数列数学归纳法测试题
(完整版)数学归纳法练习题

数学归纳法练习题一、选择题1. 用数学归纳法证明121*11(,1)1n n a a a an N a a++-++++=∈≠-L ,在验证1n =成立时,左边所得的项为( ) A. 1 B. 1+a C. 21a a ++ D. 231a a a +++ 2. 用数学归纳法证明111111111234212122n n n n n-+-++-=+++-++L L *()n N ∈,则从k 到k+1时,左边所要添加的项是( )A.121k + B. 112224k k -++ C. 121k -+ D. 112122k k -++ 3. 用数学归纳法证明“当n 为正奇数时,nnx y +能被x y +整除”第二步的归纳假设应写成( )A. 假设*21()n k k N =+∈正确,再推23n k =+正确; B. 假设*21()n k k N =-∈正确,再推21n k =+正确; C. 假设*()n k k N =∈正确,再推1n k =+正确; D. 假设(1)n k k =≥正确,再推2n k =+正确.二、填空题4. 数列{}n a 中,111,21n n n a a a a +==+,则数列的前5项为 , 猜想它的通项公式是 5. 猜想1=1, 1-4=-(1+2), 1-4+9=1+2+3, ……的第n 个式子为 6. 用数学归纳法证明“当*2351,12222n n N -∈+++++L 时是31的倍数”时,1n =时的原式是 ,从k 到1k +时需添加的项是三、解答题7. 求证:对于整数0n ≥时,2211112n n +++能被133整除. 8. 若*n N ∈,求证:23sin coscoscoscos 22222sin2n nnαααααα=L .9. 若*n N ∈,且2n ≥,求证:1111312224n n n +++>++L . 10. 数列{}n a 满足,2n n S n a =-*n N ∈,先计算前4项后,猜想n a 的表达式,并用数学归纳法证明.11. 是否存在自然数m ,使得 ()(27)39nf n n =+⋅+ 对于任意*n N ∈都能被m 整除,若存在,求出m ;若不存在,请说明理由.12. 正数数列{}n a 中,11()2n n nS a a =+.⑴ 求123a a a 、、;⑵ 猜想n a 的表达式并证明. 13. 设*n N ∈,试比较 3(1)!nn +和 的大小.【答案】一、选择题1. C2. D3. B 二、填空题4. 11111,,,,23456. 11n a n =+(*n N ∈)5. 12114916(1)(1)(1234)n n n n ++-+-++-=-+++++L L6. 23412222++++, 55152535422222kk k k k ++++++++.三、解答题(略解)7. ① 0n =时,原式=21112133+=能被133整除;② 设n k =时,2211112k k +++ 能被133整除1n k =+时,原式=3232212123111211(1112)111212k k k k k k +++++++=+-⋅+=2212111(1112)12133k k k +++++⋅能被133整除.8. ① 1n =时,左=cos2α, 右=sin cos22sin2ααα=,左=右② 设n k =时, 23sin coscoscoscos 22222sin2k k kαααααα=L1n k =+时, 2311sin (coscoscoscos )cos cos2222222sin2k k k k kαααααααα++⋅=⋅L=111111sin sin cos22sincos2sin222k k k k k k αααααα++++++⋅=9. ① 2n =时,左=11713341224+=>② 设n k =时, 1111312224k k k +++>++L 1n k =+时, 左=1111222122k k k k +++++++L =111111()12212122k k k k k k +++-+++++++L ∵111110*********k k k k k -++=->+++++,∴左>1324.10. 计算得: 123437151,,,248a a a a ====.猜想 1212n n n a --=① 1n =时,计算得11a =,结论成立;② 设n k =时, 1212k k k a --=, 则1n k =+时, 11111121[2(1)](2)2k k k k k k k k a S S k a k a a +++++--=-=+---=-∴11212k k ka ++-=.11. (1)36,(2)108,(3)360f f f ===.猜想m 的值应为其最大公约数36. ① 1n =显然正确.② 设n k =正确即 ()(27)39kf k k =+⋅+ 能被36整除. 则1n k =+时 ,11(1)[2(1)7]393[(27)39]27239k k k f k k k +++=++⋅+=+⋅+-+⋅+13[(27)39]18(31)k k k -=+⋅++-能被36整除.12. ⑴ 11a =,21a =,3a = ⑵ 猜想: n a =① 1n =显然正确. ② 设n k =正确即n a =则 1n k =+ 时111111[()2k k k k k a S S a a ++++=-=+--21110k k a ++⇒+-=,解得(取正值) 1k a +=13. 3=31>(1+1)!=2, 9=32>(2+1)!=6, 27=33>(3+1)!=24, 81=34<(4+1)!=120, ……猜想: 1,2,3n = 时,3(1)!nn >+; 当 4n ≥ 时, 3(1)!nn <+① 4n = 时,显然成立;② 设n k =时,结论成立, 即 3(1)!kk <+ 则 1n k =+ 时1333(1)!3(1)!(2)(2)!k k k k k k +=⋅<+⋅<+⋅+=+ (∵4,32k k ≥∴<+ )即 13(11)!k k +<++。
数列与数学归纳法练习题

数列与数学归纳法练习题数学归纳法是数学中常用的一种证明方法,尤其在数列问题中被广泛应用。
通过数学归纳法,我们能够证明某个命题对所有自然数都成立,而不需要逐个验证。
本文将为大家提供数列与数学归纳法的练习题,帮助大家更好地掌握这一方法。
1. 练习题一证明下列命题对所有正整数n成立:(1) 1 + 3 + 5 + ... + (2n-1) = n^2(2) 1^2 + 2^2 + 3^2 + ... + n^2 = n(n+1)(2n+1)/6解答:(1) 首先在n=1的情况下,命题显然成立,因为左右两边都等于1。
假设当n=k时,命题成立,即1 + 3 + 5 + ... + (2k-1) = k^2。
下面证明当n=k+1时,命题也成立。
当n=k+1时,左边的求和式为:1 + 3 + 5 + ... + (2k-1) + (2(k+1)-1) = k^2 + (2k+1)。
根据假设,我们知道前面的求和式等于k^2,因此我们只需要证明(2k+1) = (k+1)^2即可。
展开(k+1)^2,得到k^2 + 2k + 1,与2k+1相比较,左右两边相等。
因此,由数学归纳法可知,命题对所有正整数n成立。
(2) 同样,在n=1的情况下,命题显然成立。
假设当n=k时,命题成立,即1^2 + 2^2 + 3^2 + ... + k^2 = k(k+1)(2k+1)/6。
下面证明当n=k+1时,命题也成立。
当n=k+1时,左边的求和式为:1^2 + 2^2 + 3^2 + ... + k^2 + (k+1)^2 = k(k+1)(2k+1)/6 + (k+1)^2。
将右边的分数相加,得到(k^3 + 3k^2 + 2k)/6 + (k^2 + 2k + 1)。
化简并合并同类项,得到(k^3 + 3k^2 + 2k + k^2 + 2k + 1)/6 = (k^3 +4k^2 + 5k + 1)/6。
因此,我们只需要证明(k^3 + 4k^2 + 5k + 1) = (k+1)(k+2)(2k+3)即可。
第6章 数列与数学归纳法(6.4-6.8)

6.4数学归纳法例题精讲【例1】用数学归纳法证明22>n n ,5n N n ∈≥,则第一步应验证n = . 【参考答案】n =5(注:跟学生说明0n 不一定都是1或2,要看题目)【例2】设)(x f 是定义在正整数集上的函数,且)(x f 满足:“当2()f k k ≥成立时,总可推出(1)f k +≥2)1(+k 成立”. 那么,下列命题总成立的是( )A .若1)1(<f 成立,则100)10(<f 成立;B .若4)2(<f 成立,则1)1(<f 成立;C .若(3)9f ≥成立,则当1k ≥时,均有2()f k k ≥成立;D .若(4)25f ≥成立,则当4k ≥时,均有2()f k k ≥成立. 【参考答案】B【例3】用数学归纳法证明命题:若n 是大于1的自然数,求证:n n <-++++12131211Λ,从k 到+1k ,不等式左边添加的项的项数为 .【参考答案】当k n =时,左边为1214131211-+++++k Λ. 当1+=k n 时,左边为1212211212112141312111-+++++++-++++++k k k k k ΛΛ.左边需要添的项为121221121211-+++++++k k k k Λ,项数为k k k 212121=+--+.【例4】用数学归纳法证明:422135n n +++能被14整除*n N ∈().【参考答案】当=1n 时,8545353361224=+=+++n n 能被14整除.假设当k n =时原命题成立,即422135n n +++能被14整除*n N ∈(). 当1+=k n 时,原式为4(1)22(1)1442221353355k k k k +++++++=⋅+⋅4422121423(35)5(35)k k k +++=+--44221213(35)565k k k +++=+-⋅.422135n n +++能被14整除,56也能被14整除,所以上式能被14整除,所以当1+=k n 时原命题成立. 综上所述,原命题成立.【例5】是否存在常数,a b 使得()()2112233413n n n an bn +⨯+⨯+⨯+++=+L 对一切正整数n 都成立?证明你的结论.【参考答案】先用1n =和2n =探求1,2a b ==,再用数学归纳法证明【例6】若*n N ∈,求证:23sin coscoscoscos 22222sin2n n nαααααα=L .【参考答案】① 1n =时,左=cos2α, 右=sin cos22sin2ααα=,左=右② 设n k =时, 23sin coscoscoscos 22222sin2k k kαααααα=L1n k =+时, 2311sin (coscoscoscos )cos cos2222222sin2k k k k kαααααααα++⋅=⋅L=111111sin sin cos22sincos2sin222k k k k k k αααααα++++++⋅=过关演练1. 等式22222574123 (2)n n n -+++++=( ).A . n 为任何正整数时都成立B . 仅n =1,2,3时成立C . n =4时成立,n =5时不成立D . n =4时不成立,其他成立. 2. 用数学归纳法证明22111...(1)1n n a a a a a a++-++++=≠-,在验证1n =时,左端计算所得项为 .3.利用数学归纳法证明“对任意偶数*()n n N ∈,nna b -能被a b +整除”时,其第二步论证应该是 .4. 若*1111...()23n S n N n =++++∈,用数学归纳法证明*21(2,)2n nS n n N >+≥∈,n 从k 到1k +时,不等式左边增加的项为 . 5. 若21*718,,n m m n N -+=∈,则21718n m ++=+ .6. 利用数学归纳法证明22nn >,第一步应该论证 . 7. 数学归纳法证明:111111111......234212122n n n n n-+-++-=+++-++(*n N ∈)时,当n 从k 到1k +时等式左边增加的项为 ;等式右边增加的项为 . 8. 用数学归纳法证明:221(1)n n a a ++++可以被21a a ++整除(*n N ∈).9. 用数学归纳法求证: (1)(1)123 (2)n nn +++++=; (2)222123+++ (2)1(1)(21)6n n n n +=++; (3)333123+++ (3)221(1)4n n n +=+. 10. 在数列{}n a 中,已知111,6(123...)1n a a n +==+++++,*n N ∈,若数列{}n a 前n项和为n S ,求证:3n S n =.6.5数学归纳法的运用例题精讲【例1】已知11=a ,)(*2N n a n S n n ∈=(1)求5432,,,a a a a ;(2)猜想它的通项公式n a ,并用数学归纳法加以证明【参考答案】 解:(1)151,101,61,315432====a a a a (2))1(2+=n n a n , 证明:(1)当n=1时,11=a 成立;(2)当n>1时,假设n=k 时,命题成立,即)1(2+=k k a k ,则当n=k+1时,⇒+=++121)1(k k a k S )2)(1(2222]1)1[(2221122++=+•+=+=⇒-+=++k k k k k k k k a k a a k a k k k k k 综上所述,对于所有自然数*N n ∈,)1(2+=n n a n 成立。
【必刷题】2024高二数学上册数列与数学归纳法专项专题训练(含答案)

【必刷题】2024高二数学上册数列与数学归纳法专项专题训练(含答案)试题部分一、选择题:1. 已知数列{an}为等差数列,a1=3,a5=15,则公差d为()A. 3B. 4C. 5D. 62. 数列{an}的通项公式为an = 2n 1,则数列{an}的前5项和为()A. 25B. 30C. 35D. 403. 若数列{an}满足an+1 = 2an,且a1=1,则数列{an}是()A. 等差数列B. 等比数列C. 既不是等差数列也不是等比数列D. 无法确定4. 用数学归纳法证明1+3+5+…+(2n1)=n²,下列步骤中错误的是()A. 验证n=1时等式成立B. 假设n=k时等式成立C. 证明n=k+1时等式成立D. 直接得出结论1+3+5+…+(2n1)=n²5. 已知数列{an}的通项公式为an = n² + n,则数列{an+1 an}的前5项和为()A. 20B. 25C. 30D. 356. 数列{an}为等比数列,a1=2,a3=8,则a5=()A. 16B. 24C. 32D. 647. 已知数列{an}满足an+2 = an+1 + an,a1=1,a2=1,则a5=()A. 3B. 4C. 5D. 68. 若数列{an}的通项公式为an = 3n 2,则数列{an}的前n项和为()A. n(3n1)/2B. n(3n+1)/2C. n(3n2)/2D. n(3n+2)/29. 用数学归纳法证明等式2^n > n²,下列步骤中错误的是()A. 验证n=1时等式成立B. 假设n=k时等式成立C. 证明n=k+1时等式成立D. 直接得出结论2^n > n²10. 已知数列{an}的通项公式为an = 2^n,则数列{an+1 / an}的值为()A. 1B. 2C. 3D. 4二、判断题:1. 数列{an}的通项公式为an = n²,则数列{an}是等差数列。
数列与数学归纳法的综合练习题

数列与数学归纳法的综合练习题一、数学归纳法的基本概念数学归纳法是一种证明数学命题的常用方法。
它包括两个基本步骤:基础步和归纳步。
基础步是证明命题对于某个特定的自然数成立;归纳步是假设命题对于一个自然数成立,然后证明对于下一个自然数也成立。
下面通过具体的练习题来进一步理解数学归纳法的应用。
二、练习题一:数列的定义与递推关系1. 已知数列{an}的通项公式是an = 3n - 1(n为自然数),求前5项的值。
解:将n逐个代入通项公式,有:a1 = 3 * 1 - 1 = 2;a2 = 3 * 2 - 1 = 5;a3 = 3 * 3 - 1 = 8;a4 = 3 * 4 - 1 = 11;a5 = 3 * 5 - 1 = 14。
所以,数列{an}的前5项的值分别为2,5,8,11,14。
2. 已知数列{bn}的递推关系是bn = bn-1 + 2,其中b1 = 1,求前6项的值。
解:根据递推关系,可以得到:b2 = b1 + 2 = 1 + 2 = 3;b3 = b2 + 2 = 3 + 2 = 5;b4 = b3 + 2 = 5 + 2 = 7;b5 = b4 + 2 = 7 + 2 = 9;b6 = b5 + 2 = 9 + 2 = 11。
所以,数列{bn}的前6项的值分别为1,3,5,7,9,11。
三、练习题二:数学归纳法证明1. 证明1 + 2 + 3 + ... + n = n(n+1)/2,其中n为自然数。
证明:基础步:当n=1时,等式左边为1,右边为1(1+1)/2,两边相等成立。
归纳步:假设当n=k时等式成立,即1 + 2 + 3 + ... + k = k(k+1)/2;则当n=k+1时,等式左边变为1 + 2 + 3 + ... + k + (k+1);根据归纳假设,左边可以变为k(k+1)/2 + (k+1);化简得 (k^2 + k + 2k + 2) / 2;再次化简得 (k^2 + 3k + 2) / 2;进一步化简得 (k+1)(k+2)/2;即等式右边。
(完整版)数学归纳法测试题及答案

选修2-2 2. 3 数学归纳法一、选择题1.用数学归纳法证明1+12+13+…+12n -1<n (n ∈N *,n >1)时,第一步应验证不等式( ) A .1+12<2 B .1+12+13<2 C .1+12+13<3 D .1+12+13+14<3 [答案] B[解析] ∵n ∈N *,n >1,∴n 取第一个自然数为2,左端分母最大的项为122-1=13, 2.用数学归纳法证明1+a +a 2+…+an +1=1-a n +21-a(n ∈N *,a ≠1),在验证n =1时,左边所得的项为( ) A .1 B .1+a +a 2 C .1+a D .1+a +a 2+a 3[答案] B[解析] 因为当n =1时,a n +1=a 2,所以此时式子左边=1+a +a 2.故应选B.3.设f (n )=1n +1+1n +2+…+12n (n ∈N *),那么f (n +1)-f (n )等于( ) A.12n +1 B.12n +2C.12n +1+12n +2D.12n +1-12n +2[答案] D[解析] f (n +1)-f (n )=⎣⎢⎡⎦⎥⎤1(n +1)+1+1(n +1)+2+…+12n +12n +1+12(n +1) -⎣⎢⎡⎦⎥⎤1n +1+1n +2+…+12n =12n +1+12(n +1)-1n +1=12n +1-12n +2. 4.某个命题与自然数n 有关,若n =k (k ∈N *)时,该命题成立,那么可推得n =k +1时该命题也成立.现在已知当n =5时,该命题不成立,那么可推得( )A .当n =6时该命题不成立B .当n =6时该命题成立C.当n=4时该命题不成立D.当n=4时该命题成立[答案] C[解析]原命题正确,则逆否命题正确.故应选C.5.用数学归纳法证明命题“当n是正奇数时,x n+y n能被x+y整除”,在第二步的证明时,正确的证法是()A.假设n=k(k∈N*),证明n=k+1时命题也成立B.假设n=k(k是正奇数),证明n=k+1时命题也成立C.假设n=k(k是正奇数),证明n=k+2时命题也成立D.假设n=2k+1(k∈N),证明n=k+1时命题也成立[答案] C[解析]∵n为正奇数,当n=k时,k下面第一个正奇数应为k+2,而非k+1.故应选C.6.凸n边形有f(n)条对角线,则凸n+1边形对角线的条数f(n+1)为()A.f(n)+n+1B.f(n)+nC.f(n)+n-1D.f(n)+n-2[答案] C[解析]增加一个顶点,就增加n+1-3条对角线,另外原来的一边也变成了对角线,故f(n+1)=f(n)+1+n+1-3=f(n)+n-1.故应选C.7.用数学归纳法证明“对一切n∈N*,都有2n>n2-2”这一命题,证明过程中应验证() A.n=1时命题成立B.n=1,n=2时命题成立C.n=3时命题成立D.n=1,n=2,n=3时命题成立[答案] D[解析]假设n=k时不等式成立,即2k>k2-2,当n=k+1时2k+1=2·2k>2(k2-2)由2(k2-2)≥(k-1)2-4⇔k2-2k-3≥0⇔(k+1)(k-3)≥0⇒k≥3,因此需要验证n=1,2,3时命题成立.故应选D.8.已知f (n )=(2n +7)·3n +9,存在自然数m ,使得对任意n ∈N *,都能使m 整除f (n ),则最大的m 的值为( )A .30B .26C .36D .6[答案] C[解析] 因为f (1)=36,f (2)=108=3×36,f (3)=360=10×36,所以f (1),f (2),f (3)能被36整除,推测最大的m 值为36.9.已知数列{a n }的前n 项和S n =n 2a n (n ≥2),而a 1=1,通过计算a 2、a 3、a 4,猜想a n =( )A.2(n +1)2B.2n (n +1)C.22n -1D.22n -1[答案] B[解析] 由S n =n 2a n 知S n +1=(n +1)2a n +1∴S n +1-S n =(n +1)2a n +1-n 2a n∴a n +1=(n +1)2a n +1-n 2a n∴a n +1=n n +2a n (n ≥2). 当n =2时,S 2=4a 2,又S 2=a 1+a 2,∴a 2=a 13=13a 3=24a 2=16,a 4=35a 3=110. 由a 1=1,a 2=13,a 3=16,a 4=110猜想a n =2n (n +1),故选B. 10.对于不等式n 2+n ≤n +1(n ∈N +),某学生的证明过程如下:(1)当n =1时,12+1≤1+1,不等式成立.(2)假设n =k (k ∈N +)时,不等式成立,即k 2+k <k +1,则n =k +1时,(k +1)2+(k +1)=k 2+3k +2<(k 2+3k +2)+(k +2)=(k +2)2=(k +1)+1,∴当n =k +1时,不等式成立,上述证法( )A .过程全都正确B .n =1验证不正确C .归纳假设不正确D .从n =k 到n =k +1的推理不正确[答案] D[解析] n =1的验证及归纳假设都正确,但从n =k 到n =k +1的推理中没有使用归纳假设,而通过不等式的放缩法直接证明,不符合数学归纳法的证题要求.故应选D.二、填空题11.用数学归纳法证明“2n +1≥n 2+n +2(n ∈N *)”时,第一步的验证为________.[答案] 当n =1时,左边=4,右边=4,左≥右,不等式成立[解析] 当n =1时,左≥右,不等式成立,∵n ∈N *,∴第一步的验证为n =1的情形.12.已知数列11×2,12×3,13×4,…,1n (n +1),通过计算得S 1=12,S 2=23,S 3=34,由此可猜测S n =________.[答案] n n +1 [解析] 解法1:通过计算易得答案.解法2:S n =11×2+12×3+13×4+…+1n (n +1)=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1n +1 =1-1n +1=n n +1. 13.对任意n ∈N *,34n +2+a 2n+1都能被14整除,则最小的自然数a =________.[答案] 5[解析] 当n =1时,36+a 3能被14整除的数为a =3或5,当a =3时且n =3时,310+35不能被14整除,故a =5.14.用数学归纳法证明命题:1×4+2×7+3×10+…+n (3n +1)=n (n +1)2.(1)当n 0=________时,左边=____________,右边=______________________;当n =k 时,等式左边共有________________项,第(k -1)项是__________________.(2)假设n =k 时命题成立,即_____________________________________成立.(3)当n =k +1时,命题的形式是______________________________________;此时,左边增加的项为______________________.[答案] (1)1;1×(3×1+1);1×(1+1)2;k ;(k -1)[3(k -1)+1](2)1×4+2×7+3×10+…+k (3k +1)=k (k +1)2(3)1×4+2×7+…+(k +1)[3(k +1)+1]=(k +1)[(k +1)+1]2;(k +1)[3(k +1)+1]三、解答题15.求证:12-22+32-42+…+(2n -1)2-(2n )2=-n (2n +1)(n ∈N *).[证明] ①n =1时,左边=12-22=-3,右边=-3,等式成立.②假设n =k 时,等式成立,即12-22+32-42+…+(2k -1)2-(2k )2=-k (2k +1)2. 当n =k +1时,12-22+32-42+…+(2k -1)2-(2k )2+(2k +1)2-(2k +2)2=-k (2k +1)+(2k +1)2-(2k +2)2=-k (2k +1)-(4k +3)=-(2k 2+5k +3)=-(k +1)[2(k +1)+1],所以n =k +1时,等式也成立.由①②得,等式对任何n ∈N *都成立.16.求证:12+13+14+…+12n -1>n -22(n ≥2). [证明] ①当n =2时,左=12>0=右, ∴不等式成立.②假设当n =k (k ≥2,k ∈N *)时,不等式成立.即12+13+…+12k -1>k -22成立. 那么n =k +1时,12+13+…+12k -1 +12k -1+1+…+12k -1+2k -1>k -22+12k -1+1+…+12k >k -22+12k +12k +…+12k =k -22+2k -12k =(k +1)-22, ∴当n =k +1时,不等式成立.据①②可知,不等式对一切n ∈N *且n ≥2时成立.17.在平面内有n 条直线,其中每两条直线相交于一点,并且每三条直线都不相交于同一点.求证:这n 条直线将它们所在的平面分成n 2+n +22个区域.[证明] (1)n =2时,两条直线相交把平面分成4个区域,命题成立.(2)假设当n =k (k ≥2)时,k 条直线将平面分成k 2+k +22块不同的区域,命题成立. 当n =k +1时,设其中的一条直线为l ,其余k 条直线将平面分成k 2+k +22块区域,直线l 与其余k 条直线相交,得到k 个不同的交点,这k 个点将l 分成k +1段,每段都将它所在的区域分成两部分,故新增区域k +1块.从而k +1条直线将平面分成k 2+k +22+k +1=(k +1)2+(k +1)+22块区域. 所以n =k +1时命题也成立.由(1)(2)可知,原命题成立.18.(2010·衡水高二检测)试比较2n +2与n 2的大小(n ∈N *),并用数学归纳法证明你的结论.[分析] 由题目可获取以下主要信息:①此题选用特殊值来找到2n +2与n 2的大小关系;②利用数学归纳法证明猜想的结论.解答本题的关键是先利用特殊值猜想.[解析] 当n =1时,21+2=4>n 2=1,当n =2时,22+2=6>n 2=4,当n =3时,23+2=10>n 2=9,当n =4时,24+2=18>n 2=16,由此可以猜想,2n +2>n 2(n ∈N *)成立下面用数学归纳法证明:(1)当n =1时,左边=21+2=4,右边=1,所以左边>右边,所以原不等式成立.当n =2时,左边=22+2=6,右边=22=4,所以左边>右边;当n=3时,左边=23+2=10,右边=32=9,所以左边>右边.(2)假设n=k时(k≥3且k∈N*)时,不等式成立,即2k+2>k2.那么n=k+1时,2k+1+2=2·2k+2=2(2k+2)-2>2·k2-2.又因:2k2-2-(k+1)2=k2-2k-3=(k-3)(k+1)≥0,即2k2-2≥(k+1)2,故2k+1+2>(k+1)2成立.根据(1)和(2),原不等式对于任何n∈N*都成立.。
数列与数学归纳法专项训练(含答案)(新)

数列与数学归纳法专项训练1.如图,曲线2(0)y x y =≥上的点i P 与x 轴的正半轴上的点i Q 及原点O 构成一系列正三角形△OP 1Q 1,△Q 1P 2Q 2,…△Q n-1P n Q n …设正三角形1n n n Q P Q -的边长为n a ,n ∈N ﹡(记0Q 为O ),(),0n n Q S .(1)求1a 的值; (2)求数列{n a }的通项公式n a 。
w.w.w.k.s.5.u.c.o.m2. 设{}{},n n a b 都是各项为正数的数列,对任意的正整数n ,都有21,,n n n a b a +成等差数列,2211,,n n n b a b ++成等比数列.(1)试问{}n b 是否成等差数列?为什么?(2)如果111,2a b ==,求数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和n S .3. 已知等差数列{n a }中,2a =8,6S =66.(Ⅰ)求数列{n a }的通项公式;(Ⅱ)设n n a n b )1(2+=,n n b b b T +++= 21,求证:n T ≥16.4. 已知数列{n a }中531=a ,112--=n n a a (n ≥2,+∈N n ),数列}{nb ,满足11-=n n a b (+∈N n ) (1)求证数列{n b }是等差数列;(2)求数列{n a }中的最大项与最小项,并说明理由;(3)记++=21b b S n …n b +,求)1(lim -∞→n b n n .5. (Ⅰ (Ⅱ (Ⅲn 项的6. (1(27. 已知数列{}n a 各项均不为0,其前n 项和为n S ,且对任意*∈N n ,都有n n pa p S p -=⋅-)1((p 为大于1的常数),并记nn n n n n n S a C a C a C n f ⋅⋅++⋅+⋅+=21)(2211 .(1)求n a ; (2)比较)1(+n f 与)(21n f pp ⋅+的大小*∈N n ; (3)求证:⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+-⋅-+≤≤⋅---=∑1212111111)()()12(n n i p p p p i f n f n (*∈N n ).8. 已知n N *∈,各项为正的等差数列{}n a 满足263521,10a a a a ⋅=+=,又数列{}lg n b 的前n 项和是()()11lg312n S n n n n =+--。
数列与数学归纳法练习题应用数学归纳法解决数列问题

数列与数学归纳法练习题应用数学归纳法解决数列问题数列作为数学中的一种重要概念,经常在各种数学问题中出现。
数学归纳法是一种解题方法,通常用来证明数列中的某种性质对于所有的正整数成立。
本文将通过一些数列练习题的解答来展示数学归纳法在解决数列问题中的应用。
题目一:证明等差数列的和公式给定等差数列:1,4,7,10,...,其中首项为1,公差为3。
现在我们要证明等差数列的和公式Sn=n/2(2a1+(n-1)d)对于该数列成立。
解答:首先,我们假设等差数列的和公式Sn=n/2(2a1+(n-1)d)对于任意的正整数n成立,即我们假设Sn对于n为任意的正整数均成立。
接下来,我们要证明当n=k+1时,Sn+1=1/2(k+2)(2a1+kd)也成立,其中k为任意正整数。
根据等差数列的性质,我们可以推导出Sn=a1+a2+...+ak,那么Sn+1=a1+a2+...+ak+ak+1。
由于等差数列的公差为d,那么ak+1=a1+kd。
将这个结果代入Sn+1的表达式中,我们可以得到Sn+1=a1+a2+...+ak+(a1+kd)。
观察这个表达式,我们可以发现前k项是Sn的部分,而最后一项a1+kd是等差数列的第k+1项。
根据等差数列求和公式Sn=n/2(2a1+(n-1)d),我们可以将Sn+1进一步简化为Sn+1=Sn+(a1+kd)。
将Sn代入这个表达式,我们可以得到Sn+1=n/2(2a1+(n-1)d)+(a1+kd)。
进一步化简这个表达式,我们可以得到Sn+1=n/2(2a1+(n-1)d)+(a1+kd)=1/2n(2a1+k)。
根据等差数列的和公式Sn=n/2(2a1+(n-1)d),我们可以得到Sn+1=1/2(n+2)(2a1+k)。
由此可见,Sn+1的表达式满足等差数列的和公式。
综上所述,假设Sn对于任意的正整数n均成立的前提下,可以证明Sn+1也成立。
根据数学归纳法原理,等差数列的和公式Sn=n/2(2a1+(n-1)d)对于该数列成立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列 数学归纳法测试题
班级 姓名 得分 .
一、选择题:
1、等差数列{n a }中,a 3+a 7-a 10=8,a 11-a 4=4,则S 13=…………………………………………( )
(A )168 (B ) 156 (C )78 (D ) 152
2、数列{n a }、{n b }都是等差数列,a 1=25,b 1=75,a 100+b 100=100,则{n a +n b }的前100项和为( )
(A )0 (B )100 (C )10000 (D )102400
3、等差数列5,244,3,77 ,第n 项到第n +6项的和为T ,则|T|最小时,n=…………………( )
(A )6 (B )5 (C )4 (D )3
4、等差数列{n a }满足123101a a a a ++++ =0,则有……………………………………………( )
(A )11010a a +> (B )21000a a +< (C )3990a a += (D )5151a =
5、一个首项为正数的等差数列中,S 3=S 11,则当S n 最大知,n=……………………………………( )
(A )5 (B ) 6 (C )7 (D ) 8
6、{n a }为等比数列,{n b }是等差数列,b 1=0,n c =n a +n b ,如果数列{n c }是1,1,2,…,则{n c }的前10项和为……………………………………………………………………………………( )
(A ) 978 (B ) 557 (C ) 467 (D )以上都不对
7、若相异三数(),(),()a b c b c a c a b ---组成公比为q 的等比数列,则…………………………( )
(A )210q q ++= (B ) 210q q -+= (C ) 210q q +-= (D ) 210q q --=
8、{n a }的前n 项和为S n =232n n -,当n ≥2时,有…………………………………………………( )
(A )n S >n na >1na (B ) n S <n na <1na (C ) 1na <n S <n na (D ) n na <n S <1na
9、{n a }是等差数列,则下列各不等式中正确的是…………………………………………………( )
(A )36a a <45a a (B ) 36a a ≤45a a (C ) 36a a >45a a (D ) 36a a ≥45a a
10、一个等比数列前n 项和为21n -,则它的前n 项的各项平方和为……………………………( )
(A )2(21)n - (B ) 122(21)n - (C )41n - (D )1(41)3
n - 11、据市场调查,预测某种商品从2004年初开始的几个月内累计需求量n S (万件)近似满足n S =2(215)90
n n n --,则本年度内需求量超过1.5万件的月份是……………………………( )
(A )5、6 (B ) 6、7 (C ) 7、8 (D ) 8、9
12、实数12,,,x a a y 成等差数列,12,,,x b b y 成等比数列,则2
1212
()a a b b +的取值范围是…………( ) (A )[4,+∞) (B ) (-∞,-4]∪[4,+∞)
(C ) (-∞,0]∪[4,+∞) (D )不能确定
二、填空题:
13、各项都是正数的等比数列{n a }中,56a a =9,则3132310l o g l o g l o g a a a +++ = 。
14、{n a }是首项为1的正数数列,2211(1)n n n n n a na a a +++-+=0,则通项公式n a = 。
15、数列{n a }的前n 项和n S =12n +n b ,其中{n b }是公差为2的等差数列,b 1≠0,则l i m n n n
b a →∞= 。
16、1999年上海市完成GDP 计4035亿元,2000年预期增长9%,市委提出本市人口自然增长率将控制在0.08%,若GDP 和人口均按照这样的速度增长,则要使人均GDP 达到或者超过1999年的2倍,至少需要 年.(1999年人口1300万,lg2=0.3010,lg1.089=0.0371)
三、解答题:
17、在等比数列{n a }的前n 项中,a 1最小,并且12166,128n n a a a a -+==,前n 项和为126。
⑴求a 1;
⑵求公比q ;
18、{n a }是正数数列,前n 项和为n S ,并且满足关系n S =
1(1)(3)4n n a a -+。
⑴求此数列的通项公式(写出推证过程); ⑵若12111n n
T S S S =
+++ ,求lim n n T →∞。
19、在1和2之间插入n 个正数12,,,n a a a ,使这n +2个数成等比数列;再在1与2之间插入n 个正数12,,,n b b b ,使这n +2个数成等差数列,若A n =12n a a a ⋅⋅⋅ ,B n =12n b b b +++ ⑴求数列{A n }、{B n }的通项公式;
⑵n ≥7,比较A n 与B n 的大小并且证明你的结论!
20、某市去年11月份曾经发生流感,根据资料统计:11月1日,该市新流感病毒感染者有20人,此后新感染者比前一天的新感染者增加50人。
由于采取措施,使该病毒的传播得到控制,从某天起,每天新感染者比前一天的新感染者减少30人。
到11月30日止,该市在这30天中感染该病毒的患者共8670人。
问:11月几日,该市感染此病毒的新患者人数最多?并求这一天的新患者人数。