30°=60°,∴∠CAF=180°﹣∠C﹣∠CFA=90°,∵EF⊥AB,EF=2,∴AF=BF=2EF=4,∵∠C=30°,∠CAF=90°,∴CF=2AF=8,∴BC=CF+BF=8+4=12,故答案为:12.点评:本题考查了等腰三角形性质,线段垂直平分线性质,含30度角的直角三角形性质等知识点的应用,关键是求出CF和BF的长,题目比较典型,难度不大二.解答题(共3小题)28.(2013?温州)如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.考点:全等三角形的判定与性质;角平分线的性质;含30度角的直角三角形.3824674分析:(1)根据角平分线性质求出CD=DE,根据HL定理求出另三角形全等即可;(2)求出∠DEB=90°,DE=1,根据含30度角的直角三角形性质求出即可.解答:(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=ED,∠DEA=∠C=90°,∵在Rt△ACD和Rt△AED中∴Rt△ACD≌Rt△AED(HL);(2)解:∵DC=DE=1,DE⊥AB,∴∠DEB=90°,∵∠B=30°,∴BD=2DE=2.点评:本题考查了全等三角形的判定,角平分线性质,含30度角的直角三角形性质的应用,注意:角平分线上的点到角两边的距离相等.29.(2004?呼和浩特)如图,在△ABC中,BA=BC,∠B=120°,AB的垂直平分线MN交AC于D,求证:AD=DC.考点:含30度角的直角三角形;线段垂直平分线的性质.3824674专题:证明题;压轴题.分析:连接BD,根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,然后求出∠A=∠C=∠ABD=30°,再求出∠DBC=90°,再根据直角三角形30°所对的直角边等于斜边的一半即可得证.解答:解:如图,连接DB.∵MN是AB的垂直平分线,∴AD=DB,∴∠A=∠ABD,∵BA=BC,∠B=120°,∴∠A=∠C=(180°﹣120°)=30°,∴∠ABD=30°,又∵∠ABC=120°,∴∠DBC=120°﹣30°=90°,∴BD=DC,∴AD=DC.点评:本题考查了30°角所对的直角边等于斜边的一半的性质,线段垂直平分线上的点到线段两端点的距离相等的性质,作出辅助线构造出直角三角形是解题的关键.30.(1997?南京)已知:如图,边长为2的等边三角形ABC,延长BC到D,使CD=BC,延长CB到E,使BE=CB,求△ADE的周长.考点:等边三角形的性质;含30度角的直角三角形.3824674 专题:压轴题.分析:根据已知条件和等边三角形的性质求出∠EAC=90°,再根据勾股定理求出AE 的长,从而得出AD的长,即可得出△ADE的周长.解答:证明:∵△ABC是等边三角形,边长为2,∴∠ABC=∠ACB=60°,AB=CB=AC=2,∴∠E+∠EAB=∠ABC=60°,∵BE=CB,∴AB=BE,EC=EB+BC=4,∴∠E=∠EAB=30°,∴∠EAC=90°,∴AE==2,同理可得:AD=2,∵DE=3BC=6,∴△AD E的周长是6+2 +2=6+4.点评:此题考查了等边三角形的性质和勾股定理,根据等边三角形的性质和已知条件找出图中的直角三角形是解题的关键.。

北师大版八年级数学下册专题复习思维特训(二) 巧用30 °角的直角三角形解题

思维特训(二)巧用30 °角的直角三角形解题方法点津·30°的角是一个特殊的角,它具有一个特殊的性质,即“在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.”这一性质在各类考试中经常考查,利用它的关键是设法构造出含有30°角的直角三角形,再利用它的性质解题.典题精练·类型之一无须构造,直接运用含30°角的直角三角形的性质解题1.如图2-TX-1①,某温室屋顶结构外框为△ABC,立柱AD垂直平分横梁BC,∠B=30°,斜梁AC=4 m.为增大向阳面的面积,将立柱增高并改变位置,使屋顶结构外框变为△EBC(点E在BA的延长线上),立柱EF⊥BC,如图2-TX-1②所示.若EF=3 m,则斜梁增加部分AE的长为()图2-TX-1A.0.5 m B.1 m C.1.5 m D.2 m2.如图2-TX-2,一块含有30°角(∠ABC=30°,∠ACB=90°)的木制三角板是由三块宽度相等的木条拼合而成的.若木条的宽度为5 cm,求制作时拼合缝AA′的长.图2-TX-23.如图2-TX-3,在△ABC中,∠C=90°,∠B=30°,AB=4 3,AD平分∠BAC,交BC于点D.求AD的长.图2-TX-34.如图2-TX-4,在等边三角形ABC中,AB=2,P是AB边上任意一点(点P可以与点A重合),过点P作PE⊥BC,垂足为E,过点E作EF⊥AC,垂足为F,过点F作FQ ⊥AB,垂足为Q.求当BP的长等于多少时,点P与点Q重合.图2-TX-45.如图2-TX-5,已知某船于上午8点在A处观测小岛C在北偏东60°方向上.该船以每小时40海里的速度向东航行到B处,此时测得小岛C在北偏东30°方向上.该船以原速度继续向东航行2小时到达小岛C的正南方D点.求船从A到D一共走了多少海里.图2-TX-5类型之二作辅助线构造含有30°角的直角三角形解题6.设计一张折叠型方桌如图2-TX-6,若AO=BO=50 cm,CO=DO=30 cm,将桌子放平后,要使B距离地面的高度为40 cm,则两条桌腿需要叉开的∠AOB的度数为()图2-TX-6A.60°B.90°C.120°D.150°7.在△ABC中,已知AB=4,BC=10,∠B=30°,则△ABC的面积为__________.8.如图2-TX-7,在△ABC中,AD交边BC于点D,∠BAD=15°,∠ADC=4∠BAD,DC=2BD.(1)求∠ABC的度数;(2)求证:∠CAD =∠ABC .图2-TX -79.如图2-TX -8,某气象站测得台风中心在A 城正西方向300 km 的B 处,以每小时10 7 km 的速度向北偏东60°的BF 方向移动.已知距台风中心200 km 的范围是受台风干扰的区域,则A 城是否会受到此次台风的干扰?为什么?若会受到台风干扰,求出A 城受台风干扰的时间.图2-TX -8类型之三 与含有30°角的直角三角形有关的分类讨论题10.已知等腰三角形的腰长为10厘米,一腰上的高为5厘米,则这个等腰三角形的顶角为____________.11.学习了三角形后,八(6)班的王老师出了这样一道题让同学们讨论:“已知一个三角形的两边长分别是6 cm 和5 cm ,其中一个内角是30°,求这个三角形的面积.”于是得到很多结果:甲同学认为面积应该是152 cm 2,乙同学认为面积应该是3(3 3-4)2cm 2,而丙同学认为面积应该是3(3 3+4)2 cm 2等,你认为他们的说法全面吗?若你有不同的结论,请你用所学的数学知识求出其面积.详解详析1.D [解析] ∵立柱AD 垂直平分横梁BC ,∴AB =AC =4 m .∵∠B =30°,∴BE =2EF =6 m ,∴AE =BE -AB =6-4=2(m).2.解:如图,过点A ′分别作A ′D ⊥AC 于点D ,A ′E ⊥AB 于点E .A ′D =A ′E ,∴AA ′平分∠CAB . ∵∠ABC =30°,∠ACB =90°,∴∠CAB =60°, ∴∠DAA ′=30°.∵∠ADA ′=90°,∴DA ′=12AA ′.∵木条的宽度为5 cm ,∴DA ′=5 cm ,∴AA ′=10 cm.3.解:在Rt △ABC 中,∠B =30°,AB =4 3, ∴∠BAC =60°,AC =12AB =2 3.又∵AD 平分∠BAC , ∴∠DAC =12∠BAC =30°.在Rt △ACD 中,∠DAC =30°,AC =2 3, 设AD 的长为x ,则CD 的长为x2.由勾股定理,得x 2=⎝⎛⎭⎫x 22+(2 3)2. ∵x >0,解得x =4,∴AD 的长为4.4.解:设BP =x .∵△ABC 是等边三角形,∴AB =BC =AC =2,∠ABC =∠ACB =∠BAC =60°. 在Rt △PBE 中,∵∠BPE =90°-∠ABC =90°-60°=30°, ∴BE =12BP =12x ,则EC =2-12x .在Rt △EFC 中,∠FEC =90°-∠ACB =90°-60°=30°, ∴FC =12EC =1-14x ,∴AF =2-FC =2-(1-14x )=1+14x .同理:AQ =12AF =12+18x .当点P 与点Q 重合时,BP +AQ =2,即x +(12+18x )=2,解得x =43.故当BP =43时,点P 与点Q 重合.5.解:由题意,得∠CAD =30°,∠CBD =60°, ∴∠BCD =30°,∴BC =2BD .∵船从B 到D 航行了2小时,船速为每小时40海里, ∴BD =80海里,∴BC =160海里.由∠CBD =60°,∠CAD =30°,得∠ACB =30°, ∴AB =BC ,即AB =160海里.∵AD =AB +BD ,∴AD =160+80=240(海里). 因此船从A 到D 一共走了240海里.6.C [解析] 如图,过点D 作DE ⊥AB 于点E .∵AD =50+30=80(cm),DE =40 cm ,∴∠A =30°. ∵AO =BO ,∴∠B =∠A =30°,∴∠AOB =180°-30°-30°=120°.故选C.7.10 [解析] 如图所示,过点A 作AD ⊥BC 于点D .∵AB =4,∠B =30°,∴AD =12AB =2.又∵BC =10,∴S △ABC =12BC ·AD =12×10×2=10.8.解:(1)∵∠BAD =15°,∠ADC =4∠BAD ,∴∠ADC =60°,∴∠ABC =60°-15°=45°.(2)证明:如图,过点C 作CE ⊥. 由(1)知∠ADC =60°,∴∠ECD =90°-60°=30°,∴DC =2ED . ∵DC =2BD ,∴ED =BD ,∴∠DBE =∠DEB =12∠ADC =30°,∴∠ECD =∠DBE ,∠EBA =45°-30°=15°=∠BAD , ∴AE =CE =BE ,∴△AEC 为等腰直角三角形, ∴∠CAD =45°,∴∠CAD =∠ABC . 9.解:A 城会受到此次台风的干扰.理由:如图,过点A 作AM ⊥BF 于点M ,则 ∠AMB =90°.∵∠FBA =90°-60°=30°, ∴AM =12AB =12×300=150(km).∵150<200,∴A 城会受到此次台风的干扰.以A 为圆心,200 km 为半径作弧交BF 于C 1,C 2两点,连接AC 1,AC 2,则AC 1=AC 2. ∵AM ⊥BF ,∴C 1C 2=2C 1M .在Rt △AMC 1中,有C 1M =2002-1502=50 7(km), ∴C 1C 2=100 7 km , ∴A 城受台风干扰的时间为100 710 7=10(时). 10.30°或150°[解析] (1)如图①所示,在△ABC 中,AB =AC =10厘米,CD ⊥AB 于点D ,CD =5厘米. ∵在Rt △ACD 中,CD =12AC ,∴∠A =30°.(2)如图②所示,在△ABC =交BA 的延长线于点D ,且CD =5厘米.∵∠CDA =90°,CD =12AC ,∴∠DAC =30°,∴∠BAC =150°.故答案为30°或150°.11.解:不全面,应该有四种情况.(1)如图①所示,在△ABC 中,AC =5 cm ,AB =6 cm ,∠A =30°. 过点C 作CD ⊥AB 于点D .在Rt △ACD 中,CD =12AC =52 cm ,∴S △ABC =12AB ·CD =12×6×52=152(cm 2);(2)如图②所示,在△ABC 中,AB =6 cm ,BC =5 cm ,∠A =30°.过点B 作BD ⊥AC 于点D .在Rt △ABD 中,BD =12AB =3 cm ,∴AD =3 3 cm ,在Rt △BDC 中,CD =BC 2-BD 2=52-32=4(cm),∴S △ABC =12AC ·BD =12×(3 3+4)×3=3(3 3+4)2(cm 2);(3)如图③所示,在△ABC 中,AB =6 cm ,BC =5 cm ,∠A =30°.过点B 作BD ⊥AC 交AC 的延长线于点D .在Rt △ABD 中,BD =12AB =3 cm ,∴AD =3 3 cm ,在Rt △BDC 中,CD =BC 2-BD 2=52-32=4(cm), ∴S △ABC =12AC ·BD =12×(3 3-4)×3=3(3 3-4)2(cm 2);(4)如图④所示,在△ABC 中,AB =5 cm ,BC =6 cm ,∠A =30°.过点B 作BD ⊥AC 于点D .在Rt △ABD 中,BD =12AB =52 cm ,∴AD =52 3 cm.在Rt △BDC 中, CD =BC 2-BD 2=62-(52)2=1192(cm),∴S △ABC =12AC ·BD =12×(52 3+1192)×52=5(5 3+119)8(cm 2).。

巧用特殊角构造30的直角三角形

巧用特殊角构造30的直角三角形
教学重点
构造30°的直角三角形,利用“在直角三角形中,如果一个锐角等于30°,那么它所对的直角边ቤተ መጻሕፍቲ ባይዱ于斜边的一半.”来解决与线段长有关的问题
教学过程
一、连接两点构造30°的直角三角形
1、如图,△ABC中,AB=AC,∠BAC=120°,AC的垂直平分线交BC于D,交AC于E,DE=2,求BC的长。
5、如图,点P是△ABC的边BC上一点,PC=2PB,∠ABC=45°,∠APC=60°,_求∠ACB的度数。
2、如图,△ABC中,AB=AC,∠BAC=120°,D为BC的中点,DE⊥AC于E,AE=2,求CE的长。
二、延长两边构造30°的直角三角形
3、如图,四边形ABCD中,AD=4,BC=1,∠A=30°,∠B=90°,∠ADC=120°,求CD的长。
三、作垂线构造30°的直角三角形
4、如图,△ABC中,BD是AC边上的中线,BD⊥BC于点B,∠ABD=30°,求证:AB=2BC

含30°角的直角三角形的性质 教案 2023--2024学年人教版八年级数学上册

13.3.2 等边三角形第2课时含30°角的直角三角形的性质教学内容第2课时含30°角的直角三角形的性质课时1核心素养目标1.会用数学的眼光观察现实世界:通过实际生活中的例子,启发学生思考,培养学生数学抽象的思考能力,感悟数学知识在实际生活中的应用.2.会用数学的思维思考现实世界:用生活情境导入,提高学生的分析问题和用数学语言总结生活问题的能力,让学生体会数学的应用价值,培养类比、分类讨论的数学思维.3.会用数学的语言表示现实世界:通过对用含30°角的直角三角形的性质的学习,在经历猜想、验证、归纳的学习过程中,体会归纳的数学思想方法,逐步养成用数学语言表达与交流的习惯,感悟数据的意义与价值.知识目标1.探索并证明含30°锐角的直角三角形的性质.2.能运用含30°角的直角三角形的性质解决简单的实际问题.教学重点探索并证明含30°锐角的直角三角形的性质.教学难点能运用含30°锐角的直角三角形的性质解决简单的实际问题.教学准备课件教学过程主要师生活动设计意图一、情境导入二、探究新知一、创设情境,导入新知新课导入:如图是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC,DE垂直于横梁AC,AB = 7.4 m,∠A = 30°,立柱BC,DE的长是多少?师生活动:教师引导学生把实际生活问题数学抽象成探究在含有30°角的直角三角形中,边长之间的关系.并启发学生思考.二、小组合作,探究概念和性质知识点:含30°角的直角三角形的性质活动一剪一张等边三角形纸片,沿一边上的高对折,如图所示,你有什么发现?师生活动:教师留时间给学生制作等边三角形的纸片和进行其他操作,并引导学生总结出:等边三角性的高左右两边完全重合.设计意图:通过实际生活中的例子,启发学生思考,培养学生数学抽象的思考能力,感悟数学知识在实际生活中的应用.设计意图:让学生自己制作等边三角形,从而制作出含30°锐角的直角三角形,直观的操作让学生更容易观察出含30°锐角的直角三角形的部分特征,并且能够很自然的联想到可以类比探究等边三角形的性质探究它.激发学生自主学习的精神习惯.活动二剪下这个直角三角形,分组探究它的性质.师生活动:学生完成操作,并在教师的引导下,从三角形的边、角、对称性探究. 根据等边三角形三线合一的性质得出所得的三角形有一个角是30°,且∠A+∠B = 90°,并且不具有对称性,但是对于这个直角三角形的边的探究学生们没有头绪.追问:你能类比探究等边三角形的性质探究它吗?师生活动:教师让学生折叠手中的含30°锐角的直角三角形,让学生观察看看是否能得出怎么猜想.学生积极发言,教师总结猜想.动手实践:在Rt△ABC中,已知∠C = 90°,∠A = 30°.证明:BC = AB.师生活动:通过刚才动手折叠和教师的启发,学生想到可以添加线段AB的中线这条辅助线来帮助证明.学生独立完成证明过程,请一名学生板书,教师规范答题.师总结:这种证明方法叫做中线法.例1如图是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC,DE垂直于横梁AC,AB = 7.4 m,∠A = 30°,立柱BC,DE的长是多少?师生活动:教师分析解题思路,学生独立完成证明. 设计意图:用完整的数学证明过程证明判定定理,让学生感悟数学的严谨性.设计意图:本题回顾导入,是对含30°角的直角三角形性质的简单运用,再次巩固所学知识,提高解决问题的能力.三、当堂练习,巩固所学中考链接:1.(广州)如图,在Rt△ABC中,∠A =30°,线段AB的垂直平分线分别交AC、AB于点D、E,连接BD,则CD =1,则AD的长为_____.师生活动:学生独立完成并作答,点一名学生说出答案.三、当堂练习,巩固所学1.在Rt△ABC中,∠ACB = 90°,∠A = 30°,CD⊥AB,垂足为D,BD = cm,那么∠BCD= _____°,AB = ___cm.2.如图,∠BAD = ∠DCB = 90°,AD = CB,AB =3cm,∠2 = 15°.(1) 求证△BED是等腰三角形;(2) 求△BED的面积.2.如图,在等边三角形ABC中,点D、E分别在边AC、BC上,将△CED沿着DE折叠,使点C落在边AB上的点F处,且DF⊥AB,求证:BF = 2BE.拓展活动按步骤折纸,完成下列探究:设计意图:巩固所学知识,同时提高分析问题、解决问题的能力.体会中考难度.设计意图:考查学生对含30°角的直角三角形性质的掌握.设计意图:考查学生运用含30°角的直角三角形性质解决数学问题的能力.设计意图:巩固本节课所学的知识,锻炼和培养学生综合运用含30°角的直角三角形性质进行证明和计算的能力.设计意图:对于有余力的同学,运用活动猜想证明的方式,锻炼和培养学生综合运用含30°角的直角三角形性质进行证明和计算的能力.DE BCAFAB CED猜想:(1)步骤三中,∠GAB = _____°;(2)步骤四中,(2)△AHI是_____________.论证:请证明你得到的两个结论.板书设计含30°角的直角三角形的性质性质1:直角三角形的两个锐角互补.性质2:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.课后小结教师与学生一起回顾本节课所学的主要内容,梳理并完善知识思维导图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
构造含30°角的直角三角形解题
山东 李树臣
30︒的角是一个特殊的角,它具有一个特殊的性质,即“在直角三角形中,如果一个锐
角等于30︒,那么它所对的直角边等于斜边的一半.”这一性质在各类考试中经常出现,利用它的关键是设法构造出含有30︒角的直角三角形.本文列举几例,以说明怎样通过添加辅助线构造出含30︒角的直角三角形.
例1 如图1,在A B C △
中,30B AC ∠=︒=,,
等腰直角三角形A C D 的斜边A D 在A B 边上,求B C 的长.
分析:本题含有30︒角的条件,因为只有在直角三角形中的30︒角才有上述的特殊性质,所以需作辅助垂线,构造出一个含有30︒角的直角三角形来,这是解决本体的关键所在.
解:过点C 作C E A B ⊥,垂足为E .因为90A C C D A C D =∠=︒,,所以
2AD =
=,因为C E A B ⊥,AC D △是等腰直角三角形,所以
112
A E A D C E =
==。

在B C E Rt △中,

例2 在A B C △中,120A B A C A =∠=︒,,A B 的垂直平分线交B C 于点D ,交A B 于点E .如果1D E =,求B C 的长.
分析:根据题意,容易发现2B D =,如果连接A D ,则有2A D B D ==,而
24C D AD ==,所以B C 可求.
解:连接A D ,D E 垂直平分A B ,AD BD =∴,90D E B ∠=︒.A B A C = ,
120B A C ∠=︒,30B C ∠=∠=︒∴. 在BD E Rt △中1
3022
B D E B D B D ∠=︒==,
∴,∴.AD BD = ,
1203090BAD B D AC BAC BAD ∠=∠∠=∠-∠=︒-︒=︒∴,∴,而30C ∠=︒, 12
A D C D =
∴,224C D A D B D ===,故有:426B C C D B D =+=+=.
例3 如图3,60D AB C D AD C B AB ∠=︒⊥⊥,,,且21AB C D ==,,求A D 和
B C 的长.
分析:注意到条件6090D A B B ∠=︒∠=︒,,联想到含30︒角的直角三角形的性质,
延长A D 和B C ,就可以构造出两个含30︒角的直角三角形来.
解:延长A D ,B C 交于点E .
∵6090D A B B ∠=︒∠=︒,,30E ∠=︒∴,又C D A D ⊥,
9022CDE CE CD ∠===
∴,∴,
图3
A
D
E C
B
图2
2
DE ==

又3090E B ∠=︒∠=︒,, 24AE AB ==∴,
BE =
=∴,
42AD AE D E BC BE C E =-=-
=-=∴.
例4 如图4,在△ABC 中,BD =DC ,若AD ⊥AC ,∠BAD =30°.求证:AC =12
AB .
分析:由结论12
A C A
B =
和条件30BAD =
∠,就想到能否找到或构造直角三角形,
而显然图中没有含30°角的直角三角形,所以过B 作BE AD ⊥交A D 的延长线于点E ,
这样就得到了直角三角形A B E ,这是解决本题的关键.
证明:过B 作BE AD ⊥交A D 的延长线于E ,则90A E B ∠=︒.
1302B A D B E A B ∠=︒=
,∴.
90AD AC D AC ⊥∠=︒ ,∴, A E B D A C ∠=∠∴.
又B D C D B D E C D A =∠=∠,,
B E D
C A
D ∴△≌△, 12B
E C A A C A B ==
∴,∴.
A
B
C
E
D 图4。

相关文档
最新文档