2010年中考数学试题精编相似三角形[1]

合集下载

中考数学相似三角形分类专练 证明相似三角形中的对应线段成比例重难点专练(解析版)

中考数学相似三角形分类专练 证明相似三角形中的对应线段成比例重难点专练(解析版)
同上,AB可以与DE对应,也可以与DF对应,∴ 或 ,B不一定成立;
同上,AB可以与DE对应,也可以与DF对应,∴相似比可能是 ,也可能是 ,C不一定成立;
∵∠A=∠D,即∠A与∠D是对应角,∴它们的对边一定是对应比,即BC与EF是对应比,
∴相似比为 ,∴D一定成立,
故选D.
【考点知悉】
本题考查相似三角形的性质,注意相似三角形的性质是针对对应角和对应边而言的.
17.如图,点D、E分别在 的边AB、AC上,且 ,若DE=3,BC=6,AC=8,则 _______.
18.如图,点D、E、F分别位于△ABC的三边上,满足DE∥BC,EF∥AB,如果AD:DB=3:2,那么BF:FC=_____.
19.如图,在△ABC中,AB=9,AC=6,D为AB边上一点,且△ABC∽△ACD,则AD=__.
∴这个三角形的边长扩大到原来的4倍,
故选B.
【考点知悉】
本题考查了相似三角形的相似比和周长比之间的关系,属于简单题,熟练掌握相似三角形的性质是解题关键.
10.D
【思路点拨】
根据①直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项.②每一条直角边是这条直角边在斜边上的射影和斜边的比例中项,进行判断即可.
30.如图, , , , ,则 ________.
31.如图,△ABC中,DE∥BC, ,△ADE的面积为8,则△ABC的面积为______
三、解答题
32.已知:如图,AB是半圆O的直径,弦CD∥AB,动点P、Q分别在线段OC、CD上,且DQ=OP,AP的延长线与射线OQ相交于点E、与弦CD相交于点F(点F与点C、D不重合),AB=20,cos∠AOC= .设OP=x,△CPF的面积为y.
∴ ,

2010年江苏中考数学试题(含答案)

2010年江苏中考数学试题(含答案)

二0一0年江苏常州市升学统一考试数学试卷说明:1.本试卷共5页,全卷满分120分,考试时间为120分钟。

考生应将答案全部填写在答题卡相应位置上,写在本试卷上无效,考试结束后,请将本试卷和答题卡一并交回,考试时不允许使用计算器。

2.答题前,考生务必将自己的姓名,考试证号填写在试卷上,并填写好答题卡上的考生信息。

3.作图必须用2B 铅笔,并请加黑加粗,描写清楚。

一、选择题(本大题共有8小题,每小题2分,共16分。

在每小题所给的四个选项中,只有一个是正确的)1.用激光测距仪测得之间的距离为14000000米,将14000000用科学记数法表示为A.71410⨯ B. 61410⨯ C.71.410⨯ D.80.1410⨯2.函数2y x=的图像经过的点是 A.(2,1) B.(2,1)- C.(2,4) D.1(,2)2-3.函数13y x =-的自变量x 的取值范围是 A.0x ≠ B.3x > C.3x ≠- D.3x ≠4.如图所示几何体的主视图是5.下列运算错误的是235= B. 236= 623= D.2(2)2= 6.若两圆的半径分别为2和3,圆心距为5,则两圆的位置关系为A.外离B.外切C.相交D.内切 7.某一公司共有51名员工(包括经理),经理的工资高于其他员工的工资。

今年经理的工资从去年的200000元增加到225000元,而其他员工的工资同去年一样,这样,这家公司所有员工今年工资的平均数和中位数与去年相比将会A.平均数和中位数不变B.平均数增加,中位数不变C.平均数不变,中位数增加D.平均数和中位数都增加8.如图,一次函数122y x =-+的图像上有两点A 、B ,A 点的横坐标为2,B 点的横坐标为(042)a a a <<≠且,过点A 、B 分别作x 的垂线,垂足为C 、D ,AOC BOD ∆∆、的面积分别为12S S 、,则12S S 、的大小关系是A. 12S S >B. 12S S =C. 12S S <D. 无法确定二、填空题(本大题共有9小题,第9小题4分,其余8小题每小题2分,共20分。

相似三角形-中考数学第一轮总复习课件(全国通用)

相似三角形-中考数学第一轮总复习课件(全国通用)

中考数学第一轮总复习典例精讲考点聚集查漏补缺拓展提升第四单元 三角形专题4.4 相似三角形知识点比例线段01相似三角形的性质与判定02相似三角形的应用03拓展训练04【例1】已知2x=3y(y≠0),则下面结论成立的是( ) A.x:y=3:2 B.x:3=2:y C.x:y=2:3 D.x:2=y:3A1.线段的比:在同一单位长度下,两条线段长度的比叫做两条线段的比;2.比例线段:对于四条线段a,b,c,d,若其中两条线段的比与另两条线段的比相等(a:b=c:d).我们就说这四条线段成比例,简称比例线段.3.比例的基本性质:4.更比定理:考点聚集ad=bc知识点一典例精讲比例线段1.已知 ,则 的值是____.2.人们认为最美人体的头顶至肚脐的长度与肚脐至足底之比是 .某人测得头顶至肚脐长约65cm,肚脐至足底长约102cm,为尽可能达到黄金比的美感效果,作为形象设计师的你,对于她的着装建议为穿一双( )cm的高跟鞋(精确到1cm) A.2 B.3 C.4 D.5B 知识点一强化训练比例线段知识点比例线段01相似三角形的性质与判定02相似三角形的应用03拓展训练04【例2】如图,已知△ABC中,∠BAC=90º,延长BA到点D,使AD=0.5AB,点E,F分别是边BC,AC的中点.求证:DF=BE 方法一:证△ADF≌△FEC(SAS)AFDBCE方法二:证△ADF∽△BCA方法三:连接AE,利用平行四边形证明知识点二典例精讲相似三角形的性质与判定1.如图,已知∠1=∠2,那么添加下列一个条件后,仍无法判定△ABC∽△ADE的是( ) A.∠C=∠AED B.AB:AD=AC:AE C.∠B=∠D D.AB:AD=BC:DE2.如图,△ABC 中,∠A =78º,AB =4,AC =6.将△ABC 沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )DA 1CEBD2知识点二强化训练三角形相似的性质与判定CAC B78ºAC B78ºAAC B14DAC B 23CAC B 78ºB3.如图,在□ABCD中,连接AC,EF∥BC,且EF与AB相交于点E,与AC相交于点F,3AE=2EB,连接DF.若S △AEF =4,则S △ADF 的值为_____.4.如图,一束光线从点A(4,4)射出,经y轴上的点C的反射后,经过点B(1,0),则点C的坐标是( ) A.(0,0.5) B.(0,0.8) C.(0,1) D.(0,2)5.在□ABCD中,E是AD上的一点,且点E将AD分为2:3的两部分,连接BE,AC相交于F,则S △AEF :S △CBF =_______.AFE DCB10知识点二强化训练三角形相似的性质与判定B AyxC OB(1,0)知识点比例线段01相似三角形的性质与判定02相似三角形的应用03拓展训练04【例3】如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=8m,则树高AB=_____m.5.5 DAE BFC 知识点三典例精讲相似三角形的应用3.如图,△ABC是一张锐角三角形硬纸片,AD是边BC上的高BC=40cm,AD=30cm,从这张硬纸片上剪下一个长HG是宽HE的2倍的矩形EFGH,使它的一边EF在BC上,顶点G,H分别在AC,AB上,AD与HG的交点为M.(1)求证:AM:AD=HG:BC;(2)求矩形EFGH的周长。

初三中考数学专题复习:二次函数综合题(相似三角形问题)含答案

初三中考数学专题复习:二次函数综合题(相似三角形问题)含答案

中考数学专题复习:二次函数综合题(相似三角形问题)1.如图①,二次函数y =﹣x 2+bx +c 的图象与x 轴交于点A (﹣1,0)、B (3,0),与y 轴交于点C ,连接BC ,点P 是抛物线上一动点.(1)求二次函数的表达式.(2)当点P 不与点A 、B 重合时,作直线AP ,交直线BC 于点Q ,若①ABQ 的面积是①BPQ 面积的4倍,求点P 的横坐标.(3)如图①,当点P 在第一象限时,连接AP ,交线段BC 于点M ,以AM 为斜边向①ABM 外作等腰直角三角形AMN ,连接BN ,①ABN 的面积是否变化?如果不变,请求出①ABN 的面积;如果变化,请说明理由.2.如图,二次函数2314y x bx =++的图像经过点()8,3A ,交x 轴于点B ,C (点B 在点C 的左侧),与y 轴交于点D .(1)填空:b = ______;(2)点P 是第一象限内抛物线上一点,直线PO 交直线CD 于点Q ,过点P 作x 轴的垂线交直线CD 于点T ,若PQ QT =,求点P 的坐标;(3)在x 轴的正半轴上找一点E ,过点E 作AE 的垂线EF 交y 轴于F ,若AEF 与EFO △相似,求OE 的长.3.如图,已知抛物线2y ax bx c =++与x 轴相交于点()1,0A -,()3,0B ,与y 轴的交点()0,6C .(1)求抛物线的解析式;(2)点(),P m n 在平面直角坐标系第一象限内的抛物线上运动,设PBC 的面积为S ,求S 关于m 的函数表达式(指出自变量m 的取值范围)和S 的最大值;(3)点M 在抛物线上运动,点N 在y 轴上运动,是否存在点M 、点N 使得①CMN =90°,且∆CMN 与OBC ∆相似,如果存在,请求出点M 和点N 的坐标.4.如图,抛物线L 1:y =ax 2﹣2x +c (a ≠0)与x 轴交于A 、B (3,0)两点,与y 轴交于点C (0,﹣3),抛物线的顶点为D .抛物线L 2与L 1关于x 轴对称.(1)求抛物线L 1与L 2的函数表达式;(2)已知点E 是抛物线L 2的顶点,点M 是抛物线L 2上的动点,且位于其对称轴的右侧,过M 向其对称轴作垂线交对称轴于P ,是否存在这样的点M ,使得以P 、M 、E 为顶点的三角形与△BCD 相似,若存在请求出点M 的坐标,若不存在,请说明理由.5.如图,在平面直角坐标系中,已知直线4y x =+与x 轴、y 轴分别相交于点A 和点C ,抛物线21y x kx k =++-的图象经过点A 和点C ,与x 轴的另一个交点是点B .(1)求出此抛物线的解析式; (2)求出点B 的坐标;(3)若在y 轴的负半轴上存在点D .能使得以A ,C ,D 为顶点的三角形与①ABC 相似,请求出点D 的坐标.6.如图1,已知抛物线23y ax bx =++经过点()1,5D ,且交x 轴于A ,B 两点,交y 轴于点C ,已知点()1,0A -,(),P m n 是抛物线在第一象限内的一个动点,PQ BC ⊥于点Q .(1)求抛物线的解析式;(2)当PQ =m 的值;(3)是否存在点P ,使BPQ 与BOC 相似?若存在,请求出P 点的坐标;若不存在,请说明理由.7.如图,在平面直角坐标系中,直线y =12x +2与x 轴交于点A ,与y 轴交于点C .抛物线y =ax 2+bx +c的对称轴是x=-32且经过A、C两点,与x轴的另一交点为点B.(1)求二次函数y=ax2+bx+c的表达式;(2)点P为线段AB上的动点,求AP+2PC的最小值;(3)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A,M,N为顶点的三角形与①ABC 相似?若存在,求出点M的坐标;若不存在,请说明理由.8.如图,抛物线y=−x2+bx+c与x轴相交于A(−1,0),B(3,0)两点,与y轴交于点C,顶点为点D,抛物线的对称轴与BC相交于点E,与x轴相交于点F.(1)求抛物线的函数关系式;(2)连结DA,求sin A的值;(3)若点H线段BC上,BOC与BFH△相似,请直接写出点H的坐标.9.如图,抛物线y=1-2x2+bx+c与x轴交于点A(﹣2,0)和点B(8,0),与y轴交于点C,顶点为D,连接AC,BC,BC与抛物线的对称轴l交于点E.(1)求抛物线的表达式;(2)点P 是第一象限内抛物线上的动点,连接PB ,PC ,当S △PBC =720S △ABC 时,求点P 的坐标; (3)点N 是对称轴l 右侧抛物线上的动点,在射线ED 上是否存在点M ,使得以点M ,N ,E 为顶点的三角形与①OBC 相似?若存在,求点M 的坐标;若不存在,请说明理由.10.如图,抛物线23y ax bx =++与x 轴交于1,0A 、()3,0B -两点,与y 轴交于点C ,设抛物线的顶点为D .(1)求该抛物线的表达式与顶点D 的坐标; (2)试判断BCD △的形状,并说明理由;(3)探究坐标轴上是否存在点P ,使得以P 、A 、C 为顶点的三角形与BCD △相似?若存在,请求出点P 的坐标;若不存在,请说明理由.11.如图,抛物线y =ax 2﹣2ax ﹣3a (a ≠0)与x 轴交于点A ,B .与y 轴交于点C .连接AC ,BC .已知ABC 的面积为2.(1)求抛物线的解析式;(2)平行于x 轴的直线与抛物线从左到右依次交于P ,Q 两点.过P ,Q 向x 轴作垂线,垂足分别为G ,H .若四边形PGHQ 为正方形,求正方形的边长;(3)抛物线上是否存在一点N ,使得①BCN =①CAB ﹣①CBA ,若存在,请求出满足条件N 点的横坐标,若不存在请说明理由.12.如图,二次函数2y x bx c =-++的图像与x 轴交于点A (-1,0),B (2,0),与y 轴相交于点C .(1)求这个二次函数的解析式;(2)若点M 在此抛物线上,且在y 轴的右侧.①M 与y 轴相切,过点M 作MD ①y 轴,垂足为点D .以C ,D ,M 为顶点的三角形与①AOC 相似,求点M 的坐标及①M 的半径长.13.如图,在平面直角坐标系中,抛物线2()0y ax bx c ac =++≠与x 轴交于点A 和点B (点A 在点B 的左侧),与y 轴交于点C .若线段OA OB OC 、、的长满足2OC OA OB =⋅,则这样的抛物线称为“黄金”抛物线.如图,抛物线22(0)y ax bx a =++≠为“黄金”抛物线,其与x 轴交点为A ,B (其中B 在A 的右侧),与y 轴交于点C .且4OA OB =(1)求抛物线的解析式;(2)若P 为AC 上方抛物线上的动点,过点P 作PD AC ⊥,垂足为D . ①求PD 的最大值;①连接PC ,当PCD 与ACO △相似时,求点P 的坐标.14.如图,在平面直角坐标系xOy 中,已知抛物线2y x bx c =++与x 轴交于点A 、B 两点,其中1,0A ,与y 轴交于点()0,3C .(1)求抛物线解析式;(2)如图1,过点B 作x 轴垂线,在该垂线上取点P ,使得①PBC 与①ABC 相似,请求出点P 坐标;(3)如图2,在线段OB 上取一点M ,连接CM ,请求出12CM BM +最小值.15.如图,抛物线y =ax 2+k (a >0,k <0)与x 轴交于A ,B 两点(点B 在点A 的右侧),其顶点为C ,点P 为线段OC 上一点,且PC =14OC .过点P 作DE ①AB ,分别交抛物线于D ,E 两点(点E 在点D 的右侧),连接OD ,DC .(1)直接写出A ,B ,C 三点的坐标;(用含a ,k 的式子表示) (2)猜想线段DE 与AB 之间的数量关系,并证明你的猜想;(3)若①ODC =90°,k =﹣4,求a 的值.16.如图,抛物线223y x bx c =++与x 轴交于A ,B 两点,与y 轴交于C 点,连接AC ,已知B (﹣1,0),且抛物线经过点D (2,﹣2).(1)求抛物线的表达式;(2)若点E 是抛物线上第四象限内的一点,且2ABES=,求点E 的坐标;(3)若点P 是y 轴上一点,以P ,A ,C 三点为顶点的三角形是等腰三角形,求P 点的坐标.17.如图,在直角坐标系xOy 中,抛物线y =ax 2+bx +2(a ≠0)与x 轴交于点A (﹣1,0)和B (4,0),与y 轴交于点C ,点P 是抛物线上的动点(不与点A ,B ,C 重合).(1)求抛物线的解析式;(2)当点P 在第一象限时,设①ACP 的面积为S 1,①ABP 的面积为S 2,当S 1=S 2时,求点P 的坐标; (3)过点O 作直线l ①BC ,点Q 是直线l 上的动点,当BQ ①PQ ,且①BPQ =①CAB 时,请直接写出点P 的坐标.18.如图,在平面直角坐标系xOy中,直线y=﹣x+3与两坐标轴交于A、B两点,抛物线y=x2+bx+c 过点A和点B,并与x轴交于另一点C,顶点为D.点E在对称轴右侧的抛物线上.(1)求抛物线的函数表达式和顶点D的坐标;(2)若点F在抛物线的对称轴上,且EF①x轴,若以点D,E,F为顶点的三角形与①ABD相似,求出此时点E的坐标;(3)若点P为坐标平面内一动点,满足tan①APB=3,请直接写出①P AB面积最大时点P的坐标及该三角形面积的最大值.19.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴交于点A、B,与y轴交于点C,且OC=2OB=6OA=6,点P是第一象限内抛物线上的动点.(1)求抛物线的解析式;(2)连接BC与OP,交于点D,当S△PCD:S△ODC的值最大时,求点P的坐标;(3)点M在抛物线上运动,点N在y轴上运动,是否存在点M、点N.使①CMN=90°,且①CMN与①BOC 相似,若存在,请求出点M、点N的坐标.20.如图,抛物线y=x2+bx+12(b<0)与x轴交于A,B两点(A点在B点左侧),且OB=3OA.(1)请直接写出b=,A点的坐标是,B点的坐标是;(2)如图(1),D点从原点出发,向y轴正方向运动,速度为2个单位长度/秒,直线BD交抛物线于点E,若BE=5DE,求D点运动时间;(3)如图(2),F点是抛物线顶点,过点F作x轴平行线MN,点C是对称轴右侧的抛物线上的一定点,P 点在直线MN上运动.若恰好存在3个P点使得①P AC为直角三角形,请求出C点坐标,并直接写出P点的坐标.答案1.(1)y =﹣x 2+2x +3.(2)P 352或 (3)①ABN 的面积不变,为4.2.(1)2-(2)5⎛ ⎝⎭或5⎛ ⎝⎭(3)4或493.(1)2246y x x =-++(2)S 关于m 的函数表达式为239(03)S m m m =-+<<,S 的最大值是274 (3)存在,M (1,8),N (0,172)或M (74,558),N (0,838)或M (94,398),N (0,38)或M (3,0),N (0,﹣32)4.(1)抛物线L 1:223y x x =--,抛物线L 2:2y x 2x 3=-++;(2)435(,)39M 或(4,5)M -.5.(1)254y x x =++(2)点B 的坐标为(-1,0)(3)点D 的坐标是(0,-203) 6.(1)215322y x x =-++ (2)1或5(3)存在;P (53,529)7.(1)抛物线表达式为:213222y x x =--+;(2)AP +2PC 的最小值是4;(3)存在M(0,2)或(-3,2)或(2,-3)或(5,-18),使得以点A 、M 、N 为顶点的三角形与ABC 相似.8.(1)y =-x 2+2x +3(3)点H 的坐标为(1,2)或(2,1)9.(1)21382y x x =++ (2)P 1(1,10.5),P 2(7,4.5)(3)存在,(3,8)或(3,5或(3,11)30.(1)y =﹣x 2﹣2x +3,(﹣1,4);(2)直角三角形,理由见解析;(3)存在,(0,0)或(0,﹣13)或(-9,0)11.(1)y =﹣13x 2+23x +1(2)﹣6﹣(3)存在,5或11712.(1)22y x x =-++; (2)M 的坐标为(12,94),(32, 54 ),(3,-4),①M 的半径长为12或32或313.(1)213222y x x =--+(2)①PD ①P 坐标为(3,2)-或325()28,-14.(1)243y x x =-+(2)P 点坐标为()3,9或()3,215.(1)点A 、B 、C 的坐标分别为(、、(0,k ) (2)DE =12AB(3)a =1316.(1)224233y x x =--(2)E ,-1)(3)P 点的坐标(0,2)或(02)或(0,﹣2或(0,54)17.(1)213222y x x =-++ (2)点P 的坐标为(103,139)(3)点P 的坐标为(32,﹣2)或(32,﹣2)或(173,﹣509)18.(1)y =x 2﹣4x +3,(2,﹣1)(2)(5,8)或(73,89-)(3)①P AB ,此时P )19.(1)y =﹣2x 2+4x +6 (2)点P 的坐标为(32,152) (3)存在,M 、N 的坐标分别为(3,0)、(0,﹣32)或(94,398)、(0,38)或(1,8)、(0,172)或(74,558)、(0,838)20.(1)﹣8,(2,0),(6,0)(2)3秒或212秒 (3)C 点坐标为(143,﹣329),P 点的坐标为(103,﹣4)或(﹣103,﹣4)或(11027,﹣4)。

《相似三角形》中考试题选编(含答案)

《相似三角形》中考试题选编(含答案)
求证:△ABC∽△FDE.
4、(2008年杭州市)(本小题满分10分)
如图:在等腰△ABC中,CH是底边上的高线,点P是线段CH上不与端点重合的任意一点,连接AP交BC于点E,连接BP交AC于点F.
(1)证明:∠CAE=∠CBF;
(2)证明:AE=BF;
(3)以线段AE,BF和AB为边构成一个新的三角形ABG(点E与点F重合于点G),记△ABC和△ABG的面积分别为S△ABC和S△ABG,如果存在点P,能使得S△ABC=S△ABG,求∠C的取之范围。
°°°°
2、(2008湘潭市) 如图,已知D、E分别是 的AB、AC边上的点, 且 那么 等于( )
A.1:9B.1:3
C.1:8D.1:2
3、(2008 台湾)如图G是ABC的重心,直线L过A点与BC平行。若直线CG分别与AB、L交于D、E两点,直线BG与AC交于F点,则AED的面积:四边形ADGF的面积=?( )
A. B. C. D.
18、(2008 江苏 常州)如图,在△ABC中,若DE∥BC, = ,DE=4cm,则BC的长为( )
A.8cmB.12cmC.11cmD.10cm
19、(2008 江西南昌)下列四个三角形,与左图中的三角形相似的是()
20、(2008 重庆)若△ABC∽△DEF,△ABC与△DEF的相似比为2︰3,则S△ABC︰S△DEF为()
相似三角形中考真题试题汇编
二、填空题
6、(2008年江苏省南通市)已知∠A=40°,则∠A的余角等于=________度.
8、(2008年荆州)两个相似三角形周长的比为2:3,则其对应的面积比为___________.
9、(2008年庆阳市)两个相似三角形的面积比S1:S2与它们对应高之比h1:h2之间的关系为.

2010年盐城市中考数学试卷及答案

2010年盐城市中考数学试卷及答案

- 1 -2010年盐城市高中阶段教育招生统一考试试题数 学注意事项:1.本试卷考试时间为120分钟,试卷满分150分,考试形式闭卷. 2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分. 3.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上.一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上) 1.(2010年江苏盐城,1,3分)20100的值是 A .2010 B .0 C .1 D .-1 【分析】任何一个非零数的零次幂等于1,因此20100=1. 【答案】A【涉及知识点】零指数幂的运算【点评】解答本题要注意记忆a 0=1(a ≠0). 【推荐指数】★ 2.(2010年江苏盐城,2,3分)-12 的相反数是A .12B .-2C .-12D .2【分析】-12 的相反数是12.【答案】A【涉及知识点】相反数【点评】本题是基础题,熟悉概念即可。

【推荐指数】★3.(2010年江苏盐城,3,3分)下列四个几何体中,主视图、左视图、俯视图完全相同的是A .圆锥B .圆柱C .球D .三棱柱【分析】球的三视图都是圆,因此选C.- 2 -【答案】C.【涉及知识点】三视图【点评】三视图应用非常广泛,要注意把握三视图的特征. 【推荐指数】★4.(2010年江苏盐城,4,3分)以下图形中,既是轴对称图形,又是中心对称图形的是A .等边三角形B .矩形C .等腰梯形D .平行四边形 【分析】根据概念可以判断矩形符合条件,而A 不是中心对称图形,C 不是中心对称图形,D 是中心对称图形,但不是轴对称图形. 【答案】B【涉及知识点】中心对称图形、轴对称图形【点评】中心对称图形是绕某点旋转180°能和它本身重合的图形,轴对称图形要找出对称轴即可. 【推荐指数】★ 5.(2010年江苏盐城,5,3分)下列说法或运算正确的是 A .1.0×102有3个有效数字 B .222)(b a b a -=- C .532a a a =+D .a 10÷a 4= a 6【分析】A . 1.0×102有2个有效数字B .222ab 2)(b a b a +-=-C .=+32a a 不能计算, D .a 10÷a 4=a 6正确; 【答案】D【涉及知识点】有效数字 完全平方公式 同底数幂的除法 【点评】解答此类试题的关键是概念要清楚. 【推荐指数】★6.(2010年江苏盐城,6,3分)如图所示,在菱形ABCD 中,两条对角线AC =6,BD =8,则此菱形的边长为 A .5 B .6 C .8 D .10【分析】根据菱形的对角线互相垂直且平分,设交点为 O,则OA=3,OB=4.根据勾股定理可以得到AB=5.【答案】A【涉及知识点】菱形的性质 勾股定理【点评】本题属于基础题,菱形的特殊性质要记清. A B D(第6题)- 3 -【推荐指数】★ 7.(2010年江苏盐城,7,3分)给出下列四个函数:①x y -=;②x y =;③xy 1=;④2x y =.0<x 时,y 随x 的增大而减小的函数有 A .1个B .2个C .3个D .4个【分析】0<x 时,y 随x 的增大而减小的函数有①x y -=;③xy 1=;④2x y =.【答案】C【涉及知识点】一次函数 二次函数 反比例函数的性质 【点评】解答此类试题的关键是根据解析式画出草图,然后分析其增减性. 【推荐指数】★★ 8.(2010年江苏盐城,8,3分)填在下面各正方形中的四个数之间都有相同的规律,根据此规律,m 的值是A .38B .52C .66D .74【分析】根据图形所填数字可以看出:2×4-0=8;4×6-2=22;6×8-4=44;8×10-6=74. 【答案】D【涉及知识点】有理数运算 找规律 【点评】本题属于探究类试题,解答此类试题时,要充分分析试题的特点,各个量之间的关系,然后得到一般的结论. 【推荐指数】★★★★ 二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接写在答题卡相应位置上)9.(2010年江苏盐城,9,3分) 4的算术平方根是 ▲ . 【分析】4的算术平方根是2。

中考数学一轮复习专题解析—相似三角形

中考数学一轮复习专题解析—相似三角形

中考数学一轮复习专题解析—相似三角形复习目标1.了解相似图形和相似三角形的概念。

2.掌握三角形相似的判定方法和性质并学会运用。

考点梳理一、相似图形1.形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形.2.比例线段的相关概念如果选用同一单位量得两条线段b a ,的长度分别为n m ,,那么就说这两条线段的比是nm b a =,或写成n m b a ::=. 注意:在求线段比时,线段单位要统一,单位不统一应先化成同一单位. 在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段.注意:(1)当两个比例式的每一项都对应相同,两个比例式才是同一比例式.(2)比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:ad c b =. 3. 比例的性质基本性质:(1)bc ad d c b a =⇔=::;(2)b a c b c c a ⋅=⇔=2::.注意:由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如bc ad =,除了可化为d c b a ::=,还可化为d b c a ::=,b a d c ::=,c a d b ::=,c d a b ::=,b d a c ::=,a b c d ::=,a c b d ::=.更比性质(交换比例的内项或外项):()()()a b c d a c d c b d b ad b c a ⎧=⎪⎪⎪=⇒=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项 反比性质(把比的前项、后项交换):cd a b d c b a =⇒=. 合比性质:dd c b b a d c b a ±=±⇒=. 注意:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间 发生同样和差变化比例仍成立.如:⎪⎪⎩⎪⎪⎨⎧+-=+--=-⇒=d c d c b a b a c c d a a b d c b a 等等. 等比性质: 如果)0(≠++++====n f d b n m f e d c b a ,那么b a n f d b m e c a =++++++++ . 注意:(1)此性质的证明运用了“设k 法” ,这种方法是有关比例计算,变形中一种常用方法.(2)应用等比性质时,要考虑到分母是否为零.(3)可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.4.比例线段的有关定理平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.推论:(1)平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.(2)平行于三角形一边并且和其它两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例.定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形第三边.5.黄金分割把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 215-=≈0.618AB 例1.如果0ab cd =≠,则下列正确的是( )A .::a c b d =B .::a d c b =C .::a b c d =D .::d c b a = 【答案】B【分析】根据比例的基本性质,列出比例式即可.【详解】解:∵0ab cd =≠,∵::a d c b =,故选:B .例2.两个相似多边形的一组对应边的长分别为6cm ,9cm ,那么它们的相似比为( )A .23B C .49 D .94【答案】A【分析】根据相似多边形的性质求解即可;【详解】两个相似多边形一组对应边的长分别为6cm ,9cm ,∵它们的相似比为:6293=.故选A .二、相似三角形的概念对应角相等,对应边成比例的三角形,叫做相似三角形.相似用符号“∵”表示,读作“相似于” .相似三角形对应边的比叫做相似比(或相似系数).相似三角形对应角相等,对应边成比例.注意:∵对应性:即两个三角形相似时,通常把表示对应顶点的字母写在对应位置上,这样写比较容易找到相似三角形的对应角和对应边.∵顺序性:相似三角形的相似比是有顺序的.∵两个三角形形状一样,但大小不一定一样.∵全等三角形是相似比为1的相似三角形.二者的区别在于全等要求对应边相等,而相似要求对应边成比例.三、相似三角形的等价关系(1)反身性:对于任一ABC ∆有ABC ∆∵ABC ∆.(2)对称性:若ABC ∆∵'''C B A ∆,则'''C B A ∆∵ABC ∆.(3)传递性:若ABC ∆∵C B A '∆'',且C B A '∆''∵C B A ''''''∆,则ABC ∆∵C B A ''''''∆.四、相似三角形的基本定理定理:平行于三角形一边的直线和其它两边(或两边延长线)相交,所构成的三角形与原三角形相似.定理的基本图形:五、三角形相似的判定方法1、定义法:对应角相等,对应边成比例的两个三角形相似.2、平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.3、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似.4、判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似.5、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.简述为:三边对应成比例,两三角形相似.6、判定直角三角形相似的方法:(1)以上各种判定均适用.(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.(3)直角三角形被斜边上的高分成的两个直角三角形与原三角形相似.直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。

相似三角形的判定和性质-备战2023年中考数学考点微专题

相似三角形的判定和性质-备战2023年中考数学考点微专题

考向5.6 相似三角形的判定和性质【知识要点】1、相似三角形:两个对应角相等,对应边成比例的三角形叫做相似三角形。

说明:证两个三角形相似时和证两个三角形全等一样,通常把表示对应顶点的字母写在对应的位置上,这样便于找出相似三角形的对应角和对应边。

2、相似比:相似三角形对应边的比k,叫做相似比(或叫做相似系数)。

3、相似三角形的基本定理:平分于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似。

说明:这个定理反映了相似三角形的存在性,所以有的书把它叫做相似三角形的存在定理,它是证明三角形相似的判定定理的理论基础。

4、三角形相似的判定定理:(1)判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么就两个三角形相似。

可简单说成:两角对应相等,两三角形相似。

(2)判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似,可简单说成:两边对应成比例且夹角相等,两三角形相似。

(3)判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似,可简单说成:三边对应成比例,两三角形相似。

(4)直角三角形相似的判定定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。

说明:以上四个判定定理不难证明,以下判定三角形相似的命题是正确的,在解题时,也可以用它们来判定两个三角形的相似。

第一:顶角(或底角)相等的两个等腰三角形相似。

第二:腰和底对应成比例的两个等腰三角形相似。

第三:有一个锐角相等的两个直角三角形相似。

第四:直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。

第五:如果一个三角形的两边和其中一边上的中线与另一个三角形的两边和其中一边上的中线对应成比例,那么这两个三角形.相似。

5、相似三角形的性质:(1)相似三角形性质1:相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

AC图(2)(2010,北京)如图,在△ABC 中,点D 、E 分AB 、AC 边上,DE //BC ,若AD :AB =3:4, AE =6,则AC 等于( )D (A) 3 (B) 4 (C) 6 (D) 8。

(2010,宁德)图,在□ABCD 中,AE =EB ,AF =2,则FC 等于_____.(2010,甘肃)在同一时刻,身高1.6米的小强在阳光下的影长为0.8米,一棵大树的影长为4.8米,则这棵树的高度为 米. 9.6 (2010,珠海)天,小青在校园内发现:旁边一颗树在阳光下的影子和她本人的影子在同一直线上,树顶的影子和她头顶的影子恰好落在地面的同一点,同时还发现她站立于树影的中点(如图所示).如果小青的峰高为1.65米,由此可推断出树高是_______米. 3.3(2010,梧州)如图(2),在 ABCD 中,E 是对角线BD 上的点,且EF ∥AB ,DE :EB=2:3, EF=4,则CD 的长为_____________。

(2010,桂林)如图,已知△ADE 与△ABC 的相似比为1:2,则△ADE 与△ABC 的面积比为( ).AB C DEFA E BCD AA . 1:2B . 1:4C . 2:1D . 4:1(2010,黔东南)如图,若CD C ABC Rt ,90,0=∠∆为斜边上的高,ACD n AB m AC ∆==则,,的面积与BCD ∆的面积比Ss ACDBCD ∆∆的值是 ( ) A.22mn B. 221mn -C.122-mn D.122+mn(2010,河南)如图,△ABC 中,点DE 分别是ABAC 的中点,则下列结论:①BC =2DE ; ②△ADE ∽△ABC ;③ACAB AEAD =.其中正确的有【 】(A )3个 (B )2个 (C )1个 (D )0个(2010,河南)如图,Rt △ABC 中,∠C =90°,∠ABC =30°,AB =6.点D 在AB 边上,点E 是BC 边上一点(不与点B 、C 重合),且DA =DE ,则AD 的取值范围是___________________.(2010,沈阳)如图,在□ ABCD 中,点E 在边BC 上,BE :EC =1:2,连接AE 交BD 于点F ,则△BFE 的面积与△DFA 的面积之比为 。

1:9(2010,肇庆)如图,已知∠ACB =90°,AC =BC ,BE ⊥CE 于E ,AD ⊥CE 于D ,CE 与AB 相交于F .EDCBACD A EBCDEF A(1)求证:△CEB ≌△ADC ;(2)若AD =9cm ,DE =6cm ,求BE 及EF 的长.证明:(1)∵B E ⊥C E 于E ,AD ⊥C E 于D , ∴∠E =∠ADC =90° ∠BCE =90°— ∠ACD ,∠CAD =90°−∠ACD , ∴∠BCE =∠CAD 在△BCE 与△CAD 中,∠E =∠ADC ,∠BCE =∠CAD , BC = AC ∴△C E B ≌△AD C(2)∵△C E B ≌△AD C ∴ B E = D C , C E = AD又AD =9 ∴C E = AD =9,D C = C E — D E = 9—6 = 3,∴B E = DC = 3( cm) ∵∠E =∠ADF =90°,∠B FE =∠AFD ,∴△B FE ∽△ AFD ∴ADBE FDEF = 即有 936=-EFEF解得:EF =23( cm)(2010,宁夏)关于对位似图形的表述,下列命题正确的是 .(只填序号)① 相似图形一定是位似图形,位似图形一定是相似图形; ② 位似图形一定有位似中心;③ 如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么,这两个图形是位似图形; ④ 位似图形上任意两点与位似中心的距离之比等于位似比.(2010,宁夏)已知:正方形ABCD 中,E 、F 分别是边CD 、DA 上的点,且CE =DF ,AE 与BF 交于点M .(1)求证:△ABF ≌△DAE ;(2)找出图中与△ABM 相似的所有三角形(不添加任何辅助线).(1)证明:在正方形ABCD 中: AB=AD=CD, 且∠BAD=∠ADC=090 ∵CE=DFABCD F EM FE D CBA∴AD-DF=CD-CE 即:AF=DE 在△ABF 与△DAE 中 ⎪⎩⎪⎨⎧=∠=∠=已证)已证)已证)(((DE AF ADE BAF DA AB ∴△ABF ≌△DAE (SAS )、(2)与△ABM 相似的三角形有:△FAM; △FBA; △EAD 、(2010,西宁)矩形ABCD 中,E 、F 、M 为AB 、BC 、CD 边上的点,且AB=6,BC=7,AE=3,DM=2,EF ⊥FM,则EM 的长为A .5B .25C .6D .26(2010,西宁)如图,在△ABC 中,A D ⊥BC,垂足为D.(1) 尺规作图(不写作法,保留作图痕迹):作△ABC 的外接圆⊙O ,作直径AE ,连接BE . (2) 若AB=8,AC=6,AD=5,求直径AE 的长.(证明△ABE ∽△ADC .)(2010,滨州)如图,A 、B 两点被池塘隔开,在AB 外取一点c ,连结AC 、BC ,在AC 上取点M ,使AM=3MC ,作MN ∥AB 交BC 于N ,量得MN=38m ,则AB 的长为_______________.152m,(2010,滨州)如图,在△ABC 和△ADE 中,∠BAD=∠CAE ,∠ABC=∠ADE 。

(1)写出图中两对相似三角形(不得添加字母和线); (2)请分别说明两对三角形相似的理由。

(1)△ABC ∽△ADE ,△ABD ∽△ACE (2)证明略(2010,德州)如图,小明在A 时测得某树的影长为2m ,B 时又测得该树的影长为8m ,若两次日照的光线互相垂直,则树的高度为_____m.4(2010,泰安)如图,在△ABC 中,D 是BC 边上一点,E 是AC 边上一点,且满足AD=AB ,∠ADE=∠C(1)求证:∠AED=∠ADC ,∠DEC=∠B ; (2)求证:AB 2=AE·AC 证明:(1)在△ADE 和△ACD 中∵∠ADE=∠C ,∠DAE=∠DAE ∴∠AED=180°—∠DAE —∠ADE ∠ADC=180°—∠ADE —∠C ∴∠AED=∠ADC∵∠AED+∠DEC=180° ∠ADB+∠ADC=180°第14题图 A 时B 时∴∠DEC=∠ADB 又∵AB=AD ∴∠ADB=∠B ∴∠DEC=∠B(2)在△ADE 和△ACD 中由(1)知∠ADE=∠C ,∠DAE=∠DAE ∴△ADE ∽△ACD∴ADAC AEAD即AD 2=AE·AC又AB=AD ∴AB 2=AE·AC(2010,潍坊)如图所示,一般书本的纸张是在原纸张多次对开得到的.矩形A B C D 沿E F 对开后,再把矩形E F C D 沿M N 对开,依此类推.若各种开本的矩形都相似,那么A B A D等于( ).B A .0.618B. 2C. D. 2(2010,山西)如图,在△ABC 中,AB =AC =13,BC =10,D 是AB 的中点,过点D 作DE ⊥AC 于点E ,则DE 的长是______________.6013(2010,绵阳)如图,梯形ABCD 的对角线AC 、BD 相交于O ,G 是BD 的中点.若(第18题)(第7题)AD = 3,BC = 9,则GO : BG =( ).AA .1 : 2B .1 : 3C .2 : 3D .11 : 20(2010,自贡)如图是一个常见铁夹的侧面示意图,OA ,OB 表示铁夹的两个面,C 是轴,CD ⊥OA 于点D ,已知DA =15mm ,DO =24mm ,DC =10mm ,我们知道铁夹的侧面是轴对称图形,请求出A 、B 两点间的距离。

解:作出示意图连接A B ,同时连结OC 并延长交A B 于E , 因为夹子是轴对称图形,故OE 是对称轴 ∴OE ⊥A BAE =BE∴Rt △OCD ∽Rt △OA E∴OAOC =AECD而OC =22DCOD +=221224+=26即15+2424=AE10∴AE =261039⨯=15∴AB =2A E =30(mm )答:A B 两点间的距离为30mm.(2010,天津)如图,等边三角形ABC 中,D 、E 分别为AB 、BC 边上的点,AD BE =,AE 与C D 交于点F ,AG C D ⊥于点G , 则A G A F的值为.2(2010,嘉兴)如图,已知AD 为△ABC 的角平分线,DE ∥AB 交AC 于E ,如果A E E C=23,那么AC =( )A .13B .23C .25D .35C FBE G。

相关文档
最新文档