数学归纳法单元测考试试题
(完整版)数学归纳法练习题.doc

2.3 数学归纳法第 1 课时 数学归纳法1.用数学 法 明“ 2n>n 2+1 于 n ≥n 0 的自然数 n 都成立” ,第一步明中的起始 n 0 取().A .2B . 3C . 5D .6解析 当 n 取 1、2、3、4 2n2+1 不成立,当 = ,5=2+ =>nn 5 232>5 126,第一个能使 2n>n 2+1 的 n5,故 C.答案 Cn + 3 n +42.用数学 法 明等式1+ 2+ 3+⋯+ (n + 3)=(n ∈ N + ), n2= 1 ,左 取的 是().A .1B . 1+ 2C .1+2+3D . 1+ 2+ 3+ 4解析 等式左 的数是从 1 加到 n +3.当 n =1 , n +3=4,故此 左 的数 从 1 加到 4. 答案 D1 11 (n ∈N + ),那么 f(n +1)- f(n)等于3. f(n)=1+2+3+⋯+-3n1().111A.3n +2B.3n + 3n +1C. 1 + 11 1 + 1 + + 2D.3n + + +2 3n 1 3n3n1 3n11 1 解析∵f(n)=1+2+3+⋯+,3n -11 11 111∵f(n + 1)=1+2+3+⋯++3n ++,3n -13n + 1 3n +2∴f(n + 1)-f(n)= 1 1 1+ +.3n 3n + 1 3n +2答案D4.用数学 法 明关于 n 的恒等式,当n =k ,表达式1×4+2×7+⋯+ k(3k +1)= k(k + 1)2, 当 n =k +1 ,表达式 ________.答案 1×4+2×7+⋯+ k(3k +1)+ (k +1)(3k +4)= (k +1)(k +2)2 5. 凸 k 形的内角和f(k), 凸 k + 1 形的内角和 f(k + 1)=f(k)+________.解析由凸 k 形 凸 k +1 形 ,增加了一个三角形 形,故f(k + 1)= f(k)+ π.答案 π 6.用数学 法 明:1 + 1+⋯+1=1+1+⋯+11×2 3×42n -1 ·2n n +1n +2n +n.明(1)当 n =1 ,左 =1=1,右 =1,等式成立.1×222 (2)假 当 n =k(k ∈N * ) ,等式成立,即111 111× + ×+⋯+-=+ k + +⋯+ 2k .1 2 3 4 2k 1·2k k + 1 2当 n =k +1 ,1 + 1+⋯+1 +1 1×2 3×42k - 1 ·2k 2k +1 2k +2=1+1+⋯+ 1 + 1k +1 k +2 2k2k + 1 2k + 2 = 1 + 1 1 + 1 1 1+⋯+ 2k + 1- 2k +2 +k +2 k +3 1 k=1+1+⋯+ 1 + 1 + 1k +2 k +32k2k +1+ 22k 1 111.即当 n =k +1=k +1 +1+k + 1 +2+⋯+k +1 +k+k + 1 + k +1 ,等式成立.根据 (1)(2)可知, 一切 n ∈N * ,等式成立.7.若命 A(n)(n ∈N * )在 n =k(k ∈N * ) 命 成立, 有 n =k + 1 命 成立.知命 n= n0(n0∈ N* )命成立,有().A.命所有正整数都成立B.命小于 n0的正整数不成立,大于或等于n0的正整数都成立C.命小于 n0的正整数成立与否不能确定,大于或等于n0的正整数都成立D.以上法都不正确解析由已知得 n=n0 0∈*) 命成立,有n=0+1命成立;在n(n N n= n0+1 命成立的前提下,又可推得n= (n0+1)+1 命也成立,依此推,可知 C.答案 C8.用数学法明 (n+1)(n+ 2)(n+3)⋯(n+n)=2n·1·3·⋯·(2n-1)(n∈N* ),从n=k 到 n = k+ 1,左增加的代数式( ).A.2k+1 B.2(2k+ 1)2k+1 2k+ 3C. k+ 1D. k+1解析n= k ,左= (k+ 1)(k+ 2)⋯(2k); n=k+1 ,左= (k+2)(k+3)⋯ (2k+ 2)=2(k+1)(k+2)⋯(2k)(2k+1),故 B.答案 B9.分析下述明 2+4+⋯+ 2n= n2+n+1(n∈N+ )的程中的:明假当 n=k(k∈N+ )等式成立,即2+ 4+⋯+ 2k=k2+k+1,那么 2 +4+⋯+ 2k+ 2(k+ 1)=k2+ k+1+2(k+1)=(k+1)2+(k+1)+1,即当 n=k +1 等式也成立.因此于任何 n∈N+等式都成立. __________________.答案缺少步奠基,上当n= 1 等式不成立10.用数学法明 (1+ 1)(2+2)(3+ 3)⋯(n+n)=2n-1·(n2+n),从 n=k 到 n = k+1 左需要添加的因式是________.解析当 n= k ,左端: (1+1)(2+2)⋯(k+k),当 n=k+ 1 ,左端: (1+1)(2+2) ⋯(k+k)(k+ 1+k+1),由 k 到 k+1 需添加的因式: (2k+2).答案2k+ 211.用数学法明2+22+⋯+n2=n n+12n+1 ∈*).16 (n N 明(1)当 n=1 ,左= 12=1,右=1× 1+ 1 × 2×1+16 = 1,等式成立.(2)假当 n=k(k∈N* )等式成立,即12+22+⋯+k2=k k+12k+16那么,12+ 22+⋯+ k2+(k+1)2=k k+1 2k+1+(k+1)26k k+ 1 2k+ 1 +6 k+1 2=6k+1 2k2+7k+6=6=k+1 k+2 2k+36=k+1 [ k+ 1 +1][2 k+ 1 +1],6即当 n=k+1 等式也成立.根据 (1)和 (2),可知等式任何n∈N*都成立.12.(新拓展 )已知正数数列n * n nn1n,用{a }( n∈ N )中,前 n 和 S ,且 2S = a +a数学法明: a n=--n n 1. 明 (1)当 n=1 .1 1a1= S1=2 a1+a1,2∴ a1=1(a n>0),∴ a1=1,又1-0=1,∴ n= 1 时,结论成立.(2)假设 n= k(k∈ N* )时,结论成立,即a k= k- k-1.当 n=k+ 1 时,a k+1= S k+1-S k=1a k+1+ 1 -1a k+1a a2 2k+ 1 k=1 k+1 1 1 k- k-1+ 12a +a k+1-2 k- k-1 1 1=2 a k+1+a k+1- k2∴ a k+1+2 ka k+1- 1= 0,解得 a k+1= k+1-k(a n>0),∴ n= k+1 时,结论成立.由 (1)(2)可知,对 n∈N*都有 a n=n-n-1.。
高二数学 数学归纳法训练题[整理二] 试题
![高二数学 数学归纳法训练题[整理二] 试题](https://img.taocdn.com/s3/m/1e240922a4e9856a561252d380eb6294dd882271.png)
高二数学 数学归纳法训练题训练题一1.n 为正偶数,用数学归纳法证明 )214121(2114131211nn n n +++++=-++-+- 时,假设已假设2(≥=k k n 为偶数〕时命题为真,那么还需要用归纳假设再证〔 〕A .1+=k n 时等式成立B .2+=k n 时等式成立C .22+=k n 时等式成立D .)2(2+=k n 时等式成立2.设)(21312111)(*∈+++++++=N n n n n n n f ,那么=-+)()1(n f n f 〔 〕A .121+nB .221+nC .221121+++n nD .221121+-+n n 3.用数学归纳法证明3)12(12)1()1(2122222222+=+++-++-+++n n n n n 时,由k n =的假设到证明1+=k n 时,等式左边应添加的式子是 〔 〕A .222)1(k k ++B .22)1(k k ++ C .2)1(+k D .]1)1(2)[1(312+++k k4.某个命题与正整数n 有关,假如当)(+∈=N k k n 时命题成立,那么可推得当1+=k n 时 命题也成立. 现当5=n 时该命题不成立,那么可推得〔 〕A .当n=6时该命题不成立B .当n=6时该命题成立C .当n=4时该命题不成立D .当n=4时该命题成立5.用数学归纳法证明“)12(212)()2)(1(-⋅⋅⋅⋅=+++n n n n n n〞〔+∈N n 〕时,从“1+==k n k n 到〞时,左边应增添的式子是 〔 〕A .12+kB .)12(2+kC .112++k k D .122++k k6.用数学归纳法证明“nn n n n 212111211214131211+++++=--++-+- 〞时, 由k n =的假设证明1+=k n 时,假如从等式左边证明右边,那么必须证得右边为〔 〕 A .1212111+++++k k k B .2211212111+++++++k k k kC .1212121+++++k k k D .22112121++++++k k k 二、填空题7.凸k 边形内角和为)(k f ,那么凸1+k 边形的内角为+=+)()1k f fk . 8.平面上有n 条直线,它们任何两条不平行,任何三条不一共点,设k 条这样的直线把平面分成)(k f 个区域,那么1+k 条直线把平面分成的区域数+=+)()1(k f k f .9.用数学归纳法证明“)(2221*+∈++≥N n n n n 〞时,第一步验证为 .10.用数学归纳法证明“当n 为正奇数时,nny x +能被y x +整除〞,当第二步假设)(12*∈-=N k k n 命题为真时,进而需证=n 时,命题亦真.11.用数学归纳法证明:)12(2)1()12)(12(532311222++=+-++⋅+⋅n n n n n n ; 12.用数学归纳法证明: 〔Ⅰ〕2974722--n n能被264整除;〔Ⅱ〕121)1(-+++n n a a能被12++a a 整除〔其中n ,a 为正整数〕13.用数学归纳法证明:〔Ⅰ〕n n ≤-+++++1214131211 ; 〔Ⅱ〕)1(11211112>>++++++n nn n n ; 14.设数列1212,2,}{--==n n n a p p a p a a 中,其中p 是不等于零的常数,求证:p 不在数列}{n a 中. 15.设数列2112183,163:}{-+==n n n x x x x ,其中*∈≥N n n ,2, 求证:对*∈N n 都有 〔Ⅰ〕210<<n x ; 〔Ⅱ〕1+<n n x x ; 〔Ⅲ〕n n x )21(21->.训练题二一、选择题1. 数列{}n a 的前n 项和)2(2≥⋅=n a n S n n ,而11=a ,通过计算,,,432a a a 猜测=n a ( )A .2)1(2+nB .)1(2+n nC .122-nD .122-n 2.数列{}n a 的通项公式∈+=n n a n()1(12N*〕,记)1()1)(1)(1()(321n a a a a n f ----= , 通过计算)4(),3(),2(),1(f f f f 的值,由此猜测=)(n f〔 〕A .)1(22++n nB .nn 42+ C .2)1(12+-n nD .)1(1++n n n3.数列{}n a 中,a 1=1,S n 表示前n 项和,且S n ,S n+1,2S 1成等差数列,通过计算S 1,S 2, S 3,猜测S n =〔 〕A .1212-+n n B .1212--n n C .nn n 2)1(+ D .1-121-n4.a 1=1,,,,01)(2)(,321211a a a a a a a a n n n n n n 计算且=++-->+++然后猜测=n a ( )A .nB .n2C .n 3D .n n -+35.设,20πθ<<,2,cos 211n n a a a +==+θ那么猜测=n a〔 〕A .n2cos2θB .12cos2-n θC .12cos2+n θD .n2sin2θ6.从一楼到二楼的楼梯一共有n 级台阶,每步只能跨上1级或者2级,走完这n 级台阶一共有)(n f种走法,那么下面的猜测正确的选项是〔 〕A .)3()2()1()(≥-+-=n n f n f n fB .)2()1(2)(≥-=n n f n fC .)2(1)1(2)(≥--=n n f n fD .)3()2()1()(≥--=n n f n f n f二、填空题:7.数列{}n a 中,,924,1111=+-=++n n n n a a a a a 且通过计算,,,432a a a 然后猜测=n a8.在数列{}n a 中,,)1(,111n n a n a a +==+通过计算,,,432a a a 然后猜测=n a 9.设数列{}n a 的前n 项和为S n ,S n =2n -a n 〔n ∈N +〕,通过计算数列的前四项,猜测 =n a 10.函数,22)(xx f -=记数列{}n a 的前n 项和为S n ,且2),1(1≥=n f a 当时, ),25(21)(22-+=-n n a f S n n 那么通过计算,,,321a a a 的值,猜测{}n a 的通项公式=n a三、解答题11.是否存在常数a ,b ,c ,使等式 ∈+++=+++⋅+⋅n c bn an n n n n 对)(12)1()1(32212222N +都成立,并证明你的结论.12.数列{}n a 的各项为正数,其前n 项和为S n ,又n n S a 与满足关系式:n n n S a S a S a S =++++++2424242211 ,试求{}n a 的通项公式.13.数列{}n a 的各项为正数,S n 为前n 项和,且)1(21nn n a a S +=,归纳出a n 的公式,并证明你的结论.14.数列{}n a 是等差数列,,2,131==a a 设∈=++++=-n k a a a a P n k n ,3(1931 N +〕, ∈-=++++=n n m a a a a Q m n ,24(1062 N +〕,问P n 与Q n 哪一个大?证明你的结论.15.数列{}n a :∈-==-n a p a a n n (1||,110N* ),10,<<p 〔Ⅰ〕归纳出a n 的公式,并证明你的结论; 〔Ⅱ〕求证:.01<<-n a p[参考答案] 答案与解析一一、二、7.π, 8.1+k , 9.当1=n 时,左边=4=右边,命题正确. 10.12+k11.当1+=k n 时,左边=)32(2)2)(1()32)(12()1()12(2)1(2+++=++++++k k k k k k k k k .12.〔Ⅰ〕当1+=k n 时,29748433)29747(4929747222)1(2)1(2⨯+⨯+--⨯=--++k k k k k)29747(49)9482(833)29747(49223422--⨯=⨯+⨯⨯+--⨯=-k k k k k )9482(26434⨯+⨯+-k 能被264整除,命题正确.〔Ⅱ〕1+=k n 时,2121212122)1(])1([)1()1(+-++++=++++-+++a a a a a a a a k k k k k k)1(])1([)1(211212++-+++=+-+a a a a a a k k k 能被12++a a 整除.13.〔Ⅰ〕当1+=k n 时,左边+≤-+++-+++=+k k k k )12121()121211(1 〔k k k 212121+++ 〕1212+=⋅+=k k k k=右边,命题正确〔Ⅱ〕1+=k n 时,左边>++++++++=))1(111(111222k k k k .)1)1(11111)12(1222>+--+=-+⋅++k k k k k k k14.先用数学归纳法证明p n n a n 1+=;假设001=⇒=⇒=p p np a n 与条件矛盾. 15.三小题都用数学归纳法证明: 〔Ⅰ〕︒1. 当1=n 时,210,16311<<∴=x x 成立; ︒2. 假设k n =时,210<<k x 成立,2k 项∴当1+=k n 时,21412183218321=⨯+<+=+k k x x ,而210,08311<<∴>>++k k x x ;由︒︒2,1知,对*∈N n 都有210<<n x .〔Ⅱ〕︒1. 当n =1时,1212832183x x x >>+= ,命题正确;︒2. 假设k n =时命题正确,即1+<k k x x ,当1+=k n 时,2211,0k k k k x x x x >∴>>++ ,1221221832183+++=+>+=∴k k k k x x x x ,命题也正确; 由︒1,︒2知对*∈N n 都有1+<n n x x .〔Ⅲ〕︒1. 当n =1时,11)21(21163->=x ,命题正确; ︒2. 假设k n =时命题正确,即k k x )21(21->∴当1+=k n 时,])21()21(41[2183])21(21[218321832221k k k k k x x +-⨯+=-⨯+>+=+ 1121)21(21)21()21(21+++->+-=k k k ,命题正确; 由︒1、︒2知对*∈N n 都有n n x )21(21->.答案与解析二一、 二、7.1256--n n 8.n ! 9.1212--n n 10.n+1 11.令n=1得24=++c b a ①, 令n=2得4424=++c b a ②,令n=3得7039=++c b a ③, 解①、②、③得a =3,b=11,c=10,记原式的左边为S n ,用数学归纳法证明猜测)10113(12)1(2+++=n n n n S n 〔证明略〕 12.计算得,6,4,2321===a a a 猜测n a n 2=,用数学归纳法证明〔证明略〕.13.∵;12)1(211;1)1(21222211111-=⇒+=+=⇒+==a a a a a a a a S ∵23)1(2123333-=⇒+=+a a a a ,…,猜测∈--=n n n a n (1N*〕.用数学归纳法证明〔略〕.14.∵,22+=n a n ∴,41232132132131101-+=++++++=-n P n n ;22212421224212142nn n Q n +=+-+++-⨯++-⨯= 计算得①当1≤n ≤3时,P n <Q n ;②猜测n ≥4时P n >Q n ,用数学归纳法证明,即证:当n ≥4时1(;1432+=+>k n n n 时用比拟法证〕15.〔Ⅰ〕∵pp p p p a p p p a a +-+-=-+--⋅=+-+-=+-=⇒=1)(111)(1,1)(111323220,…,猜测pp a nn +-+-=1)(1,数学归纳法证明〔略〕.〔Ⅱ〕∵,0)1()(11;0,1|)(|01>+--=+<∴<-<+p p p p a a p n n n n而 ∴.01,1<<-->n n a pp a 得励志赠言经典语录精选句;挥动**,放飞梦想。
数学归纳法练习题

数学归纳法练习题数学归纳法练习题1. 用数学归纳法证明:(1)1×4+2×7+3×10+…+n(3n +1)=n(n +1)2 (n ∈N *)。
(2)1+3+9+…+3)13(211-=-nn (n ∈N*)2.用数学归纳法证明下述不等式:).2,(10931312111≥∈>+++++++*n N n nn n n 且3.试比较2n 与(n +1)2的大小(n ∈N *),并用证明你的结论。
4. (1)用数学归纳法证明:)(53*∈+N n n n 能被6 整除. (2)求证n 333)2()1(++++n n (n ∈N *)能被9整除.5.数列{a n}满足S n=2n-a n(n∈N*).(1)计算a1,a2,a3,a4,并由此猜想通项公式a n;(2)用数学归纳法证明(1)中的猜想.6. 已知数列{b n }是等差数列,b 1=1,b 1+b 2+…+b 10=145. (1)求数列{b n }的通项公式b n ; (2)设数列{a n }的通项a n =log a (1+ nb 1)(其中a >0且a ≠1),记S n 是数列{a n }的前n 项和,试比较S n 与31log a b n +1的大小,并证明你的结论.参考答案1(1)、证明(1)当n=1时,左边=1×4=4,右边= 1×(1+1)2=4, 左边=右边,命题成立.(2)假设当)2(≥=k k n 时,命题成立,即: 1×4+2×7+3×10+…+k(3k +1)=k(k +1)2,则当n=k+1时, 1×4+2×7+3×10+…+k(3k +1)+(k+1)(3k+4)=k(k +1)2+(k+1)(3k+4)=(k+1)(k 2+4k+4)=(k+1)(k+2)2,即n=k+1命题成立.根据(1)(2)可知等式对任意的n ∈N *成立. (2)、证明(1)当n=1时,左边=1,右边=21(31-1)=1, 左边=右边,命题成立.(2)假设当)2(≥=k k n 时,命题成立,即:1+3+9+…3k-1=21(3k -1),则当n=k+1时,1+3+9+…+3k-1+3k =21(3k -1)+3k =21(3k+1-1),即n=k+1命题成立.根据(1)(2)可知等式对任意的n ∈N *成立.2.证明:(1)当n =2时,左边1096054605761514131=>=+++==右边,∴当n =2时,不等式正确;2. 假设当)2(≥=k k n 不等式正确,即109312111>+++++k k k ,则当1+=k n 时,左边331231131313121+++++++++++=k k k k k k >+- +++++++++++++=11331231131)31312111(k k k k k k k k 109)331231()331131(109332231131109>+-+++-++=+-++++k k k k k k k ,∴当1+=k n 时不等式也正确;根据??2,1知对任意的*∈N n ,且2≥n ,不等式都正确.3.解:当1n =时,224,2(1)n n <∴<+;2 249,2(1)n n n =<∴<+当时,;23816,2(1)nn n =<∴<+当时,;241625,2(1)nn n =<∴<+当时, 253236,2(1)nn n =<∴<+当时,;266449,2(1)nn n =>∴>+当时, 2712864,2(1)nn n =>∴>+当时,,所以,252(1)nn n ≤<+当时,;262(1)nn n ≥>+当时,猜想。
2#数学归纳法练习题(含答案)

2# 数学归纳练习题一、填空题1.平面内有n(n≥2)个圆心在同一直线l上的半圆,其中任何两个都相交,且都在直线l的同侧(如图),则这些半圆被所有的交点最多分成的圆弧的段数为________.2.设n∈N*,则4×6n+5n+1除以20的余数为________.3.用数学归纳法证明“1+2+3+…+n+…+3+2+1=n2(n∈N*)”时,从n=k到n=k+1时,该式左边应添加的代数式是________.4.用数学归纳法证明“对于足够大的正整数n,总有2n>n3”时,验证第一步不等式成立所取的第一个最小值n0应当是______.5.数列{a n}中,已知a1=2,a n+1=a n3a n+1(n∈N*),依次计算出a2,a3,a4后,归纳、猜测得出a n的表达式为________.二、解答题1.用数学归纳法证明:1-12+13-14+…+12n-1-12n=1n+1+1n+2+…+12n.2.用数学归纳法证明不等式:1n+1n+1+1n+2+…+1n2>1(n∈N*且n>1).2# 答案1.解析:设最多分成的圆弧的段数为f (n ),则由题图容易发现,f (2)=4=22,f (3)=9=32,f (4)=16=42.答案:n 22. 解析:取n =1,则4×6n +5n +1=24+25=49,被20除余数为9.答案:93. 解析:∵当n =k +1时,左边=1+2+…+k +(k +1)+k +…+2+1,∴从n =k 到n =k +1时,应添(k +1)+k =2k +1.答案:2k +14. 解析:n =1时,21>13,n =2,3,…,9时2n <n 3,n =10时,210=1 024>103,∴n 0=10.答案:105. 解析:a 1=2,a 2=27,a 3=213,a 4=219,猜测a n =26n -5.答案:a n =26n -5解答题1.证明:(1)当n =1时,左边=1-12=12,右边=12,命题成立. (2)假设当n =k 时命题成立,即1-12+13-14+…+12k -1-12kF =1k +1+1k +2+…+12k ,那么当n =k +1时,左边=1-12+13-14+…+12k -1-12k +12k +1-12k +2=1k +1+1k +2+…+12k +12k +1-12k +2=1k +2+1k +3+…+12k +1+12k +2. 上式表明当n =k +1时命题也成立.由(1)和(2)知,命题对一切自然数均成立.2. 证明:(1)当n =2时,不等式的左边为12+13+14=1312>1,故n =2时表达式成立; (2)假设当n =k (k >1,k ∈N *)时不等式成立,即1k +1k +1+1k +2+…+1k 2>1 那么,当n =k +1时,由k ≥2得1k +1+1k +2+…+1k 2+1k 2+1+1k 2+2+…+1 k +1 2>1-1k +1k 2+1+…+1k 2+2k +1>1-1k+⎣⎢⎡⎦⎥⎤1 k +1 2+1 k +1 2+…+1 k +1 2=1-1k +2k +1 k +1 2=1+k 2- k +1 k +1 2 当k ≥2时,k 2-k -1>0成立,故当n =k +1时不等式也成立根据(1)和(2)可知,当n >1,n ∈N *时不等式都成立.。
(完整版)数学归纳法测试题及答案

选修2-2 2. 3 数学归纳法一、选择题1.用数学归纳法证明1+12+13+…+12n -1<n (n ∈N *,n >1)时,第一步应验证不等式( ) A .1+12<2 B .1+12+13<2 C .1+12+13<3 D .1+12+13+14<3 [答案] B[解析] ∵n ∈N *,n >1,∴n 取第一个自然数为2,左端分母最大的项为122-1=13, 2.用数学归纳法证明1+a +a 2+…+an +1=1-a n +21-a(n ∈N *,a ≠1),在验证n =1时,左边所得的项为( ) A .1 B .1+a +a 2 C .1+a D .1+a +a 2+a 3[答案] B[解析] 因为当n =1时,a n +1=a 2,所以此时式子左边=1+a +a 2.故应选B.3.设f (n )=1n +1+1n +2+…+12n (n ∈N *),那么f (n +1)-f (n )等于( ) A.12n +1 B.12n +2C.12n +1+12n +2D.12n +1-12n +2[答案] D[解析] f (n +1)-f (n )=⎣⎢⎡⎦⎥⎤1(n +1)+1+1(n +1)+2+…+12n +12n +1+12(n +1) -⎣⎢⎡⎦⎥⎤1n +1+1n +2+…+12n =12n +1+12(n +1)-1n +1=12n +1-12n +2. 4.某个命题与自然数n 有关,若n =k (k ∈N *)时,该命题成立,那么可推得n =k +1时该命题也成立.现在已知当n =5时,该命题不成立,那么可推得( )A .当n =6时该命题不成立B .当n =6时该命题成立C.当n=4时该命题不成立D.当n=4时该命题成立[答案] C[解析]原命题正确,则逆否命题正确.故应选C.5.用数学归纳法证明命题“当n是正奇数时,x n+y n能被x+y整除”,在第二步的证明时,正确的证法是()A.假设n=k(k∈N*),证明n=k+1时命题也成立B.假设n=k(k是正奇数),证明n=k+1时命题也成立C.假设n=k(k是正奇数),证明n=k+2时命题也成立D.假设n=2k+1(k∈N),证明n=k+1时命题也成立[答案] C[解析]∵n为正奇数,当n=k时,k下面第一个正奇数应为k+2,而非k+1.故应选C.6.凸n边形有f(n)条对角线,则凸n+1边形对角线的条数f(n+1)为()A.f(n)+n+1B.f(n)+nC.f(n)+n-1D.f(n)+n-2[答案] C[解析]增加一个顶点,就增加n+1-3条对角线,另外原来的一边也变成了对角线,故f(n+1)=f(n)+1+n+1-3=f(n)+n-1.故应选C.7.用数学归纳法证明“对一切n∈N*,都有2n>n2-2”这一命题,证明过程中应验证() A.n=1时命题成立B.n=1,n=2时命题成立C.n=3时命题成立D.n=1,n=2,n=3时命题成立[答案] D[解析]假设n=k时不等式成立,即2k>k2-2,当n=k+1时2k+1=2·2k>2(k2-2)由2(k2-2)≥(k-1)2-4⇔k2-2k-3≥0⇔(k+1)(k-3)≥0⇒k≥3,因此需要验证n=1,2,3时命题成立.故应选D.8.已知f (n )=(2n +7)·3n +9,存在自然数m ,使得对任意n ∈N *,都能使m 整除f (n ),则最大的m 的值为( )A .30B .26C .36D .6[答案] C[解析] 因为f (1)=36,f (2)=108=3×36,f (3)=360=10×36,所以f (1),f (2),f (3)能被36整除,推测最大的m 值为36.9.已知数列{a n }的前n 项和S n =n 2a n (n ≥2),而a 1=1,通过计算a 2、a 3、a 4,猜想a n =( )A.2(n +1)2B.2n (n +1)C.22n -1D.22n -1[答案] B[解析] 由S n =n 2a n 知S n +1=(n +1)2a n +1∴S n +1-S n =(n +1)2a n +1-n 2a n∴a n +1=(n +1)2a n +1-n 2a n∴a n +1=n n +2a n (n ≥2). 当n =2时,S 2=4a 2,又S 2=a 1+a 2,∴a 2=a 13=13a 3=24a 2=16,a 4=35a 3=110. 由a 1=1,a 2=13,a 3=16,a 4=110猜想a n =2n (n +1),故选B. 10.对于不等式n 2+n ≤n +1(n ∈N +),某学生的证明过程如下:(1)当n =1时,12+1≤1+1,不等式成立.(2)假设n =k (k ∈N +)时,不等式成立,即k 2+k <k +1,则n =k +1时,(k +1)2+(k +1)=k 2+3k +2<(k 2+3k +2)+(k +2)=(k +2)2=(k +1)+1,∴当n =k +1时,不等式成立,上述证法( )A .过程全都正确B .n =1验证不正确C .归纳假设不正确D .从n =k 到n =k +1的推理不正确[答案] D[解析] n =1的验证及归纳假设都正确,但从n =k 到n =k +1的推理中没有使用归纳假设,而通过不等式的放缩法直接证明,不符合数学归纳法的证题要求.故应选D.二、填空题11.用数学归纳法证明“2n +1≥n 2+n +2(n ∈N *)”时,第一步的验证为________.[答案] 当n =1时,左边=4,右边=4,左≥右,不等式成立[解析] 当n =1时,左≥右,不等式成立,∵n ∈N *,∴第一步的验证为n =1的情形.12.已知数列11×2,12×3,13×4,…,1n (n +1),通过计算得S 1=12,S 2=23,S 3=34,由此可猜测S n =________.[答案] n n +1 [解析] 解法1:通过计算易得答案.解法2:S n =11×2+12×3+13×4+…+1n (n +1)=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1n +1 =1-1n +1=n n +1. 13.对任意n ∈N *,34n +2+a 2n+1都能被14整除,则最小的自然数a =________.[答案] 5[解析] 当n =1时,36+a 3能被14整除的数为a =3或5,当a =3时且n =3时,310+35不能被14整除,故a =5.14.用数学归纳法证明命题:1×4+2×7+3×10+…+n (3n +1)=n (n +1)2.(1)当n 0=________时,左边=____________,右边=______________________;当n =k 时,等式左边共有________________项,第(k -1)项是__________________.(2)假设n =k 时命题成立,即_____________________________________成立.(3)当n =k +1时,命题的形式是______________________________________;此时,左边增加的项为______________________.[答案] (1)1;1×(3×1+1);1×(1+1)2;k ;(k -1)[3(k -1)+1](2)1×4+2×7+3×10+…+k (3k +1)=k (k +1)2(3)1×4+2×7+…+(k +1)[3(k +1)+1]=(k +1)[(k +1)+1]2;(k +1)[3(k +1)+1]三、解答题15.求证:12-22+32-42+…+(2n -1)2-(2n )2=-n (2n +1)(n ∈N *).[证明] ①n =1时,左边=12-22=-3,右边=-3,等式成立.②假设n =k 时,等式成立,即12-22+32-42+…+(2k -1)2-(2k )2=-k (2k +1)2. 当n =k +1时,12-22+32-42+…+(2k -1)2-(2k )2+(2k +1)2-(2k +2)2=-k (2k +1)+(2k +1)2-(2k +2)2=-k (2k +1)-(4k +3)=-(2k 2+5k +3)=-(k +1)[2(k +1)+1],所以n =k +1时,等式也成立.由①②得,等式对任何n ∈N *都成立.16.求证:12+13+14+…+12n -1>n -22(n ≥2). [证明] ①当n =2时,左=12>0=右, ∴不等式成立.②假设当n =k (k ≥2,k ∈N *)时,不等式成立.即12+13+…+12k -1>k -22成立. 那么n =k +1时,12+13+…+12k -1 +12k -1+1+…+12k -1+2k -1>k -22+12k -1+1+…+12k >k -22+12k +12k +…+12k =k -22+2k -12k =(k +1)-22, ∴当n =k +1时,不等式成立.据①②可知,不等式对一切n ∈N *且n ≥2时成立.17.在平面内有n 条直线,其中每两条直线相交于一点,并且每三条直线都不相交于同一点.求证:这n 条直线将它们所在的平面分成n 2+n +22个区域.[证明] (1)n =2时,两条直线相交把平面分成4个区域,命题成立.(2)假设当n =k (k ≥2)时,k 条直线将平面分成k 2+k +22块不同的区域,命题成立. 当n =k +1时,设其中的一条直线为l ,其余k 条直线将平面分成k 2+k +22块区域,直线l 与其余k 条直线相交,得到k 个不同的交点,这k 个点将l 分成k +1段,每段都将它所在的区域分成两部分,故新增区域k +1块.从而k +1条直线将平面分成k 2+k +22+k +1=(k +1)2+(k +1)+22块区域. 所以n =k +1时命题也成立.由(1)(2)可知,原命题成立.18.(2010·衡水高二检测)试比较2n +2与n 2的大小(n ∈N *),并用数学归纳法证明你的结论.[分析] 由题目可获取以下主要信息:①此题选用特殊值来找到2n +2与n 2的大小关系;②利用数学归纳法证明猜想的结论.解答本题的关键是先利用特殊值猜想.[解析] 当n =1时,21+2=4>n 2=1,当n =2时,22+2=6>n 2=4,当n =3时,23+2=10>n 2=9,当n =4时,24+2=18>n 2=16,由此可以猜想,2n +2>n 2(n ∈N *)成立下面用数学归纳法证明:(1)当n =1时,左边=21+2=4,右边=1,所以左边>右边,所以原不等式成立.当n =2时,左边=22+2=6,右边=22=4,所以左边>右边;当n=3时,左边=23+2=10,右边=32=9,所以左边>右边.(2)假设n=k时(k≥3且k∈N*)时,不等式成立,即2k+2>k2.那么n=k+1时,2k+1+2=2·2k+2=2(2k+2)-2>2·k2-2.又因:2k2-2-(k+1)2=k2-2k-3=(k-3)(k+1)≥0,即2k2-2≥(k+1)2,故2k+1+2>(k+1)2成立.根据(1)和(2),原不等式对于任何n∈N*都成立.。
数列与数学归纳法专项训练(含答案)(新)

数列与数学归纳法专项训练1.如图,曲线2(0)y x y =≥上的点i P 与x 轴的正半轴上的点i Q 及原点O 构成一系列正三角形△OP 1Q 1,△Q 1P 2Q 2,…△Q n-1P n Q n …设正三角形1n n n Q P Q -的边长为n a ,n ∈N ﹡(记0Q 为O ),(),0n n Q S .(1)求1a 的值; (2)求数列{n a }的通项公式n a 。
w.w.w.k.s.5.u.c.o.m2. 设{}{},n n a b 都是各项为正数的数列,对任意的正整数n ,都有21,,n n n a b a +成等差数列,2211,,n n n b a b ++成等比数列.(1)试问{}n b 是否成等差数列?为什么?(2)如果111,2a b ==,求数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和n S .3. 已知等差数列{n a }中,2a =8,6S =66.(Ⅰ)求数列{n a }的通项公式;(Ⅱ)设n n a n b )1(2+=,n n b b b T +++= 21,求证:n T ≥16.4. 已知数列{n a }中531=a ,112--=n n a a (n ≥2,+∈N n ),数列}{nb ,满足11-=n n a b (+∈N n ) (1)求证数列{n b }是等差数列;(2)求数列{n a }中的最大项与最小项,并说明理由;(3)记++=21b b S n …n b +,求)1(lim -∞→n b n n .5. (Ⅰ (Ⅱ (Ⅲn 项的6. (1(27. 已知数列{}n a 各项均不为0,其前n 项和为n S ,且对任意*∈N n ,都有n n pa p S p -=⋅-)1((p 为大于1的常数),并记nn n n n n n S a C a C a C n f ⋅⋅++⋅+⋅+=21)(2211 .(1)求n a ; (2)比较)1(+n f 与)(21n f pp ⋅+的大小*∈N n ; (3)求证:⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+-⋅-+≤≤⋅---=∑1212111111)()()12(n n i p p p p i f n f n (*∈N n ).8. 已知n N *∈,各项为正的等差数列{}n a 满足263521,10a a a a ⋅=+=,又数列{}lg n b 的前n 项和是()()11lg312n S n n n n =+--。
(完整版)数学归纳法练习题
2.3数学归纳法第1课时数学归纳法1.用数学归纳法证明“2n>n2+1对于n≥n0的自然数n都成立”时,第一步证明中的起始值n0应取().A.2 B.3 C.5 D.6解析当n取1、2、3、4时2n>n2+1不成立,当n=5时,25=32>52+1=26,第一个能使2n>n2+1的n值为5,故选C.答案 C2.用数学归纳法证明等式1+2+3+…+(n+3)=(n+3)(n+4)2(n∈N+),验证n=1时,左边应取的项是().A.1 B.1+2C.1+2+3 D.1+2+3+4解析等式左边的数是从1加到n+3.当n=1时,n+3=4,故此时左边的数为从1加到4.答案 D3.设f(n)=1+12+13+…+13n-1(n∈N+),那么f(n+1)-f(n)等于().A.13n+2B.13n+13n+1C.13n+1+13n+2D.13n+13n+1+13n+2解析∵f(n)=1+12+13+…+13n-1,∵f(n+1)=1+12+13+…+13n-1+13n+13n+1+13n+2,∴f(n+1)-f(n)=13n+13n+1+13n+2.答案 D4.用数学归纳法证明关于n的恒等式,当n=k时,表达式为1×4+2×7+…+k(3k+1)=k(k+1)2,则当n=k+1时,表达式为________.答案1×4+2×7+…+k(3k+1)+(k+1)(3k+4)=(k+1)(k+2)25.记凸k边形的内角和为f(k),则凸k+1边形的内角和f(k+1)=f(k)+________.解析由凸k边形变为凸k+1边形时,增加了一个三角形图形,故f(k+1)=f(k)+π.答案π6.用数学归纳法证明:1 1×2+13×4+…+1(2n-1)·2n=1n+1+1n+2+…+1n+n.证明(1)当n=1时,左边=11×2=12,右边=12,等式成立.(2)假设当n=k(k∈N*)时,等式成立,即1 1×2+13×4+…+1(2k-1)·2k=1k+1+1k+2+…+12k.则当n=k+1时,1 1×2+13×4+…+1(2k-1)·2k+1(2k+1)(2k+2)=1k+1+1k+2+…+12k+1(2k+1)(2k+2)=1k+2+1k+3+…+12k+⎝⎛⎭⎪⎫12k+1-12k+2+1k+1=1k+2+1k+3+…+12k+12k+1+12k+2=1(k+1)+1+1(k+1)+2+…+1(k+1)+k+1(k+1)+(k+1).即当n=k+1时,等式成立.根据(1)(2)可知,对一切n∈N*,等式成立.7.若命题A(n)(n∈N*)在n=k(k∈N*)时命题成立,则有n=k+1时命题成立.现知命题对n=n0(n0∈N*)时命题成立,则有().A.命题对所有正整数都成立B.命题对小于n0的正整数不成立,对大于或等于n0的正整数都成立C.命题对小于n0的正整数成立与否不能确定,对大于或等于n0的正整数都成立D.以上说法都不正确解析由已知得n=n0(n0∈N*)时命题成立,则有n=n0+1时命题成立;在n =n0+1时命题成立的前提下,又可推得n=(n0+1)+1时命题也成立,依此类推,可知选C.答案 C8.用数学归纳法证明(n+1)(n+2)(n+3)…(n+n)=2n·1·3·…·(2n-1)(n∈N*),从n=k到n=k+1,左边增加的代数式为().A.2k+1 B.2(2k+1)C.2k+1k+1D.2k+3k+1解析n=k时,左边=(k+1)(k+2)…(2k);n=k+1时,左边=(k+2)(k+3)…(2k+2)=2(k+1)(k+2)…(2k)(2k+1),故选B.答案 B9.分析下述证明2+4+…+2n=n2+n+1(n∈N+)的过程中的错误:证明假设当n=k(k∈N+)时等式成立,即2+4+…+2k=k2+k+1,那么2+4+…+2k+2(k+1)=k2+k+1+2(k+1)=(k+1)2+(k+1)+1,即当n=k+1时等式也成立.因此对于任何n∈N+等式都成立.__________________.答案缺少步骤归纳奠基,实际上当n=1时等式不成立10.用数学归纳法证明(1+1)(2+2)(3+3)…(n+n)=2n-1·(n2+n)时,从n=k到n =k+1左边需要添加的因式是________.解析当n=k时,左端为:(1+1)(2+2)…(k+k),当n =k +1时,左端为:(1+1)(2+2)…(k +k )(k +1+k +1), 由k 到k +1需添加的因式为:(2k +2). 答案 2k +2 11.用数学归纳法证明12+22+…+n 2=n (n +1)(2n +1)6(n ∈N *).证明 (1)当n =1时,左边=12=1, 右边=1×(1+1)×(2×1+1)6=1,等式成立.(2)假设当n =k (k ∈N *)时等式成立,即 12+22+…+k 2=k (k +1)(2k +1)6那么,12+22+…+k 2+(k +1)2 =k (k +1)(2k +1)6+(k +1)2=k (k +1)(2k +1)+6(k +1)26=(k +1)(2k 2+7k +6)6=(k +1)(k +2)(2k +3)6=(k +1)[(k +1)+1][2(k +1)+1]6,即当n =k +1时等式也成立.根据(1)和(2),可知等式对任何n ∈N *都成立.12.(创新拓展)已知正数数列{a n }(n ∈N *)中,前n 项和为S n ,且2S n =a n +1a n ,用数学归纳法证明:a n =n -n -1. 证明 (1)当n =1时.a 1=S 1=12⎝ ⎛⎭⎪⎫a 1+1a 1,∴a 21=1(a n >0),∴a 1=1,又1-0=1, ∴n =1时,结论成立.(2)假设n =k (k ∈N *)时,结论成立, 即a k =k -k -1. 当n =k +1时, a k +1=S k +1-S k=12⎝⎛⎭⎪⎫a k +1+1a k +1-12⎝ ⎛⎭⎪⎫a k +1a k =12⎝ ⎛⎭⎪⎫a k +1+1a k +1-12⎝⎛⎭⎪⎫k -k -1+1k -k -1 =12⎝⎛⎭⎪⎫a k +1+1a k +1-k∴a 2k +1+2k a k +1-1=0,解得a k +1=k +1-k (a n >0), ∴n =k +1时,结论成立.由(1)(2)可知,对n ∈N *都有a n =n -n -1.。
高二数学数学归纳法试题答案及解析
高二数学数学归纳法试题答案及解析1.若,则对于,.【答案】【解析】【考点】数学归纳法2.用数学归纳法证明:“1+a+a2++a n+1=(a≠1,n∈N*)”在验证n=1时,左端计算所得的项为( )A.1B.1+aC.1+a+a2D.1+a+a2+a3【答案】C【解析】当n=1时,左端为1+a+a2,故选C.考点:数学归纳法3.已知,,,,…,由此你猜想出第n个数为【答案】【解析】观察根式的规律,和式的前一项与后一项的分子相同,是等差数列,而后一项的分母可表示为,故答案为【考点】归纳推理.4.用数学归纳法证明1+++…+(,),在验证成立时,左式是____.【答案】1++【解析】当时,;所以在验证成立时,左式是.【考点】数学归纳法.5.利用数学归纳法证明“, ()”时,在验证成立时,左边应该是.【答案】【解析】用数学归纳法证明“, ()”时,在验证成立时,将代入,左边以1即开始,以结束,所以左边应该是.【考点】数学归纳法.6.已知,不等式,,,…,可推广为,则等于 .【答案】【解析】因为,……,所以该系列不等式,可推广为,所以当推广为时,.【考点】归纳推理.)能被9整除”,要利7.用数学归纳法证明“n3+(n+1)3+(n+2)3,(n∈N+用归纳法假设证n=k+1时的情况,只需展开( ).A.(k+3)3B.(k+2)3C.(k+1)3D.(k+1)3+(k+2)3【答案】A【解析】假设n=k时,原式k3+(k+1)3+(k+2)3能被9整除,当n=k+1时,(k+1)3.+(k+2)3+(k+3)3为了能用上面的归纳假设,只须将(k+3)3展开,让其出现k3即可.故应选A.8.用数学归纳法证明:【答案】通过两步(n=1,n=k+1)证明即可得出结论。
【解析】解:当n=1时,等式左边为2,右边为2,左边等于右边,当n=k时,假设成立,可以得到(k+1)+(k+2)+…+(k+k)=n=k+1时等式左边与n=k时的等式左边的差,即为n=k+1时等式左边增加的项,由题意,n=k时,等式左边=(k+1)+(k+2)+…+(k+k),n=k+1时,等式左边=(k+2)+(k+3)+…+(k+k+1)+(k+1+k+1),比较可得n=k+1时等式左边等于右边,进而综上可知,满足题意的所有正整数都成立,故证明。
2019届苏教版(理科数学) 数学归纳法 单元测试(1)
提升训练(37)数学归纳法1.已知n为正偶数,用数学归纳法证明1-+-+…-=2时,若已假设n=k(k≥2且k为偶数)时命题为真,则还需要用归纳假设再证( )A.n=k+1时等式成立B.n=k+2时等式成立C.n=2k+2时等式成立D.n=2(k+2)时等式成立【解析】选B.因为n为偶数,故假设n=k成立后,再证n=k+2时等式成立.2.(2016·南昌模拟)已知f(n)=12+22+32+…+(2n)2,则f(k+1)与f(k)的关系是( )A.f(k+1)=f(k)+(2k+1)2+(2k+2)2B.f(k+1)=f(k)+(k+1)2C.f(k+1)=f(k)+(2k+2)2D.f(k+1)=f(k)+(2k+1)2【解析】选A.f(k+1)=12+22+32+…+(2k)2+(2k+1)2+2=f(k)+(2k+1)2+(2k+2)2.3.(2016·岳阳模拟)用数学归纳法证明不等式1+++…+>(n∈N)成立,其初始值至少应取( )A.7B.8C.9D.10【解析】选B.1+++…+=>,整理得2n>128,解得n>7,所以初始值至少应取8.4.用数学归纳法证明2n>2n+1,n的第一个取值应是( )A.1B.2C.3D.4【解析】选C.因为n=1时,21=2,2×1+1=3,2n>2n+1不成立;n=2时,22=4,2×2+1=5,2n>2n+1不成立;n=3时,23=8,2×3+1=7,2n>2n+1成立.所以n的第一个取值应是3.5.平面内有n 条直线,最多可将平面分成f(n)个区域,则f(n)的表达式为( )A.n+1B.2nC.D.n 2+n+1【解析】选C.1条直线将平面分成1+1个区域;2条直线最多可将平面分成1+(1+2)=4(个)区域;3条直线最多可将平面分成1+(1+2+3)=7(个)区域;…;n 条直线最多可将平面分成1+(1+2+3+…+n)=1+=(个)区域.6.(2016·九江模拟)已知f(n)=1+++…+(n ∈N),经计算得f(4)>2,f(8)>, f(16)>3,f(32)>,则其一般结论为 . 【解析】因为f(22)>,f(23)>,f(24)>, f(25)>,所以当n ≥2时,有f(2n)>.故填f(2n)>(n ≥2,n ∈N). 答案:f(2n )>(n ≥2,n ∈N)7.设平面内有n 条直线(n ≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f(n)表示这n 条直线交点的个数,则f(4)= ;当n>4时,f(n)= (用n 表示). 【解析】f(3)=2,f(4)=f(3)+3=2+3,f(5)=f(4)+4=2+3+4,f(6)=f(5)+5=2+3+4+5, 猜想f(n)=2+3+4+…+(n-1)=(n>4).答案:5(n+1)(n-2)8. 已知数列{a n }满足a n +1=12-a n (n∈N),a 1=12.试通过求a 2,a 3,a 4的值猜想a n 的表达式,并用数学归纳法加以证明.解:a 2=12-a 1=12-12=23,a 3=12-a 2=12-23=34,a 4=12-a 3=12-34=45.猜想:a n =n n +1(n∈N).用数学归纳法证明如下:① 当n =1时,左边=a 1=12,右边=11+1=12,所以等式成立;② 假设n =k 时等式成立,即a k =k k +1,则当n =k +1时,a k +1=12-a k =12-k k +1=k +1k +2=k +1(k +1)+1,所以当n =k +1时等式也成立. 由①②得,当n ∈N时等式都成立.9. 是否存在常数a ,b ,c ,使等式1·(n 2-12)+2(n 2-22)+…+n(n 2-n 2)=an 4+bn 2+c 对一切正整数n 成立?证明你的结论.解:分别用n =1,2,3代入解方程组⎩⎪⎨⎪⎧a +b +c =0,16a +4b +c =3,81a +9b +c =18⇒⎩⎪⎨⎪⎧a =14,b =-14,c =0.下面用数学归纳法证明.① 当n =1时,由上可知等式成立;② 假设当n =k 时,等式成立,则当n =k +1时,左边=1·[(k+1)2-12]+2[(k +1)2-22]+…+k[(k +1)2-k 2]+(k +1)[(k +1)2-(k +1)2]=1·(k 2-12)+2(k 2-22)+…+k(k 2-k 2)+1·(2k+1)+2(2k +1)+…+k(2k +1)=14k 4+⎝ ⎛⎭⎪⎫-14k 2+(2k +1)+2(2k +1)+…+k(2k +1)=14(k +1)4-14(k +1)2,∴ 当n =k +1时,等式成立.由①②得等式对一切的n∈N均成立.10.(2018·大连双基测试)数列{a n }满足a n +1=a n2a n +1,a 1=1.(1)证明:数列{1a n}是等差数列;(2)求数列{1a n }的前n 项和S n ,并证明1S 1+1S 2+…+1S n >nn +1.解析:(1)证明:∵a n +1=a n2a n +1,∴1a n +1=2a n +1a n ,化简得1a n +1=2+1a n ,即1a n +1-1a n=2,故数列{1a n }是以1为首项,2为公差的等差数列.(2)由(1)知1a n =2n -1,∴S n =n (1+2n -1)2=n 2.法一:1S 1+1S 2+…+1S n =112+122+…+1n 2>11×2+12×3+…+1n (n +1)=(1-12)+(12-13)+…+(1n -1n +1)=1-1n +1=n n +1. 法二:当n =1时,1S 1=1,n n +1=12,不等式成立.假设当n =k 时,不等式成立,即1S 1+1S 2+…+1S k >kk +1.则当n =k +1时,1S 1+1S 2+…+1S k +1S k +1>k k +1+1(k +1)2,又k k +1+1(k +1)2-k +1k +2=1-1k +1+1(k +1)2-1+1k +2=1k +2-k (k +1)2=1(k +2)(k +1)2>0, ∴1S 1+1S 2+…+1S k +1S k +1>k +1k +2, ∴原不等式成立.11.已知集合X ={1,2,3},Y n ={1,2,3,…,n }(n ∈N ),设S n ={(a ,b )|a 整除b 或b 整除a ,a ∈X ,b ∈Y n }.令f (n )表示集合S n 所含元素的个数. (1)写出f (6)的值;(2)当n ≥6时,写出f (n )的表达式,并用数学归纳法证明. 解析:(1)Y 6={1,2,3,4,5,6},S 6中的元素(a ,b )满足: 若a =1,则b =1,2,3,4,5,6; 若a =2,则b =1,2,4,6; 若a =3,则b =1,3,6. 所以f (6)=13. (2)当n ≥6时,f (n )=⎩⎪⎪⎪⎨⎪⎪⎪⎧n +2+⎝⎛⎭⎫n 2+n 3,n =6t ,n +2+⎝⎛⎭⎫n -12+n -13,n =6t +1,n +2+⎝⎛⎭⎫n 2+n -23,n =6t +2,n +2+⎝⎛⎭⎫n -12+n 3,n =6t +3,n +2+⎝⎛⎭⎫n 2+n -13,n =6t +4,n +2+⎝⎛⎭⎫n -12+n -23,n =6t +5(t ∈N ).下面用数学归纳法证明:①当n =6时,f (6)=6+2+62+63=13,结论成立;②假设n =k (k ≥6)时结论成立,那么n =k +1时,S k +1在S k 的基础上新增加的元素在(1,k +1),(2,k +1),(3,k +1)中产生,分以下情形讨论: a .若k +1=6t ,则k =6(t -1)+5,此时有 f (k +1)=f (k )+3=k +2+k -12+k -23+3=(k +1)+2+k +12+k +13,结论成立;b .若k +1=6t +1,则k =6t ,此时有 f (k +1)=f (k )+1=k +2+k 2+k3+1=(k +1)+2+(k +1)-12+(k +1)-13,结论成立;c .若k +1=6t +2,则k =6t +1,此时有 f (k +1)=f (k )+2=k +2+k -12+k -13+2=(k +1)+2+k +12+(k +1)-23,结论成立;d .若k +1=6t +3,则k =6t +2,此时有 f (k +1)=f (k )+2=k +2+k 2+k -23+2=(k +1)+2+(k +1)-12+k +13,结论成立;e .若k +1=6t +4,则k =6t +3,此时有f (k +1)=f (k )+2=k +2+k -12+k3+2=(k +1)+2+k +12+(k +1)-13,结论成立;f .若k +1=6t +5,则k =6t +4,此时有 f (k +1)=f (k )+1=k +2+k 2+k -13+1=(k +1)+2+(k +1)-12+(k +1)-23,结论成立.综上所述,结论对满足n ≥6的自然数n 均成立. 12.(12分)(2016·常德模拟)设a>0,f(x)=,令a 1=1,a n+1=f(a n ),n ∈N.(1)写出a 2,a 3,a 4的值,并猜想数列{a n }的通项公式. (2)用数学归纳法证明你的结论.【解析】(1)因为a 1=1,所以a 2=f(a 1)=f(1)=;a 3=f(a 2)=;a 4=f(a 3)=.猜想a n =(n ∈N).(2)①当n=1时,a 1=1猜想正确.②假设n=k(k≥1,k∈N)时猜想正确,则a k=.则a k+1=f(a k)====.这说明,n=k+1时猜想正确.由①②知,对于任何n∈N,都有a n=.13.(13分)(2016·九江模拟)设数列{a n}的前n项和为S n,并且满足2S n=+n,a n>0(n∈N).(1)猜想{a n}的通项公式,并用数学归纳法加以证明.(2)设x>0,y>0,且x+y=1,证明:+≤.【解题提示】(1)将n=1,2,3代入已知等式得a1,a2,a3,从而可猜想a n,并用数学归纳法证明.(2)利用分析法,结合x>0,y>0,x+y=1,利用基本不等式进行证明.【解析】(1)分别令n=1,2,3,得因为a n>0,所以a1=1,a2=2,a3=3.猜想:a n=n.由2S n=+n,①可知,当n≥2时,2S n-1=+(n-1),②①-②,得2a n=-+1,即=2a n+-1.(i)当n=2时,=2a2+12-1,因为a2>0,所以a2=2,等式成立.(ii)假设当n=k(k≥2)时,a k=k,那么当n=k+1时,=2a k+1+-1=2a k+1+k2-1⇒=0,因为a k+1>0,k≥2,所以a k+1+(k-1)>0,所以a k+1=k+1.即当n=k+1时也成立.所以a n=n(n≥2).显然n=1时,也成立,故对于一切n∈N,均有a n=n.(2)要证+≤,只要证nx+1+2+ny+1≤2(n+2). 即n(x+y)+2+2≤2(n+2), 将x+y=1代入,得2≤n+2,即只要证4(n2xy+n+1)≤(n+2)2,即4xy≤1,因为x>0,y>0,且x+y=1,所以≤=,即xy≤,故4xy≤1成立,所以原不等式成立.。
归纳推理试题
1、观察以下数列:2, 4, 6, 8, ...,根据规律,下一个数字是?A. 9B. 10C. 11D. 12(答案)B2、分析以下图形的规律:△, □□, △△△, □□□□, ...,按此规律,下一个图形应包含几个图形元素?A. 4B. 5C. 6D. 7(答案)B3、考察以下字母序列:A, C, E, G, ...,推断下一个字母是?A. HB. IC. JD. K(答案)B4、一组数据的排列如下:3, 11, 20, 30, 43, ...,根据这组数据的增长趋势,下一个数最可能是?A. 53B. 54C. 55D. 56(答案)D5、在一系列化学反应中,反应物的质量比依次为1:2:3,若第一种反应物质量为5g,则第三种反应物的质量为?A. 10gB. 15gC. 20gD. 25g(答案)B6、考察以下数字序列:1, 4, 9, 16, 25, ...,这是一个什么类型的数列?下一个数字是?A. 质数数列,36B. 偶数数列,30C. 平方数列,36D. 立方数列,64(答案)C7、一组颜色按红、黄、蓝、绿的顺序循环排列,如果第10个颜色是蓝色,那么第15个颜色是什么?A. 红色B. 黄色C. 蓝色D. 绿色(答案)D8、观察以下日期序列:1月1日, 2月2日, 3月3日, 4月4日, ...,根据这个规律,6月份的日期应该是?A. 6月5日B. 6月6日C. 6月7日D. 6月8日(答案)B9、在一系列等差数列中,已知首项为2,公差为3,第5项的值是?A. 12B. 13C. 14D. 15(答案)C10、分析以下数字规律:5, 11, 17, 23, ...,这是一个以6为公差的等差数列,下一个数字是?A. 28B. 29C. 30D. 31(答案)B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 / 3
《极限 数学归纳法》单元测试题
一、选择题(每小题8分,共48分):
1、 下列说法正确的是( )
(A )19.0< (B )19.0≈ (C )n n )9.0(lim ∞→=0 (D )19
.0= 2、如果)(n p 对k n =成立,则它对1+=k n 也成立,现已知)(n p 对4=n 不成立,则下列结论正确的是( )
(A ))(n p 对*N n ∈都成立 (B ))(n p 对1>n 且*N n ∈成立
(C ))(n p 对4<n 且*N n ∈成立 (D ))(n p 对4≤n 且*N n ∈不成立 3、)2
11()511)(411)(311(lim +----∞→n n n 的值是( ) (A )0 (B )1 (C )2
(D )3 4、若函数⎩⎨
⎧>≤+=)0(,)0(,3)(x e x m x x f x 在x =0处连续,则常数m 的值为( ) (A )0 (B )–1
(C )1 (D )e 5、在等比数列{}n a 中,首项11>a ,且前n 项和n S 满足:1
1lim a S n n =∞→,那么1a 的取值范围是( )
(A )(1,2) (B )(1,4) (C )(1,+∞) (D )(1,2)
6、若1)12(lim 2=--+∞
→nb n n a n ,则ab 的值是( ) (A )24 (B )28 (C )8 (D )16
二、填空题:(每小题8分,共16分)
7、若n a 是n
x )1(+展开式中2x 的系数,则)111(lim 43n
n a a a +++∞→ 的值为 ; 10、已知函数⎪⎪⎩
⎪⎪⎨⎧<-=->=)0(,12)0(,1)
0(,1)(x x x x x f x ,有以下结论:①1)(lim 0-=→x f x ②0)(lim 0=-→x f x ③0)(lim =∞→x f x ④0)(lim 0
=→x f x ⑤当∞→x 时,)(x f 的极限不存在 其中正确的是
2 / 3
三、解答题:(每小题12分,共36分)
9、用数学归纳法证明:
2121)
1(14131212422+->+++++n n (*N n ∈)
10、已知函数n
n
n x x x f +=∞→1lim )(, (1)求)(x f 的解析式; (2)求)(lim 1x f x --→,)(lim 1
x f x +-→,并指出)(x f 在1-=x 处是否连续?
11、已知数列{}n a 满足3
11=a ,且n n a n n S )12(-=, (1)求32,a a 的值; (2)猜想n a ,并用数学归纳法证明之; (3)求n n S ∞→lim .
3 / 3
《极限 数学归纳法》单元测试题答案
1、D 2.A 3.C 4.C 5.D 6.B
7.-1 -3 8.1 9.42,55⎛⎫
⎪⎝⎭ 10.②⑤ 11.2113515a =
=⨯,3115735a ==⨯ ()()
12121n a n n =-+ ()()1111133557212111111112335212111122121
n S n n n n n n n =
++++⨯⨯⨯-+⎛⎫=-+-++- ⎪-+⎝⎭⎛⎫=-= ⎪++⎝⎭1l i m 2
n n S →∞∴= 12
、()()()()()
11011112
11x x f x x x <-⎧⎪-<<⎪⎪=⎨=⎪⎪>⎪⎩
()()11lim 1lim 0x x f x f x -
+→-→-== 所以不连续。