利用函数的图像探究函数的性质-高考数学考点专题突破
高考数学最新真题专题解析—函数的图象及性质

高考数学最新真题专题解析—函数的图象及性质考向一 由函数图像求解析式【母题来源】2022年高考全国乙卷(文科)【母题题文】如图是下列四个函数中的某个函数在区间[3,3]-的大致图像,则该函数是( )A. 3231x x y x -+=+B. 321x x y x -=+C. 22cos 1x x y x =+D.22sin 1x y x =+ 【答案】A【试题解析】设()321x x f x x -=+,则()10f =,故排除B; 设()22cos 1x x h x x =+,当π0,2x ⎛⎫∈ ⎪⎝⎭时,0cos 1x <<,所以()222cos 2111x x x h x x x =<≤++,故排除C;设()22sin 1x g x x =+,则()2sin 33010g =>,故排除D.故选:A. 【命题意图】本类题主要考查函数的定义域、值域、奇偶性、单调性、对称性、周期性等规律性质,属于中档题目.【命题方向】这类试题命题形式主要有由函数的性质及解析式选图,试题难度不大,多为中低档题,函数图像是历年高考的热点,其重点是基本初等函数的图像以及函数的性质在图像上的直观体现.常见的命题角度有:(1)由函数的图像来研究函数的性质;(2)由函数图像求解析式;(3)由解析式判断大致图像.【得分要点】函数图象的识辨可从以下方面入手:(1) 从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2) 从函数的单调性,判断图象的变化趋势.(3) 从函数的奇偶性,判断图象的对称性.(4) 从函数的周期性,判断图像的循环往复.(5) 从函数的特征点,排除不合要求的图象.考向二 由解析式判断图像【母题来源】2022年高考全国乙卷(文科)【母题题文】函数()33cos x x y x -=-在区间ππ,22⎡⎤-⎢⎥⎣⎦的图象大致为( ) A. B. C. D.【答案】A【试题解析】令()()33cos ,,22x x f x x x ππ-⎡⎤=-∈-⎢⎥⎣⎦, 则()()()()()33cos 33cos x x x x f x x x f x ---=--=--=-,所以()f x 为奇函数,排除BD ;又当0,2x π⎛⎫∈ ⎪⎝⎭时,330,cos 0x x x -->>,所以()0f x >,排除C.故选:A. 【命题意图】本类题主要考查函数的定义域、值域、奇偶性、单调性、对称性、周期性等规律性质,属于中档题目.【命题方向】这类试题命题形式主要有由函数的性质及解析式选图,试题难度不大,多为中低档题,函数图像是历年高考的热点,其重点是基本初等函数的图像以及函数的性质在图像上的直观体现.常见的命题角度有:(1)由函数的图像来研究函数的性质;(2)由函数图像求解析式;(3)由解析式判断大致图像.【得分要点】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的周期性,判断图像的循环往复.(5)从函数的特征点,排除不合要求的图象.真题汇总及解析1.函数()22cos6x x y x -=-的图像大致是( )A .B .C .D .【答案】C【解析】【分析】利用排除法求解,先判断函数的奇偶性,再利用函数的变化情况判断即可【详解】定义域为R ,因为()()()22cos(6)22cos6()x x x x f x x x f x ---=--=--=-,所以函数为奇函数,所以排除AB , 当012x π<<时,062x π<<,则cos60x >,因为当012x π<<时,220x x -->,所以当012x π<<时,()22cos60x x y x -=->,所以排除D ,故选:C 2.从函数y x =,2y x ,2x y -=,sin y x =,cos y x =中任选两个函数,记为()f x 和()g x ,若()()()h x f x g x =+或()()()h x f x g x =-的图象如图所示,则()h x =( )A .2sin x x -B .cos x x +C .2sin x x -+D .cos x x -【答案】C【解析】【分析】 根据图象可知函数()h x 过定点(0,1),当0x <时()1h x >,为减函数;当0x >时()0h x >或()0h x <交替出现,结合排除法和选项中函数的图象与性质,即可得出结果.【详解】由图象可知,函数()h x 过定点(0,1),当0x <时,()1h x >,为减函数;当0x >时,()0h x >或()0h x <交替出现.若2()sin h x x x =-,则()00h =,不符合题意,故A 错误;若()cos h x x x =+,则(0)1h =,即函数()h x 过定点(0,1),又1cos 1x -≤≤,当1x <-时,()cos 0h x x x =+<,不符合题意,故B 错误;若()cos h x x x =-,则(0)1h =-,不符合题意,故D 错误.故选:C3.函数()2cos sin ln 2cos x f x x x-=⋅+的部分图象大致为( ) A .B .C .D .【答案】C【解析】【分析】先判断函数的奇偶性得函数为奇函数,进而排除AB 选项,再根据0,4x π⎛⎫∈ ⎪⎝⎭时的函数符号排除D 选项得答案.【详解】解:由题意可知,函数()f x 的定义域为R ,因为2cos()2cos ()sin()ln sin ln ()2cos()2cos x x f x x x f x x x----=-=-⋅=-+-+, 所以()f x 为奇函数,图象关于原点对称,排除选项A ,B ;当0,4x π⎛⎫∈ ⎪⎝⎭时,sin 0,2cos 2cos 0x x x >+>->,所以2cos 012cos x x -<<+, 所以2cos ()sin ln02cos x f x x x-=⋅<+,排除D. 故选:C.4.已知R α∈,则函数()e x x f x α=的图象不可能是( ) A . B .C .D .【答案】C【分析】 令12α=、2α=、1α=-,结合导数研究()f x 的单调性及值域判断可能的图象,即可得答案.【详解】 当12α=时,()e x x f x =且0x ≥,则12()e x x f x x-'=, 所以1(0,)2上 ()0f x '>,()f x 递增;1(,)2+∞上 ()0f x '<,()f x 递减,且(0)0f =, 所以A 图象可能;当2α=时,2()0ex x f x =≥且R x ∈,则(2)()e x x x f x '-=, 所以(,0)-∞上()0f x '<,()f x 递减,(0,2)上 ()0f x '>,()f x 递增,(2,)+∞上 ()0f x '<,()f x 递减,所以B 图象可能;当1α=-时,1()e xf x x =且0x ≠,则21()e x x f x x +'=-, 所以(,1)-∞-上()0f x '>,()f x 递增,(1,0)-上 ()0f x '<,()f x 递减,(0,)+∞上 ()0f x '>,()f x 递增,又0x <时()0f x <,而0x >时()0f x >,所以D 图象可能;综上,排除A 、B 、D.故选:C5.函数()2222x xx x f x -+=+的部分图象大致是( ) A . B . C . D .【答案】B【分析】先判断()f x 的奇偶性,可排除A ,再由单调性、特值点排除选项C 、D ,即可得出答案.【详解】函数的定义域为R ,因为()()2222x x x x f x f x -+-==+,所以()f x 是偶函数,排除选项A ;当x →+∞时,考虑到22y x x =+和22x x y -=+的变化速度,知x →+∞时,()0f x →,故排除选项C ,D .故选:B .6.函数()22x f x x -=⋅在区间[]22-,上的图象可能是( ) A . B .C .D .【答案】C【解析】【分析】首先判断函数的奇偶性,再根据特殊值判断即可;【详解】解:∵()()22x f x x f x --=⋅=,∴()f x 是偶函数,函数图象关于y 轴对称,排除A ,B 选项;∵()()122f f ==,∴()f x 在[0,2]上不单调,排除D 选项.故选:C7.下图中的函数图象所对应的解析式可能是( )A .112x y -=-B .112xy =-- C .12x y -=-D .21x y =--【答案】A【解析】【分析】 根据函数图象的对称性、奇偶性、单调性以及特殊点,利用排除法即可求解.【详解】解:根据图象可知,函数关于1x =对称,且当1x =时,1y =-,故排除B 、D 两项; 当1x >时,函数图象单调递增,无限接近于0,对于C 项,当1x >时,12x y -=-单调递减,故排除C 项.故选:A.8.函数()x b f x a -=的图像如图所示,其中a ,b 为常数,则下列结论正确的是( )A .1a >,0b <B .1a >,0b >C .01a <<,0b >D .01a <<,0b <【答案】D【解析】【分析】 由函数的单调性得到a 的范围,再根据函数图像平移关系分析得到b 的范围.【详解】由函数()x b f x a -=的图像可知,函数()x b f x a -=在定义域上单调递减,01a ∴<<,排除AB 选项;分析可知:函数()x b f x a -=图像是由x y a =向左平移所得,0b ∴->,0b ∴<.故D 选项正确. 故选:D9.已知函数()f x ax b =+的图象如图所示,则函数()x g x a b =+的图象可能是( )A .B .C .D .【答案】B【解析】【分析】由函数()f x ax b =+的图象可得1a >,1b <-,从而可得()x g x a b =+的大致图象.【详解】由()f x ax b =+的图象可得(0)1f b =<-,(1)0f a b =+>,所以1a >,1b <-,故函数()x g x a b =+为增函数,相对x y a =向下平移大于1个单位故选:B10.设函数f (x )=2x ,则如图所示的函数图象对应的函数解析式是( )A .y =f (|x )B .y =-|f (x )| )C .y =-f (-|x )D .y =f (-|x )【答案】C【解析】 由题意结合指数函数的图象及函数图象的变换可得函数图象对应的函数解析式,即可得解.【详解】由图象可知函数图象对应的函数解析式是||2x y -=-,所以函数图象对应的函数解析式是y =-f (-|x |).故选:C .【点睛】本题考查了指数函数的图象及函数图象变换的应用,属于基础题.11.函数()cos f x x x =的图像大致是( )A .B .C .D .【答案】A【解析】【分析】先根据函数奇偶性的概念可知()()f x f x -=-,即函数()f x 为奇函数,排除选项D ;再利用三角函数的性质排除BC 即得.【详解】()cos()cos ()f x x x x x f x -=--=-=-,∴函数()f x 为奇函数,排除选项D ; 当(0,)2x π∈时,0x >,0cos 1x <<, 0()f x x ∴<<,排除选项BC . 故选:A .12.下列各个函数图像所对应的函数解析式序号为( )①||()e sin x f x x = ②()ln ||=-g x x x ③2()sin =t x x x ④2e ()xh x x =A .④②①③B .②④①③C .②④③①D .④②③①【答案】A【解析】【分析】先通过函数定义域和奇偶性进行判断,再利用导数对①求导,求其在()0,π上的最大值.【详解】()f x ,()t x 的定义域为R ,()g x ,()h x 的定义域为{}|0x x ≠2e ()0xh x x =>在定义域内恒成立,则前两个对应函数分别为④②当()0,πx ∈时,则()e sin x f x x =()π()e sin cos 2e sin 4x x f x x x x ⎛⎫'=+=+ ⎪⎝⎭,令()0f x '>,则30π4x <<()f x 在30,π4⎛⎫ ⎪⎝⎭上单调递增,在3π,π4⎛⎫ ⎪⎝⎭上单调递减,则3π432()(π)e 542f x f ≤=>①对应的为第三个函数故选:A .。
数学二轮复习专题练三核心热点突破专题六函数与导数第1讲函数图象与性质含解析

专题六函数与导数第1讲函数图象与性质高考定位1。
以基本初等函数为载体,考查函数的定义域、值域、最值、奇偶性、单调性和周期性;2.利用函数的图象研究函数性质,能用函数的图象与性质解决简单问题;3。
函数与方程思想、数形结合思想是高考的重要思想方法。
真题感悟1。
(2020·全国Ⅱ卷)设函数f(x)=ln|2x+1|-ln|2x-1|,则f(x)()A。
是偶函数,且在错误!单调递增B。
是奇函数,且在错误!单调递减C。
是偶函数,且在错误!单调递增D。
是奇函数,且在错误!单调递减解析f(x)=ln|2x+1|-ln|2x-1|的定义域为错误!.∵f(-x)=ln|-2x+1|-ln|-2x-1|=ln|2x-1|-ln|2x+1|=-f(x),∴f(x)为奇函数,故排除A,C。
又当x∈错误!时,f(x)=ln(-2x-1)-ln(1-2x)=ln 错误!=ln 错误!=ln 错误!,∵y=1+错误!在错误!上单调递减,由复合函数的单调性可得f(x)在错误!上单调递减。
故选D.答案D2。
(2019·全国Ⅰ卷)函数f(x)=错误!在[-π,π]的图象大致为()解析显然f(-x)=-f(x),x∈[-π,π],所以f(x)为奇函数,排除A;又当x=π时,f(π)=错误!〉0,排除B,C,只有D适合.答案D3.(2020·新高考山东、海南卷)若定义在R上的奇函数f(x)在(-∞,0)单调递减,且f(2)=0,则满足xf(x-1)≥0的x的取值范围是()A.[-1,1]∪[3,+∞)B.[-3,-1]∪[0,1]C.[-1,0]∪[1,+∞)D.[-1,0]∪[1,3]解析因为函数f(x)为定义在R上的奇函数,则f(0)=0。
又f(x)在(-∞,0)单调递减,且f(2)=0,画出函数f(x)的大致图象如图(1)所示,则函数f(x-1)的大致图象如图(2)所示。
当x≤0时,要满足xf(x-1)≥0,则f(x-1)≤0,得-1≤x≤0.当x>0时,要满足xf(x-1)≥0,则f(x-1)≥0,得1≤x≤3。
高考函数图像知识点总结

高考函数图像知识点总结函数图像是高考数学中的重要内容,掌握函数图像的知识点对于解题和分析函数的性质非常重要。
在高考中,对于函数的图像,常常需要求出函数的极值、最值、交点等信息,因此掌握函数图像的形态及特点是非常必要的。
本文将对高考函数图像的知识点进行总结,并且分析函数图像的性质。
函数的线性变化是函数图像的重要特点之一。
如果函数y=f(x)的图像经过点(a,f(a)),而a和f(a)是常数,那么如果将函数y=f(x)的每个y值都增加或减少一个常数k,那么图像将上下平移k个单位。
如果将函数y=f(x)的每个x值都增加或减少一个常数k,那么图像将左右平移k个单位。
同时,如果将函数y=f(x)的每个y值都增加或减少一个常数k,那么函数的图像将整体上下平移k个单位,图像的形态不会发生变化。
二次函数的图像形态主要受到二次项系数(a)的影响。
当a>0时,二次函数的图像开口向上,称为抛物线;当a<0时,二次函数的图像开口向下。
同时,二次函数的图像与抛物线的对称轴有关,对称轴的表达式为x=-b/2a,对称轴与图像的交点被称为抛物线的顶点。
指数函数是一类常见的函数,它的图像形态有着明显的特点。
指数函数的图像一般从左下方向上右上方逼近x轴,并且在x轴上有一个一个水平渐近线。
如果指数函数的底数大于1,那么指数函数的图像在x轴右侧呈现上升趋势;如果底数小于1,那么指数函数的图像在x轴右侧呈现下降趋势。
对数函数是指数函数的反函数,其图像形态与指数函数有一定的关联。
当对数函数的底数大于1时,对数函数的图像在x轴右侧呈现上升趋势;当底数小于1时,对数函数的图像在x轴右侧呈现下降趋势。
与指数函数相反,对数函数的图像一般从右上方逼近x轴。
三角函数是高考中经常涉及到的一类函数,在图像形态上有着独特的特点。
正弦函数的图像在[0,2π]的区间内呈现周期性变化,才时间折返并且在图像最高点和最低点与x轴相切。
余弦函数的图像与正弦函数的形态相似,但是相位不同。
高三数学最新高考第二轮复习《函数图像及其性质》试题研究专题讲解

函数图像及其性质高考考点打破例 1.设函数 f ( x) x2 bx c( x0)若 f ( 4) f (0), f ( 2) 2 ,求对于x的方程 f ( x)x 的解得2个数 .[ 剖析 ]: 由两个条件可求出[ 分析 ]: 解法一 :由f (4)(x 0)b, c ,再利用图像或解方程求解.f (0), f ( 2) 2 可得 b 4, c2,f (x) x2 4x 2 (x 0),x 0 , 或x 0.2 ( x 0)方程等价于x2x f ( x) 2 4x 2 x即 x 2, 或 x 1,或 x 2, 即 f ( x) x 由3个解.y 解法二 : 由f ( 4) f (0), f ( 2) 2 可得 b 4, c 2,x2 4x 2 (x 0) 4f (x)2 ( x 0) ,图像如下图.方程 2 C f ( x) x 的解得y=f(x)个数 ,即y f ( x) 与 y x 的交点个数.由图知两图像有A,B,C -5B O x 5 三个交点10,故方程15由三个解 .-2[ 启示 ]: 函数的图像从形式上很好的反应出了函数的性质,所y=x A 以在研究函数时, 注意联合图像,在解方程和不等式等问题时,借助图像能起到-4 十分快捷的成效, 但要注意 ,利用图像求交点个数或解得个数问题时,作图要十分正确 ,不然简单解错 .b5E2RGbCAP[ 变式训练 ]: 已知函数f (x) x2 4x 3 .(1)求函数 f ( x) 的单一区间,并指出其增减性;(2) 求会合 M={m︱使方程f (x) mx 有四个不等的实根}.( x 2) 2 1, x ,1 3, 解 : f (x)2)2 1, x 作出图像如下图 .(x 1,3(1) 递加区间为1,2 , 3, ,递减区间为,1 , 2,3 .(2) 由图像可知y f ( x) 与 y mx 图像有四个不同的交点,直线 y m x应介于x轴与切线l1之y mxx2 (m 4)x 3 0.间 .( x 2)2 1y由0 得 m 4 2 3 . m 4 2 3 时, x 3 1,3 舍去.m 4 2 3 , l1方程 y (4 2 3) x . m 0,4 2 3会合 M m 0 m 4 2 3 .例 2.设函数f ( x) x2 1 ax, 求证:当a 1时,函数 f ( x) 在区间0, 是减函数 .[ 剖析 ]: 利用定义 ,经过作差变形判断符号.常用的变形方法有通分,配方 ,因式分解 ,有时还可利用分子有理化或分母有理化 .p1EanqFDPw取值作差变形定号作答[ 分析 ]: 设x1, x20,,且x1x2,则f ( x 1) f ( x 2 )x 12 1 ax 1x 22 1 ax 2x 12 1x 221 a x 1 x 2x 12 x 22a x 1 x 2 x 1 x 2x 1 x 2 ax 12 1x 22x 12 1x 22110 x 1x 2 ,x 1 x 21.x 12 1x 22 1又a 1,x 1 x 2ax 12x 2211f (x 1) f (x 2 ) 0, 即 f ( x 1 ) f (x 2 ) .因此函数 f ( x) 在区间 0,是减函数 .[ 启示 ]: 用单一性定义证明函数单一系时,分析过程要谨慎清楚,此中变形是重点 ,此题采纳的分子有理化要用心领会 ,合时加以运用 .DXDiTa9E3d[ 变式训练 ]: 设函数 f (x)x a( a b 0), 求 f (x) 的单一区间 ,并证明 f ( x) 在单一区间上的单一性 .x x x b解 :在定义域内任取.则12f ( x 1) f ( x 2 ) x 1 a x 2 a (x 1 a)( x 2 b) (x 1 b)( x 2 a) (b a)( x 1 x 2 ). x 1 b x 2 b( x 1 b)( x 2 b) ( x 1 b)( x 2 b) a b 0, b a 0, 又 x 1 x 2 0 ,当 x 1x 2 b 或 b x 1 x 2 时函数才单一 ,且当 x 1 x 2b 或 b x 1 x 2 时 , f (x 1 ) f ( x 2 ) 0 ,f ( x) 在 ( b, ),( , b) 上是单一函数 .例 3 已知定义域为R 的函数 f ( x)2x b是奇函数 .x 1a2(1) 求 a,b 的值 ;(2) 若对随意的 t R ,不等式 f (t 2 2t ) f (2t 2 k) 0 恒建立 ,求 k 的取值范围 .[ 剖析 ]: 联合奇函数的定义或特值法求参数a, b 的值 ,对于 (2)要想法进行等价转变 .[ 分析 ]:(1) 由于 f ( x) ,f (0) 0 , 1 b 0 解得 b 1.是奇函数 因此即 2 a进而有 f ( x)2x1 . 2x 1a12 11 又由 f (1)f ( 1), 知2 ,解得 a 2.4 a1 a故 a2, b1.(2) 解法一 :由 (1)知 f ( x)2x 111 . 由上式易知 f ( x) 在 R 为减函数 .又由于 f ( x) 是奇函数 . 2x 122 2x1进而不等式f (t 2 2t ) f (2t 2k ) 0 等价于 f (t 2 2t )f (2t 2 k) f (k 2t 2 ).由于 f ( x) 是减函数 , 由上式推得 t 22t k 2t 2. 即对全部 t R 有 3t 2 2t k0. 进而鉴别式4 12k 0, 解得 k1 .t 22 t2t 2k3x121 2 1解法二 :由 (1)知 f ( x)2.又由题设条件得0.2x 1 22t22 t 12 22t2k 12即 (22t 2 k 1 2)( 2t 22t 1)(2t22t 12)( 22t2k1)0 整理得 23t22t k1,故 3t 2 2t k 0 .上式对一切 tR 均建立 , 进而鉴别式4 12k 0, 解得 k1 .3[ 启示 ]:(1)已知函数的奇偶性 ,单一性和参数 ,注意利用以下关系: f ( x) 为奇 (或偶 )函数 ,则定义域对于原点对称 ,且对定义域内随意的 x ,恒有 f ( x) f ( x) (或 f ( x) f (x) )建立 . f ( x) 为单一增 (或减 )函数 ,则 f (x) 在定义域内对随意的x 1 , x 2 ,当 x 1 x 2 时 ,不等式 f (x 1) f (x 2 ) (或 f (x 1) f ( x 2 ) )恒建立 RTCrpUDGiT;(2) 对此题中 (1)可利用“ f ( x) 是奇函数 ,则 f ( x) f ( x) 恒建立”作转变 ,但较繁琐 ;(3) 对此题 (2)波及不等式恒建立问题 ,解答中是采纳数形联合的方法,也可用分别参数 k 与变量 t 转变为对于 t的函数的最值 ,即 k 3t 2 2t 对全部 tR 恒建立 ,当 t R 时 ,有 (3t 22t) min1 , k 1 . 5PCzVD7HxAx a33[ 变式训练 ]: 已知 f ( x)是奇函数 .x 2 bx1(1) 求 a,b 的值 ;(2) 求 f ( x) 得单一区间 ,并加以证明 .解 :(1) f (x)f ( x) 0 恒建立 ,即x ax ax 2bx 1 x 20恒建立 ,b) x 2bx 1则2(a 2a 0 对随意的实数 x 恒建立 . a b 0.(2)f ( x) x ( x R) 是奇函数 ,x 21只要研究0,上 f ( x) 的单一性即可 .任取 x 1, x 20,,且 x 1 x 2 ,则f ( x 1) f ( x 2 )x 1 x 2 ( x 2 x 1)( x 1x 2 1).x 12 1 x 22 1 ( x 12 1)(x 22 1)x 12 1 0, x 22 1 0, x 2 x 1 0,而x 1 , x 2 0,1 时, x 1 x 2 1 0, x 1 , x 2 1, 时 , x 1 x 2 1 0,当 x 1 , x 2 0,1 时 , f ( x 1 ) f ( x 2 ) 0 ,函数 y f ( x) 是增函数 ;当 x 1 , x 21,时 , f ( x 1) f ( x 2 ) 0 ,函数 yf ( x) 是减函数 .又 f (x) 是奇函数 , f ( x) 在 1,0 上是增函数 ,在, 1是减函数.又 x0,1 , u1,0 时 ,恒有 f ( x)f (u), 等号只在 xu 0 时取到 ,故 f ( x) 在1,1 上是增函数 .高考阅卷在线( 2009 年海南省高考理科第21题)已知函数f (x)(x 3 3x 2 ax b)e x( I ) 如 ab 3 ,求 f ( x) 的单一区间;( II )若 f ( x) 在 ( , ),(2, ) 单一增添 ,在 ( ,2),(, ) 单一减少,证明< 6.分析:(Ⅰ)当 a b3 时, f (x) ( x 3 3x 2 3x 3)e x ,故f '(x)( x 3 3x 2 3x 3)e x (3x 2 6x 3)e xe x ( x 3 9 x)x (x 3 ) (xx e 当 x 3或 0 x 3时, f '(x) 0;当3 x 0或x 3时, f '(x) 0.3,0),(3, )进而 f ( x)在(, 3),(0,3) 单一增添,在(单一减少 .(Ⅱ ) f '(x)(x 3 3x 2 ax b)e x (3x 2 6x a)e x e x [ x 3 ( a 6)x ba].由条件得: f'(2) 0,即23 2(a 6) b a 0,故b 4 a,进而高三数学最新高考第二轮复习《函数图像及其性质》试题研究专题讲解f '(x)e x [ x 3 (a 6) x4 2a].由于 f '( )f '( ) 0, 因此x 3 (a 6)x4 2a ( x2)(x )( x)( x 2)( x 2 () x).将右侧睁开,与左侧比较系数得,2,a 2. 故()2412 4a.又( 2)(2) 0,即2() 4 0. 由此可得 a6.于是6. . w.评论:此题主要考察函数单一性,利用函数性质来进行不等式的证明.智能提高操练1.右图图像所表示的函数的分析式为()jLBHrnAILgA. y3 x1 (0 x 2) y2 B. y3 3x 1 (0 x 2) 32 2 2C. y3x 1 (0 x 2)12 O2xD. y 1 x 1 (0 x2)答案: B2. 已知 y f ( x) 是定义在 R 上的奇函数 ,当 x0 时 , f (x)x 22x, , 则 f ( x) 在 R 上的表达式为()xHAQX74J0XA.x(x 2)B.x( x2)C. x( x2)D.x ( x 2)答案: B3.函数 f (x)x( x 1 1) 的奇偶性是 ()LDAYtRyKfE2 12A.奇函数B.偶函数C. 既是奇函数又是偶函数D.非奇非偶函数Zzz6ZB2Ltk 答案: B4. 若 (x), g (x) 均为奇函数 f ( x) a ( x) bg ( x) 2 在 0,上有最大值5, 则 f ( x) 在 ,0 上有( )dvzfvkwMI1A.最小值 -5B.最大值 -5y 8C.最小值 -1 D,最大值 -3l答案: C65.已知 x 2y 225, 过坐标原点但不与 x 轴重合的直线 l 与4x 轴 的 正 半 轴p及圆围成了两个地区如下图 , 他们的面积分别为 p 和 q ,则2以下图中p 对于q 的函数图像的大概形状为( )rqyn14ZNXI-5O q5x101520 253035-2-4pppp-6-8-10-12O qO qO qA.B.C.OqD.答案: B6.设函数 y f (x) 定义在实数集上 ,则函数 y f (x 1) 与 y f (1 x) 的图像对于 ()A.直线 y 0 对称B.直线 x 0 对称C.直线 y 1对称D.直线 x 1对称答案: D7.已知函数 f (x) a1., 若 f (x) 是奇函数 ,则 a2x1答案:128.函数 f ( x) 对随意实数 x 知足条件 f ( x 1)15, 则 f [ f (5)]., 若 f (1)f ( x)答案: -5 9.已知以下曲线 :yyyyOxO x O xO xA.B. C.D.以及编号为①②③④的四个方程 : ①x y 0 ; ② xy0 ; ③ x y0 ; ④ xy 0 . 请按曲线A,B,C,D 的次序 ,一次写出与之对应的方程的编号 .EmxvxOtOco答案:④②①③10 对 a,bR, 记 max a,ba, a b f ( x)m a xx1x ,x2 的(R 最 小 )值b, a , 函 数b是.答案:32f ( x)( x 0)2f ( 1)0 , 且对随意实数 x 均有11. 已知函数f ( x) axbx 1( a 0), F ( x)若f ( x)( x.0)f ( x ) 0建立 .(1) 求 F (x) 的表达式 ;(2) 当 x2,2 时 , g( x)f ( x) kx 是单一函数 ,求 k 的取值范围 .答案:分析 :(1)f ( 1)0, a b1 0, ba 1. f (x)ax 2 (a 1)x 1.f (x) 0 ,a 0, (a 1)20.(a 1)24aa 1,进而b 2, f ( x) x 22 x 1,F (x)x 22x 1(x0) .x 2 2x 1( x0)(2) g ( x)x 22x 1 kxx 2 (2 k) x 1.g( x) 在2,2 上是单一函数 , k 2 2或 k 2 2, 或 k6.2 22, 解得 k因此所求 k 的取值范围是 k2, 或 k 6.12.已知 f ( x)x 2 2x a, x1,.x(1) 当 a 4 时,求 f (x) 的最小值 ;1 (2) )当 a 时 ,求 f ( x) 的最小值 ;2(3).若 a 为正常数 ,求 f ( x) 的最小值 .答 案 :解 析 :(1) 当 a4 时 , f ( x) x4 f ( x) 在 1,2上是减函数 ,在 2,上是增函数,2, 易知f ( x)minf (2) 6.x(2) 当 a1 时, f ( x) x1 2, 易知 f ( x) 在 1,上为增函数 , f (x)minf (1) 7 .2 a2x22,在 0, a 上是减函数 ,在 a ,是增函数 .(3) 函数 f ( x) xx若a 1 ,即 a 1,则 f ( x) 在区间 1, 上先减后增 ,f ( x) min f ( a ) 2 a2;若a 1 ,即 0 a 1,则 f ( x) 在区间 1,是增函数 ,f ( x) min f (1) a 3.规律方法提炼1.作函数图像的一般步骤:(1) 求出函数的定义域 ;(2) 化简函数式 ;(3) 议论函数的性质 (如奇偶性 ,周期性 )以及图像上的特别点 ,线 (如渐近线 ,对称轴等 ). (4) 利用基本函数的图像画出所给函数的图像.2.函数的图像和分析式是函数关系的主要表现形式 ,它们的本质是同样的 ,在解题时常常要相互转变 .在解决函 数问题 , 尤 其是 较为繁琐 的 ( 如 分类 议论 , 求参数 的范围 等 ) 问题时 要注意 充足发 挥图 像的直 观作 用 .SixE2yXPq53.证明函数图像的对称性或利用图像的对称性确立函数分析式时 ,只要取图像上随意一点来达成 .4.函数图像的很多问题简单与分析几何中的曲线方程知知趣互联系形成综合题 ,应惹起重视 .5.函数定义域的求法(1) 已知函数的分析式求定义域当函数分析式给出时 ,求函数的定义域 ,就是使函数的分析式中全部式子都存心义的自变量x 构成的不等式(组 )的解集 ;当函数是由详细问题给出时,则不单要考虑使分析式存心义,还应试虑它的本质意义 .6ewMyirQFL (2) 求抽象函数的定义域①已知函数 f ( x) 的定义域为 a,b , 则函数 f [ g(x)] 的定义域是指知足不等式 a g( x) b 的 x 的取值范围 .②已知函数 f [ g( x)] 的定义域是 a, b ,则函数 f (x) 的定义域是指 x a,b 时 g( x) 的值域 .6.函数分析式的求法f ( x)(1)凑配法 如已知f ( x1) x 2 x, 求.,(2) 换元法 ,如已知 f (2x 1) 2x23x 1, 求 f (x) . (3) 待定系数法 ,如已知 f ( x) 是一次函数 ,且 f [ f (x)] 4x 1 ,求 f ( x) . (4) 结构法 ,如已知 f (x) 3 f (x) 3x 1,求 f (x) .(5) 利用函数的性质求分析式 ,如已知 f ( x) 是定义在 R 上的奇函数 ,且当 x0 时 , f ( x) x 2 2x, 求 f (x) .7.函数值域的求法 x 2(1) 配方法 ,如 y3x 1.(2) 分别常数法 ,如 y3x 2.x 1(3) 换元法 ,如 y x x1 x 1 .(4) 鉴别式法 ,如 yx .x 21(5) 不等式法 ,如 yx1 ( x 1).x 1(6) 利用函数的性质 (单一性 ,j 奇偶性 ,有界性 ),如 ysin x 1, 利用 sin x1,1 .x 3sin x 2(7) 导数法 ,如 y12x 8, x 3,3 .8.奇函数 ,偶函数的性质①②③④(1) 奇函数①图像对于原点对称 ;②在对于原点对称的区间上的单一性同样;③若在 x 0 处有定义 ,则 f (0) 0.(2) 偶函数①图像对于 y 轴对称 ;②在对于原点对称的区间上的单一性相反 ;③f ( x) f ( x) f ( x ).9.一些常用结论(1) 函数 ycxd的定义域为 x x b ,值域为 y y c ,图像对于点 b , c对称 . ax b a a a a(2) 对于函数 y f ( x) ,若 f (a x) f ( a x) 恒建立 ,则函数 y f ( x) 的图像对于直线 x a 对称 .(3) 若 f (a x) f ( x)(a 0), 则 f ( x 2a) f (x); 若 f ( x a) 10), 则 f ( x 2a) f ( x) .(a f ( x)。
核心热点突破 三角函数的图象与性质

三角函数的图象与性质高考定位 三角函数的图象与性质是高考考查的重点和热点内容,主要从以下两个方面进行考查:1.三角函数的图象,涉及图象变换问题以及由图象确定解析式问题,主要以选择题、填空题的形式考查;2.利用三角函数的性质求解三角函数的值、参数、最值、值域、单调区间等,主要以客观题或解答题其中一问的形式考查.1.(多选)(2020·新高考Ⅰ卷)如图是函数y =sin(ωx +φ)的部分图象,则sin(ωx +φ)=( )A.sin ⎝ ⎛⎭⎪⎫x +π3B.sin ⎝ ⎛⎭⎪⎫π3-2xC.cos ⎝ ⎛⎭⎪⎫2x +π6D.cos ⎝ ⎛⎭⎪⎫5π6-2x答案 BC解析 由图象知T 2=2π3-π6=π2,得T =π,所以ω=2πT =2.又图象过点⎝ ⎛⎭⎪⎫π6,0,由“五点法”,结合图象可得φ+π3=π,即φ=2π3,所以sin(ωx +φ)=sin ⎝ ⎛⎭⎪⎫2x +2π3,故A 错误;由sin ⎝ ⎛⎭⎪⎫2x +2π3=sin ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π3-2x =sin ⎝ ⎛⎭⎪⎫π3-2x 知B 正确;由sin ⎝ ⎛⎭⎪⎫2x +2π3=sin ⎝ ⎛⎭⎪⎫2x +π2+π6=cos ⎝ ⎛⎭⎪⎫2x +π6知C 正确;由sin ⎝ ⎛⎭⎪⎫2x +2π3=cos ⎝ ⎛⎭⎪⎫2x +π6=cos ⎣⎢⎡⎦⎥⎤π+⎝ ⎛⎭⎪⎫2x -5π6=-cos ⎝ ⎛⎭⎪⎫5π6-2x 知D 错误.综上可知,正确的选项为BC.2.(2021·全国乙卷)把函数y =f (x )图象上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移π3个单位长度,得到函数y =sin ⎝ ⎛⎭⎪⎫x -π4的图象,则f (x )=( ) A.sin ⎝ ⎛⎭⎪⎫x 2-7π12B.sin ⎝ ⎛⎭⎪⎫x 2+π12C.sin ⎝ ⎛⎭⎪⎫2x -7π12D.sin ⎝ ⎛⎭⎪⎫2x +π12答案 B解析 依题意,将y =sin ⎝ ⎛⎭⎪⎫x -π4的图象向左平移π3个单位长度,再将所得曲线上所有点的横坐标扩大到原来的2倍,得到f (x )的图象,所以y =sin ⎝ ⎛⎭⎪⎫x -π4的图象y =sin ⎝ ⎛⎭⎪⎫x +π12的图象―――――――――――――――――――→所有点的横坐标扩大到原来的2倍 f (x )=sin ⎝ ⎛⎭⎪⎫x 2+π12的图象.故选B.3.(2021·全国甲卷)已知函数f (x )=2cos (ωx +φ)的部分图象如图所示,则f ⎝ ⎛⎭⎪⎫π2= W.答案 - 3解析 由图象可得,函数的周期T =43×⎝ ⎛⎭⎪⎫13π12-π3=π,所以ω=2πT =2,将点⎝ ⎛⎭⎪⎫π3,0代入f (x )=2cos (2x +φ)中,得2×π3+φ=2k π+π2(k ∈Z ),解得φ=2k π-π6(k ∈Z ),则f ⎝ ⎛⎭⎪⎫π2=2cos ⎝ ⎛⎭⎪⎫2×π2+2k π-π6=2cos ⎝ ⎛⎭⎪⎫2k π+5π6=- 3.4.(2020·全国Ⅲ卷)关于函数f (x )=sin x +1sin x 有如下四个命题: ①f (x )的图象关于y 轴对称. ②f (x )的图象关于原点对称.③f (x )的图象关于直线x =π2对称. ④f (x )的最小值为2.其中所有真命题的序号是 . 答案 ②③解析 ∵f (x )=sin x +1sin x 的定义域为{x |x ≠k π,k ∈Z },关于原点对称,又 f (-x )=sin (-x )+1sin (-x )=-f (x ),而f (-x )≠f (x ),∴f (x )为奇函数,不是偶函数,①错误,②正确.∵f ⎝ ⎛⎭⎪⎫π2-x =cos x +1cos x ,f ⎝ ⎛⎭⎪⎫π2+x =cos x +1cos x , ∴f ⎝ ⎛⎭⎪⎫π2-x =f ⎝ ⎛⎭⎪⎫π2+x ,∴f (x )的图象关于直线x =π2对称,③正确. 当x ∈⎝ ⎛⎭⎪⎫-π2,0时,f (x )<0,④错误.故填②③.5.(2021·浙江卷)设函数f (x )=sin x +cos x (x ∈R ). (1)求函数y =⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫x +π22的最小正周期;(2)求函数y =f (x )f ⎝ ⎛⎭⎪⎫x -π4在⎣⎢⎡⎦⎥⎤0,π2上的最大值.解 (1)因为f (x )=sin x +cos x , 所以f ⎝ ⎛⎭⎪⎫x +π2=sin ⎝ ⎛⎭⎪⎫x +π2+cos ⎝ ⎛⎭⎪⎫x +π2 =cos x -sin x ,所以y =⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫x +π22=(cos x -sin x )2=1-sin 2x .所以函数y =⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫x +π22的最小正周期T =2π2=π.(2)f ⎝ ⎛⎭⎪⎫x -π4=sin ⎝ ⎛⎭⎪⎫x -π4+cos ⎝ ⎛⎭⎪⎫x -π4=2sin x , 所以y =f (x )f ⎝ ⎛⎭⎪⎫x -π4=2sin x ()sin x +cos x =2(sin x cos x +sin 2x )=2⎝ ⎛⎭⎪⎫12sin 2x -12cos 2x +12=sin ⎝ ⎛⎭⎪⎫2x -π4+22.当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π4∈⎣⎢⎡⎦⎥⎤-π4,3π4,所以当2x -π4=π2,即x =3π8时,函数y =f (x )f ⎝ ⎛⎭⎪⎫x -π4在⎣⎢⎡⎦⎥⎤0,π2上取得最大值,且y max =1+22.1.常用的三种三角函数的图象与性质(下表中k ∈Z ) 函数y =sin xy =cos xy =tan x图象递增区间 ⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2 [2k π-π,2k π] ⎝ ⎛⎭⎪⎫k π-π2,k π+π2 递减区间 ⎣⎢⎡⎦⎥⎤2k π+π2,2k π+3π2 [2k π,2k π+π]奇偶性 奇函数 偶函数 奇函数 对称中心 (k π,0) ⎝ ⎛⎭⎪⎫k π+π2,0 ⎝ ⎛⎭⎪⎫k π2,0 对称轴 x =k π+π2x =k π 周期2π2ππ2.三角函数的常用结论(1)y =A sin(ωx +φ),当φ=k π(k ∈Z )时为奇函数;当φ=k π+π2(k ∈Z )时为偶函数;对称轴方程可由ωx +φ=k π+π2(k ∈Z )求得. (2)y =A cos(ωx +φ),当φ=k π+π2(k ∈Z )时为奇函数;当φ=k π(k ∈Z )时为偶函数;对称轴方程可由ωx +φ=k π(k ∈Z )求得. (3)y =A tan(ωx +φ),当φ=k π(k ∈Z )时为奇函数. 3.三角函数的两种常见变换 (1)y =sin x ―――――――――――――→向左(φ>0)或向右(φ<0)平移|φ|个单位y =sin(x +φ)y =sin(ωx +φ)―――――――――――→纵坐标变为原来的A 倍横坐标不变y =A sin(ωx +φ)(A >0,ω>0).(2)y =sin xy =sin ωx ―――――――――――→向左(φ>0)或向右(φ<0)平移|φω|个单位y =sin(ωx +φ)―――――――――→纵坐标变为原来的A 倍横坐标不变y =A sin(ωx +φ)(A >0,ω>0).热点一 三角函数的定义与同角关系式【例1】 (1)在平面直角坐标系中,AB ︵,CD ︵,EF ︵,GH ︵是圆x 2+y 2=1上的四段弧(如图),点P 在其中一段上,角α以Ox 为始边,OP 为终边.若tan α<cos α<sin α,则点P 所在的圆弧是( )A.AB ︵B.CD ︵C.EF ︵D.GH ︵(2)如图,以Ox 为始边作角α(0<α<π),终边与单位圆相交于点P ,已知点P 的坐标为⎝ ⎛⎭⎪⎫-35,45,则sin 2α+cos 2α+11+tan α= .答案 (1)C (2)1825解析 (1)设点P 的坐标为(x ,y ),且tan α<cos α<sin α,∴yx <x <y ,解之得-1<x <0,且0<y <1. 故点P (x ,y )所在的圆弧是EF ︵.(2)由三角函数定义,得cos α=-35,sin α=45,∴原式=2sin αcos α+2cos 2α1+sin αcos α=2cos α(sin α+cos α)sin α+cos αcos α=2cos 2α=2×⎝ ⎛⎭⎪⎫-352=1825.探究提高 1.任意角的三角函数值仅与角α的终边位置有关,而与角α终边上点P 的位置无关.若角α已经给出,则无论点P 在α终边上的什么位置,角α的三角函数值都是确定的.2.应用诱导公式与同角关系进行开方运算时,一定要注意三角函数值的符号;利用同角三角函数的关系化简要遵循一定的原则,如切化弦、化异为同、化高为低、化繁为简等.【训练1】 (1)若sin θ=5cos(2π-θ),则tan 2θ等于( ) A .-53B.53C .-52D.52(2)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A (1,a ),B (2,b ),且cos 2α=23,则|a -b |=( ) A.15 B.55 C.255D .1答案 (1)C (2)B解析 (1)∵sin θ=5cos(2π-θ), ∴sin θ=5cos θ,得tan θ=5, ∴tan 2θ=2tan θ1-tan 2θ=251-(5)2=-52. (2)由题意知cos α>0.因为cos 2α=2cos 2α-1=23,所以cos α=306,sin α=±66,得|tan α|=55.由题意知|tan α|=⎪⎪⎪⎪⎪⎪a -b 1-2,所以|a -b |=55. 热点二 三角函数的图象【例2】 (1)(多选)(2021·唐山二模)设函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3的图象为曲线E ,则( )A .将曲线y =sin 2x 向右平移π3个单位长度,与曲线E 重合B .将曲线y =sin ⎝ ⎛⎭⎪⎫x -π3上各点的横坐标缩短到原来的12,纵坐标不变,与曲线E重合C.⎝ ⎛⎭⎪⎫-π12,0是曲线E 的一个对称中心 D .若x 1≠x 2,且f (x 1)=f (x 2)=0,则|x 1-x 2|的最小值为π2(2)(2021·全国甲卷)已知函数f (x )=2cos (ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的部分图象如图所示,则满足条件⎝ ⎛⎭⎪⎫f (x )-f ⎝ ⎛⎭⎪⎫-7π4⎝ ⎛⎭⎪⎫f (x )-f ⎝ ⎛⎭⎪⎫4π3>0的最小正整数x 为 .答案 (1)BD (2)2解析 (1)对于A 选项,曲线y =sin 2x 向右平移π3个单位长度,得到y =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π3=sin ⎝ ⎛⎭⎪⎫2x -2π3的图象,(平移变换指的是对“x ”的变换)所以A 选项不正确;对于B 选项,曲线y =sin ⎝ ⎛⎭⎪⎫x -π3上各点的横坐标缩短到原来的12,纵坐标不变,可得到曲线y =sin ⎝ ⎛⎭⎪⎫2x -π3,所以B 选项正确;对于C 选项,f ⎝ ⎛⎭⎪⎫-π12=sin ⎣⎢⎡⎦⎥⎤2×⎝ ⎛⎭⎪⎫-π12-π3=sin ⎝ ⎛⎭⎪⎫-π2=-1≠0,所以C 选项不正确;对于D 选项,因为x 1≠x 2,f (x 1)=f (x 2)=0,所以|x 1-x 2|的最小值为f (x )最小正周期的一半,即π2,所以D 选项正确.故选BD.(2)由题图可知,34T =13π12-π3=3π4(T 为f (x )的最小正周期),得T =π,所以ω=2,所以f (x )=2cos(2x +φ).点⎝ ⎛⎭⎪⎫π3,0可看作“五点作图法”中的第二个点,则2×π3+φ=π2,得φ=-π6,所以f (x )=2cos ⎝ ⎛⎭⎪⎫2x -π6,所以f ⎝ ⎛⎭⎪⎫-7π4=2cos ⎣⎢⎡⎦⎥⎤2×⎝⎛⎭⎪⎫-7π4-π6=2cos ⎝ ⎛⎭⎪⎫-11π3=2cos π3=1,f ⎝ ⎛⎭⎪⎫4π3=2cos ⎝ ⎛⎭⎪⎫2×4π3-π6=2cos 5π2=0,所以⎝ ⎛⎭⎪⎫f (x )-f ⎝ ⎛⎭⎪⎫-7π4⎝ ⎛⎭⎪⎫f (x )-f ⎝ ⎛⎭⎪⎫4π3>0,即(f (x )-1)f (x )>0,可得f (x )>1或f (x )<0,所以cos ⎝ ⎛⎭⎪⎫2x -π6>12或cos ⎝ ⎛⎭⎪⎫2x -π6<0.当x =1时,2x -π6=2-π6 ∈⎝ ⎛⎭⎪⎫π3,π2,cos ⎝ ⎛⎭⎪⎫2x -π6∈⎝ ⎛⎭⎪⎫0,12,不符合题意;当x =2时,2x -π6=4-π6∈⎝ ⎛⎭⎪⎫π,7π6,cos ⎝ ⎛⎭⎪⎫2x -π6<0,符合题意,所以满足题意的最小正整数x 为2.探究提高 1.在图象变换过程中务必分清是先相位变换,还是先周期变换.这两种变换只是相对于其中的自变量x 而言的,如果x 的系数不是1,就要把这个系数提取后再确定变换的单位长度和方向.2.已知函数y =A sin(ωx +φ)(A >0,ω>0)的图象求解析式时,常采用待定系数法,由图中的最高点、最低点或特殊点求A ;由函数的周期确定ω;确定φ常根据“五点法”中的五个点求解,一般把第一个“零点”作为突破口,可以从图象的升降找准第一个“零点”的位置.【训练2】 (1)(多选)(2021·湖南名校测评)已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的部分图象如图所示,则( )A .f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3B .f (x )=cos ⎝ ⎛⎭⎪⎫2x -π6C .f ⎝ ⎛⎭⎪⎫π3-x =f ⎝ ⎛⎭⎪⎫π3+xD .f ⎝ ⎛⎭⎪⎫π3-x =-f ⎝ ⎛⎭⎪⎫π3+x(2)将曲线y =f (x )·cos 2x 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π4个单位长度,得到曲线y =cos 2x ,则f ⎝ ⎛⎭⎪⎫π6=( )A .1B .-1 C. 3D.- 3答案 (1)ABD (2)D解析 (1)由题图可知5π6-π12=3π4=3T4(T 为f (x )的最小正周期), 所以T =π=2πω,解得ω=2,则f (x )=sin(2x +φ).由图象过点⎝ ⎛⎭⎪⎫π12,1,得2×π12+φ=2k π+π2(k ∈Z ), 得φ=2k π+π3(k ∈Z ).因为|φ|<π2,所以φ=π3,所以f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3,因此A 选项正确;f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3=cos ⎝ ⎛⎭⎪⎫π2-2x -π3=cos ⎝ ⎛⎭⎪⎫π6-2x =cos ⎝ ⎛⎭⎪⎫2x -π6,所以B 选项正确; 令2x +π3=k π+π2(k ∈Z ),得x =k 2π+π12(k ∈Z ),即函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3图象的对称轴方程为x =k 2π+π12(k ∈Z ),所以C 选项不正确;令2x +π3=k π(k ∈Z ),得x =k 2π-π6(k ∈Z ),即函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3图象的对称中心为⎝ ⎛⎭⎪⎫k 2π-π6,0(k ∈Z ),当k =1时,对称中心为⎝ ⎛⎭⎪⎫π3,0,所以D 选项正确.故选ABD.(2)把y =cos 2x 的图象向左平移π4个单位长度,得y =cos 2⎝ ⎛⎭⎪⎫x +π4=cos ⎝ ⎛⎭⎪⎫2x +π2=-sin 2x 的图象,再把所得图象各点的横坐标缩短为原来的12,纵坐标不变,所得图象对应函数为y =-sin(2·2x )=-sin 4x .依题设y =-sin 4x =f (x )·cos 2x .因此f (x )=-2sin 2x ,故f ⎝ ⎛⎭⎪⎫π6=-2sin π3=- 3.热点三 三角函数的性质【例3】 (1)(多选)(2021·天津适应性考试)已知x 1,x 2是函数f (x )=2sin ⎝ ⎛⎭⎪⎫ωx -π6(ω>0)的两个不同零点,且|x 1-x 2|的最小值是π2,则下列说法正确的是( )A.函数f (x )在⎣⎢⎡⎦⎥⎤0,π3上单调递增B.函数f (x )的图象关于直线x =-π6对称 C.函数f (x )的图象关于点(π,0)中心对称 D.当x ∈⎣⎢⎡⎦⎥⎤π2,π时,函数f (x )的值域是[-2,1]答案 ABD解析 由题意可知,函数f (x )的最小正周期T =π=2πω, ∴ω=2,∴f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π6. 对于选项A ,当x ∈⎣⎢⎡⎦⎥⎤0,π3时,2x -π6∈⎣⎢⎡⎦⎥⎤-π6,π2,∴f (x )在⎣⎢⎡⎦⎥⎤0,π3上单调递增,故A 正确;对于选项B ,f ⎝ ⎛⎭⎪⎫-π6=2sin ⎣⎢⎡⎦⎥⎤2×⎝⎛⎭⎪⎫-π6-π6 =2sin ⎝ ⎛⎭⎪⎫-π2=-2,∴f (x )的图象关于直线x =-π6对称,故B 正确;对于选项C ,f (π)=2sin ⎝ ⎛⎭⎪⎫2π-π6=-1≠0,∴f (x )的图象不关于点(π,0)中心对称,故C 错误; 对于选项D ,当x ∈⎣⎢⎡⎦⎥⎤π2,π时,2x -π6∈⎣⎢⎡⎦⎥⎤5π6,11π6,sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-1,12,f (x )∈[-2,1],故D 正确. 综上,选ABD.(2)(2021·南京调研)已知函数f (x )=4a cos x sin ⎝ ⎛⎭⎪⎫x -π6,且f ⎝ ⎛⎭⎪⎫π3=1.①求a 的值及f (x )的最小正周期;②若f (x )在[0,m ]上单调递增,求m 的最大值.解 ①由f ⎝ ⎛⎭⎪⎫π3=4a ×12×12=1,解得a =1.所以f (x )=4cos x sin ⎝ ⎛⎭⎪⎫x -π6=4cos x ⎝ ⎛⎭⎪⎫32sin x -12cos x =23sin x cos x -2cos 2x=3sin 2x -cos 2x -1=2sin ⎝ ⎛⎭⎪⎫2x -π6-1,所以f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π6-1的最小正周期为π.②由①知f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π6-1.当x ∈[0,m ]时,2x -π6∈⎣⎢⎡⎦⎥⎤-π6,2m -π6, 若f (x )在[0,m ]上单调递增, 则有-π6<2m -π6≤π2,即0<m ≤π3.所以m 的最大值为π3.探究提高 1.讨论三角函数的单调性,研究三角函数的周期性、奇偶性与对称性,都必须首先利用辅助角公式,将函数化成一个角的一种三角函数.2.求函数y =A sin(ωx +φ)(A >0,ω>0)的单调区间,是将ωx +φ作为一个整体代入正弦函数增区间(或减区间),求出的区间即为y =A sin(ωx +φ)的增区间(或减区间).【训练3】 (1)(2021·苏州调研)声音是由物体振动产生的声波,其中包含着正弦函数模型.纯音的数学模型是函数y =A sin ωt ,通常我们听到的声音是由纯音合成的,称之为复合音.若一个复合音的数学模型是函数f (x )=sin x +12sin 2x ,则下列有关函数f (x )的结论正确的是( ) A.2π不是f (x )的一个周期 B.f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递增C.f (x )的最大值为334D.f (x )在[0,2π]上有2个零点(2)(多选)(2021·青岛模拟)已知函数f (x )=(2cos 2ωx -1)sin 2ωx +12cos 4ωx (ω>0),则下列说法正确的是( )A.若f (x )的两个相邻的极值点之差的绝对值等于π4,则ω=2B.当ω=12时,f (x )在区间⎣⎢⎡⎦⎥⎤-π4,π4上的最小值为-12C.当ω=1时,f (x )在区间⎣⎢⎡⎦⎥⎤-π4,0上单调递增D.当ω=1时,将f (x )的图象向右平移π8个单位长度后得到g (x )=22sin ⎝ ⎛⎭⎪⎫4x -π4的图象答案 (1)C (2)BD解析 (1)由于f (x +2π)=sin(x +2π)+12sin(2x +4π)=sin x +12sin 2x =f (x ),∴2π是函数f (x )的一个周期,A 不正确;当x ∈[0,2π]时,f ′(x )=cos x +cos 2x =cos x +cos 2x -sin 2x =2cos 2x +cos x -1,由f ′(x )>0,得12<cos x ≤1,所以0≤x <π3或5π3<x ≤2π;由f ′(x )<0,得-1<cos x <12,所以π3<x <5π3,所以函数f (x )在⎣⎢⎡⎭⎪⎫0,π3,⎝ ⎛⎦⎥⎤5π3,2π上单调递增,在⎝ ⎛⎭⎪⎫π3,5π3上单调递减,故B 不正确;易知x =π3为函数f (x )的极大值点,x =5π3为函数f (x )的极小值点,且f (0)=0,f ⎝ ⎛⎭⎪⎫π3=334,f ⎝ ⎛⎭⎪⎫5π3=-334,f (2π)=0,所以f (x )max =f ⎝ ⎛⎭⎪⎫π3=334,故C 正确;由f (x )=sin x +12sin 2x =0,得sin x +sin x cos x =0,得sin x =0或cos x =-1,当x ∈[0,2π]时,x =0或x =π或x =2π,则f (x )在[0,2π]上有3个零点,故D 不正确.(2)f (x )=12sin 4ωx +12cos 4ωx =22sin ⎝ ⎛⎭⎪⎫4ωx +π4.选项A :由题意得T 2=π4,∴12×2π4ω=π4,∴ω=1,A 不正确;选项B :当ω=12时,f (x )=22sin ⎝ ⎛⎭⎪⎫2x +π4,当x ∈⎣⎢⎡⎦⎥⎤-π4,π4时,2x +π4∈⎣⎢⎡⎦⎥⎤-π4,3π4,sin ⎝ ⎛⎭⎪⎫2x +π4∈⎣⎢⎡⎦⎥⎤-22,1,故f (x )=22sin ⎝ ⎛⎭⎪⎫2x +π4∈⎣⎢⎡⎦⎥⎤-12,22,B 正确; 选项C :当ω=1时,f (x )=22sin ⎝ ⎛⎭⎪⎫4x +π4,当x ∈⎣⎢⎡⎦⎥⎤-π4,0时,4x +π4∈⎣⎢⎡⎦⎥⎤-3π4,π4,故f (x )在区间⎣⎢⎡⎦⎥⎤-π4,0上不单调递增,C 不正确;选项D :当ω=1时,f (x )=22sin ⎝ ⎛⎭⎪⎫4x +π4,将f (x )的图象向右平移π8个单位长度后,所得图象的解析式为g (x )=22sin ⎣⎢⎡⎦⎥⎤4⎝ ⎛⎭⎪⎫x -π8+π4=22sin ⎝ ⎛⎭⎪⎫4x -π4,D 正确.故选BD. 热点四 三角函数性质与图象的综合应用【例4】 设函数f (x )=sin ωx ·cos ωx -3cos 2ωx +32(ω>0)的图象上相邻最高点与最低点的距离为π2+4. (1)求ω 的值;(2)若函数y =f (x +φ)(0<φ<π2)是奇函数,求函数g (x )=cos(2x -φ)的单调递减区间. 解 (1)f (x )=sin ωx ·cos ωx -3cos 2ωx +32=12sin 2ωx -3(1+cos 2ωx )2+32 =12sin 2ωx -32cos 2ωx =sin ⎝ ⎛⎭⎪⎫2ωx -π3.设T 为f (x )的最小正周期,由f (x )的图象上相邻最高点与最低点的距离为π2+4,得⎝ ⎛⎭⎪⎫T 22+[2f (x )max ]2=π2+4. 又f (x )max =1,∴⎝ ⎛⎭⎪⎫T 22+4=π2+4,解得T =2π.又ω>0,T =2π2ω=2π,∴ω=12. (2)由(1)可知f (x )=sin ⎝ ⎛⎭⎪⎫x -π3,∴f (x +φ)=sin ⎝ ⎛⎭⎪⎫x +φ-π3.∵y =f (x +φ)是奇函数,∴sin ⎝ ⎛⎭⎪⎫φ-π3=0, 即φ-π3=k π(k ∈Z ),又0<φ<π2,∴φ=π3,∴g (x )=cos(2x -φ)=cos ⎝ ⎛⎭⎪⎫2x -π3.令2k π≤2x -π3≤2k π+π,k ∈Z ,则k π+π6≤x ≤k π+2π3,k ∈Z ,∴函数g (x )的单调递减区间是⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3,k ∈Z .探究提高 1.研究三角函数的图象与性质,关键是将函数化为y =A sin(ωx +φ)+B (或y =A cos(ωx +φ)+B )的形式,利用正余弦函数与复合函数的性质求解. 2.函数y =A sin(ωx +φ)(或y =A cos(ωx +φ))的最小正周期T =2π|ω|.应特别注意y =|A sin(ωx +φ)|的最小正周期为T =π|ω|.【训练4】 (2021·武汉诊断)已知函数f (x )=2sin 2ωx +23sin ωx cos ωx -1(ω>0),且函数f (x )的最小正周期为π.(1)求f (x )的解析式,并求出f (x )的单调递增区间;(2)将函数f (x )的图象向左平移π4个单位长度得到函数g (x )的图象,求函数g (x )的最大值及g (x )取得最大值时x 的取值集合. 解 (1)f (x )=2sin 2ωx +23sin ωx cos ωx -1 =1-cos 2ωx +3sin 2ωx -1=2sin ⎝ ⎛⎭⎪⎫2ωx -π6.由函数f (x )的最小正周期T =2π2ω=π,得ω=1.所以f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π6.令2k π-π2≤2x -π6≤2k π+π2,k ∈Z ,解得k π-π6≤x ≤k π+π3,k ∈Z ,故f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π6,k π+π3,k ∈Z .(2)g (x )=f ⎝ ⎛⎭⎪⎫x +π4=2sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x +π4-π6 =2sin ⎝ ⎛⎭⎪⎫2x +π3,则g (x )的最大值为2,此时有2sin ⎝ ⎛⎭⎪⎫2x +π3=2,即sin ⎝ ⎛⎭⎪⎫2x +π3=1,即2x +π3=2k π+π2,k ∈Z ,解得x =k π+π12,k ∈Z ,所以当g (x )取得最大值时x 的取值集合为{x |x =k π+π12,k ∈Z }.一、选择题1.(2021·湖南大联考)已知2sin(π-α)=3sin ⎝ ⎛⎭⎪⎫π2+α,则sin 2α-12sin 2α-cos 2α=( ) A.513 B.-113C.-513D.113答案 B解析 由2sin(π-α)=3sin ⎝ ⎛⎭⎪⎫π2+α,得2sin α=3cos α,所以tan α=32,从而原式=sin 2α-sin αcos α-cos 2αsin 2α+cos 2α=tan 2α-tan α-1tan 2α+1=-113. 2.(2021·石家庄模拟)刘徽(约公元225年~295年),魏晋时期伟大的数学家,中国古典数学理论的奠基人之一.他在割圆术中提出的“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体,而无所失矣”,这可视为中国古代极限观念的佳作.割圆术的核心思想是将一个圆的内接正n 边形等分成n 个等腰三角形(如图所示),当n 变得很大时,这n 个等腰三角形的面积之和近似等于圆的面积.运用割圆术的思想,估计sin 4°的值为( )A.0.052 4B.0.062 8C.0.078 5D.0.069 8答案 D解析 将一个单位圆平均分成90个扇形,则每个扇形的圆心角度数均为4°, 因为这90个扇形对应的等腰三角形的面积和近似于单位圆的面积,所以90×12×1×1×sin 4°=45sin 4°≈π, 所以sin 4°≈π45≈0.069 8.3.(2021·北京卷)已知函数f (x )=cos x -cos 2x ,则该函数为( ) A.奇函数,最大值为2 B.偶函数,最大值为2 C.奇函数,最大值为98 D.偶函数,最大值为98答案 D解析 函数f (x )的定义域为R ,且f (-x )=f (x ),则f (x )为偶函数.f (x )=cos x -cos 2x =cos x -(2cos 2x -1)=-2cos 2x +cos x +1=-2⎝ ⎛⎭⎪⎫cos x -142+98,又cos x ∈[-1,1],故f (x )的最大值为98,故选D.4.古希腊人早在公元前就知道,七弦琴发出不同的声音,是由于弦长度的不同.数学家傅里叶(公元1768年~1830年)关于三角函数的研究告诉我们:人类的声音,小提琴的奏鸣,动物的叫声——都可以归结为一些简单声音的组合,而简单声音是可以用三角函数模型描述的.已知描述百灵鸟的叫声时用到如图所示的图象,图象的解析式是f (x )=A sin(ωx +φ)(ω>0,0<φ<π),则( )A.ω=3,φ=π6 B.ω=6,φ=π3 C.ω=3,φ=π4 D.ω=6,φ=5π6答案 C解析 由图象知,T =2⎝ ⎛⎭⎪⎫1112π-712π=2π3,∴2πω=2π3,则ω=3.又A sin ⎝ ⎛⎭⎪⎫3×7π12+φ=0,sin ⎝ ⎛⎭⎪⎫74π+φ=0,∴74π+φ=2k π(k ∈Z ),由φ∈(0,π),得φ=π4.5.(2021·广东七校联合体二联)如图,点P 在以AB 为直径的半圆弧上沿着BA ︵运动,AB =2,记∠BAP =x .将点P 到A ,B 两点的距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为( )答案 C解析 法一 由题意可知,△P AB 为直角三角形,P A =2cos x ,PB =2sin x , 所以P A +PB =2cos x +2sin x =22sin ⎝ ⎛⎭⎪⎫x +π4,x ∈⎣⎢⎡⎭⎪⎫0,π2,即y =f (x )=22sin ⎝ ⎛⎭⎪⎫x +π4,x ∈⎣⎢⎡⎭⎪⎫0,π2. 因为x ∈⎣⎢⎡⎭⎪⎫0,π2,所以x +π4∈⎣⎢⎡⎭⎪⎫π4,3π4,所以sin ⎝ ⎛⎭⎪⎫x +π4∈⎣⎢⎡⎦⎥⎤22,1,所以22sin ⎝ ⎛⎭⎪⎫x +π4∈[2,22],当x +π4=π2,即x =π4时函数f (x )取得最大值22,故排除B ,D ;又函数f (x )的解析式为正弦型,故排除A ,故选C.法二 由题意可知,△P AB 为直角三角形.当x =π4时,△P AB 为等腰直角三角形,此时P A =PB =2,则P A +PB =22>2,故排除B ,D ; 当x =π6时,P A +PB =2cos π6+2sin π6=3+1,当x =π12时,P A +PB =2cos π12+2sin π12=6+22+6-22=6,又22-(3+1)π4-π6≠(3+1)-6π6-π12,所以当0<x <π4时,函数f (x )的图象不是直线型,故排除A ,故选C.6.(多选)(2021·南京调研)将函数f (x )=sin 2x 的图象向左平移π6个单位长度后,得到函数y =g (x )的图象,则( )A.函数g (x )的图象关于直线x =π12对称 B.函数g (x )的图象关于点⎝ ⎛⎭⎪⎫π6,0对称C.函数g (x )在区间⎝ ⎛⎭⎪⎫-5π12,-π6上单调递增D.函数g (x )在区间⎝ ⎛⎭⎪⎫0,7π6上有2个零点答案 ACD解析 将函数f (x )的图象向左平移π6个单位长度得y =g (x )=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π6=sin ⎝ ⎛⎭⎪⎫2x +π3的图象. 对于A ,由2x +π3=k π+π2(k ∈Z ),得x =k π2+π12(k ∈Z ),当k =0时,x =π12,所以函数g (x )的图象关于直线x =π12对称,故A 正确;对于B ,当x =π6时,g (x )=sin ⎝ ⎛⎭⎪⎫2×π6+π3=sin 2π3=32≠0,所以函数g (x )的图象不关于点⎝ ⎛⎭⎪⎫π6,0对称,故B 不正确;对于C ,由-π2+2k π≤2x +π3≤2k π+π2(k ∈Z ),得-5π12+k π≤x ≤k π+π12(k ∈Z ),当k =0时,x ∈⎣⎢⎡⎦⎥⎤-5π12,π12,又⎝ ⎛⎭⎪⎫-5π12,-π6⊆⎣⎢⎡⎦⎥⎤-5π12,π12,所以函数g (x )在区间⎝ ⎛⎭⎪⎫-5π12,-π6上单调递增,故C 正确; 对于D ,由sin ⎝ ⎛⎭⎪⎫2x +π3=0,得2x +π3=k π(k ∈Z ),得x =k π2-π6(k ∈Z ).当x ∈⎝ ⎛⎭⎪⎫0,7π6时,x =π3,5π6,所以函数g (x )在区间⎝ ⎛⎭⎪⎫0,7π6上有2个零点,故D 正确.综上所述,选ACD. 二、填空题7.(2021·八省联考)写出一个最小正周期为2的奇函数f (x )= . 答案 sin πx (答案不唯一)解析 可考虑三角函数中的正弦型函数f (x )=A sin ωx (A ≠0),满足f (-x )= -A sin ωx =-f (x ),即是奇函数.根据最小正周期T =2πω=2,可得ω=π.故函数可以是f (x )=A sin πx (A ≠0)中任一个,可取f (x )=sin πx (答案不唯一).8.偶函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,其中△EFG是斜边为4的等腰直角三角形(E ,F 是函数图象与x 轴的交点,点G 在图象上),则A = ,f (1)的值为 .答案 22解析 依题设,T 2=|EF |=4,T =8,ω=π4. ∵函数f (x )=A sin(ωx +φ)为偶函数,且0<φ<π. ∴φ=π2,在等腰直角△EGF 中,易求A =2.所以f (x )=2sin ⎝ ⎛⎭⎪⎫π4x +π2=2cos π4x ,则f (1)= 2.9.(2021·山东中学联盟联考)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6(ω>0)在[0,π]上有且仅有3个零点,则函数f (x )在[0,π]上存在 个极小值点,实数ω的取值范围是 . 答案 1 ⎣⎢⎡⎭⎪⎫136,196解析 根据三角函数图象的平移和伸缩变换,f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6的图象可由y = sin x 的图象向右平移π6个单位长度,然后所有点的纵坐标保持不变,横坐标变为原来的1ω得到,则f (x )的大致图象如图所示.图中O 点右侧的零点依次为π6ω,7π6ω,13π6ω,19π6ω,….由题意,f (x )在[0,π]上有且仅有3个零点,则f (x )在[0,π]上有1个极小值点,且13π6ω≤π<19π6ω,解得ω的取值范围是⎣⎢⎡⎭⎪⎫136,196.三、解答题10.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6(ω>0)的图象向左平移π2个单位长度后与函数g (x )=cos(2x +φ)⎝ ⎛⎭⎪⎫|φ|<π2的图象重合.(1)求ω和φ的值;(2)若函数h (x )=f ⎝ ⎛⎭⎪⎫x +π8+g ⎝ ⎛⎭⎪⎫x -π8,求h (x )的单调递增区间及其图象的对称轴方程. 解 (1)由题意得ω=2,∴f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6,则f ⎝ ⎛⎭⎪⎫x +π2=sin ⎝ ⎛⎭⎪⎫2x +5π6=cos ⎝ ⎛⎭⎪⎫2x +π3=cos(2x +φ).∵|φ|<π2,∴φ=π3.(2)由(1)知,f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6,g (x )=cos ⎝ ⎛⎭⎪⎫2x +π3,∴h (x )=f ⎝ ⎛⎭⎪⎫x +π8+g ⎝ ⎛⎭⎪⎫x -π8=sin ⎝ ⎛⎭⎪⎫2x +π12+cos ⎝ ⎛⎭⎪⎫2x +π12 =2sin ⎝ ⎛⎭⎪⎫2x +π3,令2x +π3=k π+π2,k ∈Z ,解得x =k π2+π12,k ∈Z ,∴h (x )图象的对称轴方程为x =k π2+π12,k ∈Z .令2k π-π2≤2x +π3≤2k π+π2,k ∈Z ,得k π-5π12≤x ≤k π+π12,k ∈Z .∴h (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-5π12,k π+π12,k ∈Z . 11.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫π2-x sin x -3cos 2x +32. (1)求f (x )的最大值及取得最大值时x 的值;(2)若方程f (x )=23在(0,π)上的解为x 1,x 2,求cos(x 1-x 2)的值.解 (1)f (x )=cos x sin x -32(2cos 2x -1)=12sin 2x -32cos 2x =sin ⎝ ⎛⎭⎪⎫2x -π3.当2x -π3=π2+2k π(k ∈Z ),即x =512π+k π(k ∈Z )时,函数f (x )取最大值,且最大值为1.(2)令2x -π3=π2+k π(k ∈Z ),解得x =5π12+k π2(k ∈Z ),∴函数f (x )图象的对称轴为x =512π+k π2(k ∈Z ),∴当x ∈(0,π)时,对称轴为x =512π或x =11π12.又方程f (x )=23在(0,π)上的解为x 1,x 2.∴x 1+x 2=56π(易证x 1+x 2=11π6不合题意),则x 1=56π-x 2,∴cos(x 1-x 2)=cos ⎝ ⎛⎭⎪⎫56π-2x 2=sin ⎝ ⎛⎭⎪⎫2x 2-π3, 又f (x 2)=sin ⎝ ⎛⎭⎪⎫2x 2-π3=23, 故cos(x 1-x 2)=23.12.(多选)(2021·济南诊断)已知函数f (x )=a sin(2x +φ1)+b cos(2x +φ2)(f (x )不恒为0),若f ⎝ ⎛⎭⎪⎫π6=0,则下列说法一定正确的是( ) A.f ⎝ ⎛⎭⎪⎫x -π12为奇函数 B.f (x )的最小正周期为πC.f (x )在区间⎣⎢⎡⎦⎥⎤-π12,5π12上单调递增 D.f (x )在区间[0,2 021π]上有4 042个零点答案 BD解析 f (x )=a (sin 2x cos φ1+cos 2x sin φ1)+b (cos 2x cos φ2-sin 2x sin φ2) =(a cos φ1-b sin φ2)sin 2x +(a sin φ1+b cos φ2)cos 2x .令m =a cos φ1-b sin φ2,n =a sin φ1+b cos φ2, 则f (x )=m sin 2x +n cos 2x =m 2+n 2sin(2x +θ)(其中tan θ=n m ),所以f (x )的最小正周期T =2π2=π,B 选项正确;由于f ⎝ ⎛⎭⎪⎫π6=0,所以x =π6是f (x )的零点,其相邻的2个零点为x =π6-π2=-π3和x =π6+π2=2π3,所以f ⎝ ⎛⎭⎪⎫x -π12不是奇函数,A 选项错误; 零点x =π6相邻的两个对称轴方程为x =π6-π4=-π12和x =π6+π4=5π12,所以f (x )在区间⎣⎢⎡⎦⎥⎤-π12,5π12上可能单调递增,也可能单调递减,C 选项错误; 由于f (x )在[0,π]上的零点有2个,而f (x )的最小正周期为π,所以f (x )在区间[0,2 021π]上有2 021×2=4 042(个)零点,D 选项正确.故选BD.13.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π)是奇函数,将y =f (x )的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为g (x ).若g (x )的最小正周期为2π,且g ⎝ ⎛⎭⎪⎫π4=2,则f ⎝ ⎛⎭⎪⎫3π8= . 答案 2解析 由f (x )是奇函数可得φ=k π(k ∈Z ),又|φ|<π,所以φ=0.所以g (x )=A sin ⎝ ⎛⎭⎪⎫12ωx .由g (x )的最小正周期为2π, 可得2π12ω=2π,故ω=2,所以g (x )=A sin x ,g ⎝ ⎛⎭⎪⎫π4=A sin π4=22A =2,所以A =2. 所以f (x )=2sin 2x ,故f ⎝ ⎛⎭⎪⎫3π8=2sin 3π4= 2. 14.已知函数f (x )=sin(ωx +φ)+m ⎝ ⎛⎭⎪⎫ω>0,-π2<φ<0满足下列4个条件中的3个,4个条件依次是①ω=32;②周期T =π;③f (x )的图象过点(0,0);④f ⎝ ⎛⎭⎪⎫π3=32. (1)写出所满足的3个条件的序号(不需要说明理由),并求f (x )的解析式;(2)求函数f (x )的图象与直线y =1相邻两个交点间的最短距离.解 (1)所满足的三个条件是②③④,∵f (x )的周期T =π,∴ω=2,∴f (x )=sin(2x +φ)+m .又f (x )的图象过点(0,0),且f ⎝ ⎛⎭⎪⎫π3=32, ∴sin φ+m =0,sin ⎝ ⎛⎭⎪⎫2π3+φ+m =32, ∴sin ⎝ ⎛⎭⎪⎫2π3+φ-sin φ=32, ∴32cos φ-12sin φ-sin φ=32,∴3⎝ ⎛⎭⎪⎫12cos φ-32sin φ=32,∴sin ⎝ ⎛⎭⎪⎫π6-φ=32.又∵-π2<φ<0,∴φ=-π6.又∵sin φ+m =0,∴-12+m =0,∴m =12,∴f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6+12. (2)由f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6+12=1, 得sin ⎝ ⎛⎭⎪⎫2x -π6=12, ∴2x -π6=2k π+π6或2x -π6=2k π+5π6,k ∈Z ,∴x =k π+π6或x =k π+π2,k ∈Z ,∴函数f (x )的图象与直线y =1相邻两个交点间的最短距离为π2-π6=π3.。
高考数学中如何使用函数图像解题

高考数学中如何使用函数图像解题高考数学是许多学生最为头痛的科目之一,其中数学二的考试难度更是备受关注。
其中,函数图像是高考数学中常被出现的一个重要考点之一。
因此,掌握函数图像的解题方法,对于理解和掌握函数知识点至关重要。
本文将介绍如何在高考数学中使用函数图像解题。
1. 函数概念首先,在介绍函数图像的解题方法之前,我们需要先了解函数的概念。
函数是数学中的一个重要概念,用于描述两个变量之间的关系。
在数学中,通常用f(x) 或y 表示函数,其中x 是自变量,y 或 f(x) 是函数的函数值(也称为因变量)。
函数的定义域是自变量的取值范围,而值域则是函数的所有可能取值的集合。
2. 函数图像的解题方法接下来,我们将介绍函数图像的解题方法。
函数图像通常用来表示函数在平面直角坐标系中的图像。
在解题时,我们可以利用函数图像来判断函数的性质以及求解函数值等问题。
具体而言,函数图像可以帮助我们完成以下任务:(1)判断函数的奇偶性:通过观察函数图像是否关于 y 轴或者原点对称,我们可以判断函数的奇偶性。
如果函数图像关于 y 轴对称,则函数为偶函数;如果函数图像关于原点对称,则函数为奇函数;否则为既非偶函数也非奇函数。
(2)求解函数值:通过函数图像,我们可以读取函数在某个特定的自变量值下的函数值。
这可以帮助我们解决一些求函数值的问题。
(3)确定函数的极值和零点:在函数图像上,函数的极值对应的是函数的最值点,而函数的零点则对应的是函数图像与 x 轴相交的点。
通过观察函数图像,我们可以确定函数在哪些自变量的取值下取到最值,以及函数在哪些自变量取值下为零。
(4)判断函数的单调性:通过观察函数图像上的斜率趋势,我们可以判断函数的单调性。
如果函数图像的斜率单调递增或者单调递减,则函数为单调函数;如果函数图像上既有上升部分又有下降部分,则函数为非单调函数。
(5)求解函数的反函数:函数图像可以帮助我们求解函数的反函数。
具体而言,如果函数图像关于 y = x 对称,则其反函数存在,并且其图像就是原函数图像通过 y = x 对称得到的。
高考数学一轮总复习第二章函数专题突破4几个特殊函数的图象与性质课件

= ln 1 +
根据复合函数单调性,可知 在(−∞ ,− )上单调递减,D正确.故选D.
2
2−1
.
3.【多选题】已知函数 = sin
A. 为奇函数
√
2
+
,则(
sin
B. 的值域为 −∞, −2 2] ∪ [2 2, +∞
C. 的最小正周期为π
D. 的图象关于直线 =
+
± ( > ,且 ≠ )
函数
条件
图象
定义域
值域
单调性
奇偶性
单调递增
单调递减
奇函数
例5 已知函数 = log 2 3 +
3
(−∞ , ]
实数的取值范围为__________.
2
9 2
+1 −
2
,若
2 +1
解:由题意,可知ℎ = + 1 = log 2 3 +
)
1
11
A.是偶函数,且在( ,+∞)单调递增
B.是奇函数,且在(− , )单调递减
2
C.是偶函数,且在(−∞
1
,− )单调递增
2
解:由题意,得 的定义域为{| ≠
22
D.是奇函数,且在(−∞ ,− )单调递减
√
1
± },关于原点对称.
2
1
2
又 − = ln|1 − 2 −ln − 2 − 1 = ln 2 − 1 −ln 2 + 1| = − ,
2
.由恒成立,得
考点四 =
−
(
高中数学函数图像题解题技巧

高中数学函数图像题解题技巧在高中数学中,函数图像题是一个非常重要的考点。
理解和掌握函数图像的特点和性质,能够帮助学生更好地解决相关的问题。
本文将介绍一些解题技巧,并通过具体的题目来说明。
一、函数图像的基本性质在解决函数图像题之前,我们首先需要了解函数图像的基本性质。
对于一般的函数y=f(x),我们可以通过以下几个方面来分析和描述它的图像:1. 定义域和值域:确定函数的定义域和值域,可以帮助我们限定函数图像的范围。
2. 对称性:判断函数是否具有对称性,比如奇偶性、周期性等。
对称性可以帮助我们简化图像的绘制和分析。
3. 单调性:判断函数的单调性,可以通过导数的正负性来确定。
单调性可以帮助我们确定函数图像的增减趋势。
4. 零点和极值点:求解函数的零点和极值点,可以帮助我们确定图像的交点和极值点的位置。
5. 渐近线:确定函数的水平渐近线和垂直渐近线,可以帮助我们更好地理解函数图像的趋势和特点。
二、解题技巧1. 利用函数的性质在解决函数图像题时,我们可以利用函数的性质来简化问题。
例如,对于奇偶函数,我们只需要绘制函数图像的一个对称部分,然后利用对称性来得到整个函数图像。
对于周期函数,我们只需要绘制一个周期内的函数图像,然后根据周期性来得到整个函数图像。
2. 利用变量的取值范围在解决函数图像题时,我们可以利用变量的取值范围来确定函数图像的特点。
例如,对于二次函数y=ax^2+bx+c,当a>0时,函数图像开口向上,当a<0时,函数图像开口向下。
当a=0时,函数图像是一条直线。
通过对变量的取值范围进行分析,可以帮助我们更好地理解函数图像的特点。
三、具体题目分析下面通过几个具体的题目来说明函数图像题的解题技巧。
例题1:已知函数y=x^2的图像上有一点A(-2,4),求点A关于y轴的对称点B 的坐标。
解析:根据函数y=x^2的对称性,点B的横坐标为2,纵坐标与点A相同,即B(2,4)。
通过对函数图像的对称性的分析,我们可以简化问题的解答过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题03 利用函数的图像探究函数的性质【自主热身,归纳提炼】1、作出下列函数的图象:(1)(1)y=2-2x;(2)y=log13[3(x+2)];(3)y=|log12(-x)|.【思路点拨】:搞清各个函数与基本函数之间的关系,然后用图象变换法画函数图象.(3)作y=log12x的图象关于y轴对称的图象,得y=log12(-x)的图象,再把x轴下方的部分翻折到x轴上方,可得到y=|log12(-x)|的图象.如图3.1.作函数图象的一般步骤为: (1)确定函数的定义域. (2)化简函数【解析】式.(3)讨论函数的性质(如函数的单调性、奇偶性、周期性、最值、极限等)以及图象上的特殊点(如极值点、与坐标轴的交点、间断点等)、线(如对称轴、渐近线等). (4)选择描点法或图象变换法作出相应的函数图象.2.采用图象变换法时,变换后的函数图象要标出特殊的线(如渐近线)和特殊的点,以显示图象的主要特征,处理这类问题的关键是找出基本函数,将函数的【解析】式分解为只有单一变换的函数链,然后依次进行单一变换,最终得到所要的函数图象.2、 若函数的值域是[4,)+∞,则实数a 的取值范围是 .【答案】:12a <≤.【解析】 作出函数的图象,易知当2x ≤时,,要使()f x 的值域为[4,)+∞,由图可知,显然1a >且,即12a <≤.3、 已知函数f (x )=||2x-2(x ∈(-1,2)),则函数y =f (x -1)的值域为________. 【答案】[0,2)解法 1 由于平移不改变值域,故只需要研究原函数的值域.画出函数f (x )=|2x-2|的图像.由下图易得值域为[0,2).解法2 因为x ∈(-1,2),所以2x ∈⎝ ⎛⎭⎪⎫12,4,2x -2∈⎝ ⎛⎭⎪⎫-32,2,所以|2x-2|∈[0,2).因为y =f (x -1)是由f (x )向右平移1个单位得到的,所以值域不变,所以y =f (x -1)的值域为[0,2).4、已知f (x )是定义在R 上的偶函数,且对于任意的x ∈[0,+∞),满足f (x +2)=f (x ).若当x ∈[0,2)时,f (x )=|x 2-x -1|,则函数y =f (x )-1在区间[-2,4]上的零点个数为________.【答案】:7【解析】:作出函数f (x )的图像(如图),则它与直线y =1在[-2,4]上的交点的个数,即为函数y =f (x )-1在[-2,4]的零点的个数,由图像观察知共有7个交点,从而函数y =f (x )-1在[-2,4]上的零点有7个.5、已知函数f (x )=⎩⎪⎨⎪⎧4, x ≥m ,x 2+4x -3, x <m .若函数g (x )=f (x )-2x 恰有三个不同的零点,则实数m 的取值范围是________. 【答案】(1,2]解法1 问题转化为g (x )=0,即方程f (x )=2x 有三个不同的解,即⎩⎪⎨⎪⎧x ≥m ,4=2x 或⎩⎪⎨⎪⎧x <m ,x 2+4x -3=2x ,解得⎩⎪⎨⎪⎧x ≥m ,x =2或⎩⎪⎨⎪⎧x <m ,x =1或⎩⎪⎨⎪⎧x <m ,x =-3.因为方程f (x )=2x 有三个不同的解,所以⎩⎪⎨⎪⎧2≥m ,1<m ,-3<m ,解得1<m ≤2.解法2 由题意知函数g (x )=⎩⎪⎨⎪⎧4-2x , x ≥m ,x 2+2x -3, x <m .画出函数y =4-2x 和y =x 2+2x -3的图像,可知函数g (x )的三个零点为-3,1,2,因此可判断m 在1与2之间.当m =1时,图像不含点(1,0),不合题意;当m =2时,图像包含点(2,0),符合题意.所以1<m ≤2.6、已知直线y =kx +1与曲线f (x )=⎪⎪⎪⎪⎪⎪x +1x -⎪⎪⎪⎪⎪⎪x-1x 恰有四个不同的交点,则实数k 的取值范围为________.【答案】⎩⎨⎧⎭⎬⎫-18,0,18【解析】:由题意得f (x )=⎪⎪⎪⎪⎪⎪x +1x -⎪⎪⎪⎪⎪⎪x -1x 是偶函数,且f (x )=⎩⎪⎨⎪⎧-2x, x ≤-1,-2x , -1<x <0,2x , 0<x <1,2x , x ≥1,作出曲线的图像(如图所示).当k =0时,直线y =kx +1与曲线f (x )=⎪⎪⎪⎪⎪⎪x +1x -⎪⎪⎪⎪⎪⎪x -1x 有四个公共点;当k >0时,要使它们有四个公共点,则需y =kx +1与y =-2x(x ≤-1)有一个公共点,此时kx +1=-2x,即方程kx 2+x +2=0有两个相等的实数解,从而Δ=1-8k =0,解得k =18;当k <0时,根据对称性可得k =-18.从而满足条件的k 的取值范围是⎩⎨⎧⎭⎬⎫-18,0,18.易错警示 本题会忽视当直线与y =-2x相切时,其实就是有四个交点.处理动直线与曲线交点时要注意两个特殊情形:一是过端点,二是相切的时候.7、已知函数f (x )=⎩⎪⎨⎪⎧12x -x 3,x ≤0,-2x ,x >0.)当x ∈(-∞,m ]时,f (x )的取值范围为[-16,+∞),则实数m 的取值范围是________.【答案】:[-2,8]【解析】: 由于f (x )的【解析】式是已知的,因此,可以首先研究出函数f (x )在R 上的单调性及相关的性质,然后根据f (x )的取值范围为[-16,+∞),求出它的值等于-16时的x 的值,借助于函数f (x )的图像来对m 的取值范围进行确定.(2)若0x =不是方程(Ⅰ)的唯一根,则必须满足0a <,即0a >,此时方程(Ⅱ)必须有两个不相等的根,即有两个不相等的根,由,得0x a =<适合,另外226x a =+还有必须一满足,0x a a <>的非零实根,首先60a +>,解得的正根需满足62aa +≥,从而解得02a <≤,但前面已经指出2a ≠,故02a <<,综合(1)、(2),得实数a 的取值范围为3(,2)2-.【解后反思】函数、方程和不等式的综合题,常以研究函数的零点、方程的根、不等式的解集的形式出现,大多数情况下会用到等价转化、数形结合的数学思想解决问题,而这里的解法是通过严谨的等价转化,运用纯代数的手段来解决问题的,对抽象思维和逻辑推理的能力要求较高,此题也可通过数形结合的思想来解决问题,可以一试.【关联2】、 已知函数f (x )=|sin x |-kx (x ≥0,k ∈R )有且只有三个零点,设此三个零点中的最大值为x 0,则x 01+x20sin2x 0=________.【答案】: 12【思路点拨】 转化为定曲线y =|sin x |(x ≥0)与动直线y =kx 的位置关系问题.【解析】:由y =|sin x |(x ≥0)和y =kx 的图像可知,当曲线与直线恰有三个公共点时,直线y =kx 与曲线y =-sin x (x ∈[π,2π])相切,设切点横坐标为x 0,斜率为-cos x 0.由⎩⎪⎨⎪⎧-sin x 0=kx 0,-cos x 0=k ,得tan x 0=x 0.因为sin2x 0=2sin x 0cos x 0cos 2x 0+sin 2x 0=2tan x 01+tan 2x 0=2x 01+x 20,所以x 01+x20sin2x 0=12.【关联3】、已知函数恰有2个零点,则实数a 的取值范围为 【答案】【解析】令()0f x =可得,令,在同一坐标系中画出它们的图象可得,先研究0x >时,当过A 点直线与该曲线相切时,设切点为()00,P x y ,又()0,2x ∈时,34y x x =-,故2'43y x =-,所以切线方程为,代入点()0,2可得:01x =,此时切线方程为2y x =+与0x >部分曲线有两个交点,与0x <部分的曲线也有两个交点.当1a >时,此时左右各一个交点,故1a >符合题意,由对称性可得1a <-时也成立.【关联4】、 已知函数f (x )=⎩⎪⎨⎪⎧-x +m ,x <0,x 2-1,x ≥0,)其中m >0,若函数y =f (f (x ))-1有3个不同的零点,则实数m 的取值范围是________. 【答案】. (0,1)【思路点拨】 先画出函数图像草图,再分类讨论.【解析】令f (f (x ))=1,得f (x )=2或f (x )=m -1<0,进一步,得x =2+1或x =m -2<0或x =m .因为已知m >0,所以只要m <1,即0<m <1.【关联5】、设函数f(x)=⎩⎪⎨⎪⎧e -x -12,x>0,x 3-3mx -2,x≤0(其中e 为自然对数的底数)有3个不同的零点,则实数m 的取值范围是________. 【答案】 (1,+∞)解法1(直接法) 当x>0时,令f(x)=e -x-12=0,解得x =ln 2>0,此时函数f(x)有1个零点,因为要求函数f(x)在R 上有3个不同的零点,则当x ≤0时,f (x )=x 3-3mx -2有2个不同的零点,因为f ′(x )=3x2-3m ,令f ′(x )=0,则x 2-m =0,若m ≤0,则函数f (x )为增函数,不合题意,故m >0,所以函数f (x )在(-∞,-m )上为增函数,在(-m ,0]上为减函数,即f (x )max =f (-m )=-m m +3m m -2=2m m -2,f (0)=-2<0,要使f (x )=x 3-3mx -2在(-∞,0]上有2个不同的零点,则f (x )max =2m m -2>0,即m >1,故实数m 的取值范围是(1,+∞).解法2(分离参数) 当x>0时,令f(x)=e -x-12=0,解得x =ln 2>0,此时函数f(x)有1个零点,因为要求函数f(x)在R 上有3个不同的零点,则当x ≤0时,f (x )=x 3-3mx -2有2个不同的零点,即x 3-3mx -2=0,显然x =0不是它的根,所以3m =x 2-2x ,令y =x 2-2x (x <0),则y ′=2x +2x 2=2(x 3+1)x2,当x ∈(-∞,-1)时,y ′<0,此时函数单调递减;当x ∈(-1,0)时,y ′>0,此时函数单调递增,故y min =3,因此,要使f (x )=x 3-3mx -2在(-∞,0)上有两个不同的零点,则需3m >3,即m >1. 解后反思 已知函数零点的个数,确定参数的取值范围,常用的方法和思路:(1) 直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.(2) 分离参数法:先将参数分离,转化成求函数值域问题加以解决,解法2就是此法.它的本质就是将函数转化为一个静函数与一个动函数的图像的交点问题来加以处理,这样就可以通过这种动静结合来方便地研究问题.(3) 数形结合法:先对【解析】式变形,在同一平面直角坐标系中,画出函数的图像,然后数形结合求解.这里采用方法是(1)和(3)的结合.【关联6】、已知函数的图象恰好经过三个象限,则实数a 的取值范围是 .【答案】:a <0或a >2.【思路点拨】:由于是分段函数,当a 0和0a 时,一次函数的图象不同,故要分两种情况讨论,由函数【解析】式结构特点知a 0时,函数图象过三个象限,问题就变成了考虑0a 的情形,也就是由题意的图象需经过第一、二象限,有两种思路:思路1,分离参数后,转化两个函数图象在y 轴右侧的图象有公共点(且不相切),找到临界切线位置; 思路2,转化不等式的存在性问题,分离参数后,转化求最值问题,最终求得a 的取值范围. 【解析】当a <0时,限,在(0,+∞)恒成立,所以图象仅在第一象限,所以a <0 当a ≥0时,的图象仅经过第三象限,由题意的图象需经过第一、二象限.【解法1】(图像法)与y ax 在y 轴右侧的图象有公共点(且不相切).如图, =,设切点坐标为,231yx ,则有,解得01x ,所以临界直线0l 的斜率为2,所以a >2时,符合.综上,a <0或a >2.l 0Oxy P()g x在(0,1)单调递减,在(1,2)单调递增,又2x时,函数为增函数,所以函数的最小值为2,所以a>2,则实数a的取值范围为a<0或a>2.解后反思:填空题中的函数问题,可优先选择利用数形结合思想,通过分离参数、分离函数等途径转化为两函数图像的关系问题处理.解法一中也可以转化为:与y a=在y轴右侧的图象有公共点(且不相切).易求出此时a>2,则实数a的取值范围为a<0或a>2.例3、已知函数,若存在实数a、b、c、d,满足()f d=,其中,则abcd的取值范围是 .【答案】:() 21,24【思路点拨】:由存在实数a 、b 、c 、d ,满足()f d =得,存在一条平行于x 轴的直线与函数()f x 的图象有四个不同的交点,从而得到,,,a b c d 之间所存在的关系,利用这一关系来求得abcd 的取值范围。