烟气分析仪的工作原理
烟气分析仪的原理

烟气分析仪的原理
烟气分析仪是一种用于测量和分析烟气中组成物质的工具。
其原理是利用各种物理和化学性质的差异来分离和测量气体成分。
以下是烟气分析仪的几种常见原理:
1. 红外吸收原理:该原理利用某些气体对特定波长的红外光的吸收特性来测量烟气中各种气体的浓度。
烟气通过红外传感器管道时,特定波长的红外光会被各种气体吸收,通过测量被吸收的光的强度可以确定气体的浓度。
2. 高频屈光原理:该原理利用气体对高频电场的折射能力来测量烟气中气体的浓度。
烟气通过感应装置时,高频电场受到气体的折射作用,通过测量电场的变化可以确定气体的浓度。
3. 热导率原理:该原理利用不同气体的热导率差异来测量烟气中气体的成分。
烟气通过感应装置时,装置会通过加热元件在烟气中产生热量,然后测量热量传导的速度和程度来确定气体的浓度。
4. 光谱分析原理:该原理利用不同气体对特定波长的光的吸收特性来测量烟气中气体的浓度。
烟气通过感应装置时,特定波长的光经过烟气后被各种气体吸收,通过测量被吸收的光的强度可以确定气体的浓度。
这些原理可以单独或组合使用,根据不同的应用需求选择合适的原理和方法。
烟气分析仪的工作原理是基于这些原理之一或多个原理的测量和分析。
烟气自动监测设备基本原理及构造

烟气 反射镜
光谱仪 光源
傅利叶变换红外光谱测量与分析原理
FTIR原理
当采样气体进入检测室时,红外 光束中一些特定波长的光被被测气体分子吸收,而 吸收强度取决于分子中原子间的化学键的作用力, 被吸收的光线的波长(或频率)对每种气体来说都 是唯一的,FTIR 分析仪用其特有的分析方法来检测 比较这些特征光的光谱图,计算出每种气体的浓度。 基于FTIR光谱技术原理的分析仪能够同时测量上百 种化合物,极快的响应时间并且交叉干扰比NDIR分 析少。FTIR的最大特点是不需要对照参考物质频繁 地校准分析仪
(应用:SO2吸收7300nm、NO吸收5300nm的红外光; SO2吸收280—320nm、NO吸收195—225nm的紫外光)
非分散红外光测量与分析原理
样气以恒定的流量注入检测室,当红外线穿过检测室时,样气吸 收一定的红外线能量,穿过参比室和检测室后的红外线的光强度产生 差值,通过检测器将光强度差值转换成电信号,最后计算出样气中待
皮托管——差压流量计
• 原理简介 S型皮托管是由两根相同的金属管并联组成。测量 端有方向相反的两个开口,测量时,面向气流的 开口测的压力为全压,背向气流的开口测的压力 为静压,用压力差转化成流速
几个问题
堵塞——需要定时反吹 磨损腐蚀——定期更换,一般周期3年 烟道截面积和流场的稳定性很重要
热式流量计
效率。
CEMS的主要测量参数
污染物主要有:二氧化硫(SO2)、氮氧化物(NOX)、颗粒物(烟尘) 烟气参数主要有:氧含量(O2)、烟气流速(流量)、烟气湿度、温度和压力等。 其他参数:CO、CO2、HCL、HF、H2S等。
CEMS组成框图
颗粒物监测子系统 气态污染物监测子系统 烟气排放参数监测子系统 数据处理子系统 通讯子系统
烟气分析仪检定规程

烟气分析仪检定规程烟气分析仪检定规程1 范围本规程适用于烟气分析仪(以下简称分析仪)的首次检定、后续检定和使用中检验2 概述分析仪主要应用于测量烟气中的二氧化硫、氮氧化物、一氧化碳等有害气体及氧气的浓度。
传感器可选择性配置,测定一种或多种气体。
分析仪由气路系统和电路系统两部分组成。
其工作原理是抽气泵将烟气经采样管送至传感器的气室,传感器的输出电信号通过电子线路将模拟信号放大,转换成被测气体的浓度。
3 计19性能要求3.1 示值误差示值误差不超过*5%a3.2 重复性重复性不大于2%。
3.3 响应时间响应时间不大于90s.3.4 稳定性1小时内示值变化不大于5%04 通用技术要求4.1 外观及结构要求4.1.1 分析仪的铭牌上应标有产品名称、型号、出厂编号、制造日期、制造厂名、制造计量器具许可证迈互二标志及编号,并附有使用说明书。
4.1.2 分析仪(包括采样管)不应有妨碍正常工作的机械损伤。
各调节器转动灵活,定位准确。
各固定件应无松动。
通电后,数字显示完整清晰。
4.2 最大流量调节流量计流量能够达到使用说明书规定的流量。
4.3 绝缘电阻对交流供电电源分析仪,绝缘电阻不小于20MOa5 计It器具控制计量器具控制包括:首次检定、后续检定和使用中检验。
5.1 检定条件JJG 968- 20025.1.1 检定时环境条件(1 ) 温度:15℃一3590a(2 ) 湿度:不大于85%RHo(3 ) 电源电压:AC2 20 (1士10%)V o5.1.2 检定用设备(1 ) 标准气体:二氧化硫、一氧化氮、一氧化碳、氧气标准物质,其浓度的扩展不确定度应不大于2% (k=3)o(2 ) 零点校准气:清洁空气。
(3 ) 电子秒表:分度值O.Olso(4 ) 流量控制器:流量稳定性优于2%,流量范围应能满足被检仪器需要,并设有放空的流量计。
(5 ) 绝缘电阻表:500V,1 0级。
5.2 检定项目检定项目如表1所示。
红外烟气分析仪原理

红外烟气分析仪原理
红外烟气分析仪(Infrared Smoke Analyzer)是一种用于测量
和分析烟气中污染物浓度的仪器。
它基于红外光吸收原理,通过检测红外光在气体中的吸收程度,来确定烟气中各种污染物的含量。
红外烟气分析仪采用了红外光源和红外光接收器。
红外光源发射出被测气体所吸收的特定波长的红外光,并通过被测气体后的光束到达红外光接收器。
红外光接收器测量红外光的强度,并将其转换为电信号。
当红外光通过烟气时,烟气中的污染物会吸收特定波长的红外光。
不同的污染物对红外光的吸收程度具有特定的特征,因而可以通过测量吸收的光强度来推断污染物的浓度。
红外烟气分析仪使用一系列不同波长的红外光,以覆盖各种可能的污染物。
它可以通过多个通道同时测量不同污染物的浓度,并将结果显示在仪器的显示屏上。
红外烟气分析仪的应用领域非常广泛,包括环境监测、工艺控制、烟气排放监测等。
其优点在于测量速度快、准确性高、使用方便,并且能同时测量多种污染物的浓度。
由于红外烟气分析仪采用了非接触式的测量方法,因此可以实时监测烟气中的污染物浓度,无需对气体进行取样和处理,大大提高了工作效率。
此外,红外烟气分析仪还具有较高的抗干扰能力,可以在复杂的烟气环境下正常运行。
烟气分析仪的测试原理介绍

烟气分析仪的测试原理介绍烟气分析仪是一种专门用于分析烟气中各种气体和颗粒的仪器。
它在工业生产中有着广泛的应用,能够帮助企业了解自身的排放情况,保障生态环境的可持续发展。
本文将介绍烟气分析仪的测试原理,以帮助读者更好地了解它的工作原理和使用方法。
烟气分析仪的构造烟气分析仪的主要组成部分包括:取样气体管道、过滤器、传感器、信号处理器和数据显示装置等。
取样气体管道是烟气分析仪最基本的组成部分,通常由不锈钢材质制成,其主要作用是取样烟气中的有害气体和颗粒物。
过滤器则用于去除烟气中的颗粒物,避免对传感器的影响。
传感器是烟气分析仪的核心部分,主要用于检测烟气中的各种气体成分,并将检测结果通过信号处理器输出显示。
烟气分析仪的测试原理烟气分析仪一般采用化学方法、光谱法和电化学法等多种方法进行检测。
下面将分别介绍它们的测试原理。
化学方法化学方法是烟气分析仪用于检测二氧化硫、氮氧化物和氧气等化学物质浓度的主要方法之一。
该方法是通过将烟气和一种特定的化学试剂反应产生颜色变化,并通过比色法或吸光光度法测量颜色深浅,从而得出烟气中的化学物质浓度。
光谱法光谱法主要用于检测烟气中的CO、CO2、NOx和SO2等气体成分,其基本原理是通过激光器或光源产生一束特定波长的光,照射到烟气中,烟气中各种气体成分吸收或反射不同波长的光,形成不同的光谱图像。
通过分析光谱图像,计算各种气体成分的浓度,从而得出烟气中的气体成分浓度。
电化学法电化学法主要用于检测烟气中的NOx和SO2等气体成分。
该方法是通过将烟气与电极分离,电极与烟气中的气体成分反应,释放电子进入电解质中,使电导率发生变化,从而测量气体成分的浓度。
烟气分析仪的使用方法烟气分析仪的使用方法相对简单,下面将介绍一般的使用流程。
1.确认要检测的气体成分,选择相应的传感器和测试方法。
2.将烟气分析仪连接到需要检测的管道或烟囱上,开启采集和测试程序。
3.等待烟气分析仪采集足够的样本数据。
烟尘烟气分析仪的使用和工作原理

烟尘烟气分析仪的使用和工作原理引言烟尘烟气是工业生产和交通运输中常见的一种污染源。
如果烟尘和烟气的浓度过高,不仅会对环境造成影响,对人体健康也有潜在危害。
因此,烟尘烟气的检测与监测非常重要。
而烟尘烟气分析仪则是实现这一目的的关键仪器之一。
烟尘烟气分析仪的使用烟尘烟气分析仪是一种用于测量空气中烟尘和烟气浓度的仪器。
其使用方法如下:1.取下烟气分析仪的上盖2.将仪器插入要测量区域的烟道中3.将仪器打开,根据仪器的指示进行操作值得注意的是,在使用烟尘烟气分析仪之前,需要先对其进行标定。
这是因为不同的仪器会因为制造或运输的过程中受到不同的影响,使得其测量结果不同。
因此,需要在使用前根据给定的标准对仪器进行标定,以保证测量结果的准确性。
烟尘烟气分析仪的工作原理烟尘烟气分析仪的工作原理是通过分析空气中烟尘和烟气的成分来测量其浓度。
具体来说,其工作原理包括以下几个步骤:1.烟气进入烟道2.烟气经过滤网,将大颗粒的烟尘过滤掉3.烟气进入分析单元,此时烟气中的成分已经相对纯净4.分析单元通过双波长或者宽带光谱,分析空气中的化学成分,得出浓度值需要注意的是,不同的烟尘烟气分析仪会采用不同的工作原理。
例如,有些仪器会采用基于激光的测量方法,而不是基于光谱的。
烟尘烟气分析仪的应用烟尘烟气分析仪主要应用于以下领域:1.工业生产:用于检测工厂的废气2.环保监测:用于检测空气污染情况3.交通运输:用于检测汽车尾气的排放浓度烟尘烟气分析仪在环保领域的应用可以帮助环保部门制定合适的治理方案,有效保护环境。
而在工业生产领域和交通运输领域的应用,则可以帮助企业实现对其排放的烟尘烟气浓度进行有效控制,达到环保方面的要求。
结论烟尘烟气分析仪是一种用于测量空气中烟尘和烟气浓度的仪器。
其通过分析空气中的成分来测量其浓度值,得出准确的测量结果。
在工业生产、环保监测以及交通运输领域都有着广泛的应用前景。
烟气分析仪检定规程

烟气分析仪检定规程烟气分析仪检定规程1 范围本规程适用于烟气分析仪(以下简称分析仪)的首次检定、后续检定和使用中检验2 概述分析仪主要应用于测量烟气中的二氧化硫、氮氧化物、一氧化碳等有害气体及氧气的浓度。
传感器可选择性配置,测定一种或多种气体。
分析仪由气路系统和电路系统两部分组成。
其工作原理是抽气泵将烟气经采样管送至传感器的气室,传感器的输出电信号通过电子线路将模拟信号放大,转换成被测气体的浓度。
3 计19性能要求3.1 示值误差示值误差不超过*5%a3.2 重复性重复性不大于2%。
3.3 响应时间响应时间不大于90s.3.4 稳定性1小时内示值变化不大于5%04 通用技术要求4.1 外观及结构要求4.1.1 分析仪的铭牌上应标有产品名称、型号、出厂编号、制造日期、制造厂名、制造计量器具许可证迈互二标志及编号,并附有使用说明书。
4.1.2 分析仪(包括采样管)不应有妨碍正常工作的机械损伤。
各调节器转动灵活,定位准确。
各固定件应无松动。
通电后,数字显示完整清晰。
4.2 最大流量调节流量计流量能够达到使用说明书规定的流量。
4.3 绝缘电阻对交流供电电源分析仪,绝缘电阻不小于20MOa5 计It器具控制计量器具控制包括:首次检定、后续检定和使用中检验。
5.1 检定条件JJG 968- 20025.1.1 检定时环境条件(1 ) 温度:15℃一3590a(2 ) 湿度:不大于85%RHo(3 ) 电源电压:AC2 20 (1士10%)V o5.1.2 检定用设备(1 ) 标准气体:二氧化硫、一氧化氮、一氧化碳、氧气标准物质,其浓度的扩展不确定度应不大于2% (k=3)o(2 ) 零点校准气:清洁空气。
(3 ) 电子秒表:分度值O.Olso(4 ) 流量控制器:流量稳定性优于2%,流量范围应能满足被检仪器需要,并设有放空的流量计。
(5 ) 绝缘电阻表:500V,1 0级。
5.2 检定项目检定项目如表1所示。
紫外烟气分析仪的三种原理说明(标准版)

紫外烟气分析仪的三种原理说明
随着经济的快速发展,人们越来越关注环境问题。
如何全面控制空气污染是关键。
为了控制空气污染,首先需要监测空气污染物。
紫外烟气分析仪应运而生。
紫外烟气分析仪通常采用电化学原理、红外原理和紫外差分吸收光谱原理,广泛用于二氧化硫、氮氧化物等的烟雾分析。
紫外烟气分析仪的三种原理说明:
1.电化学原理
待测气体经除尘除湿后,送入气体传感器,通过渗透膜进入电解槽。
待测气体将在规定的氧化电位下进行电位电解。
然后我们可以根据消耗的电解电流来推断气体的浓度。
2.红外原理
根据不同气体对红外波长电磁波能量有特殊吸收特性的原理,分析了气体的组成和含量。
3.紫外线原理
紫外差分吸收光谱法是利用待测物质在紫外波段的窄带特征吸收光谱,经过一定的计算处理,得到待测气体的浓度。
DOAS技术以其廉价、简单的设备和的监测能力,在国外大气监测领域得到了广泛的应用。
它对于测量大气平
流层中的活性气体OH、NO3和HONO非常有效。
与传统的光学监测方法相比,DOAS技术可以同时监测各种气体成分。
精品资料欢迎下载。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
烟气分析仪的工作原理
烟气分析仪是测量烟气中的二氧化硫、一氧化氮、二氧化氮和一氧化碳等有害气体,以及氧含量的气体检测仪器,广泛地应用于燃油、燃气锅炉污染排放、烟道气体及污染源附近的环境监测中。
气体传感器是烟气分析仪检测技术的核心,烟气分析仪的工作原理常用两种:一种是电化学工作原理,另一种是红外工作原理。
1、电化学气体传感器的工作原理
电化学气体传感器的主要工作原理是将测量对象气体经过除尘、去湿后进入传感器气室,经过渗透膜进入电解槽,在恒电位工作电极处发生氧化或还原,由此产生极限扩散电流,在一定范围内,根据耗用的电解电流得出气体的浓度。
2、红外气体传感器的工作原理
红外气体传感器又被称为非色散红外气体传感器,被测气体中对红外光线的吸收是红外吸收式气体传感器分析气体的基础,吸收规律符合朗伯-比尔定律。
其工作原理是利用红外线的物理性质来进行测量的,气体吸收光谱是一系列的吸收带,不同气体对红外波长的电磁波能量具有特殊吸收特性。
红外光源发出的红外光,经过切光器调制频率后,进入测量气室。
当红外光线通过被测气体时,这些气体对特定波长的红外光有吸收作用,可通过红外光线的衰减来测量气体浓度。