河南省中原名校2019年中考第二次大联考数学试卷
2019年4月2019届九年级第二次模拟大联考(河南卷)数学卷(考试版)

数学试题 第1页(共6页) 数学试题 第2页(共6页)……………内…………………外…… 学校绝密★启用前2019届九年级第二次模拟大联考(河南)数学(考试时间:100分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:中考全部内容。
第Ⅰ卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.-2的绝对值是 A .2B .12C .-2D .-122.某校组织学生参观绿博园时,了解到某种花的花粉颗粒的直径大约为0.0000065米,将0.0000065用科学记数法表示应为 A .76.510-⨯B .66.510-⨯C .56.510-⨯D .60.6510-⨯3.下列计算正确的是 A .a 3+a 3=a 6B .(x -3)2=x 2-9C .a 3·a 3=a 6D 4.如图是由棱长为1的正方体搭成的某几何体三视图,则图中棱长为1的正方体的个数是A .9B .8C .7D .65.如图,已知AB ∥CD ,∠1=∠2,∠EFD =56°,则∠D =A .60°B .58°C .28°D .62°6.某校团委组织“阳光助残”献爱心捐款活动,九年级(2)班学生捐款如表:学生捐款的中位数和众数是A .10元,15元B .15元,15元C .10元,20元D .16元,17元7.如图,在ABCD 中,用直尺和圆规作∠BAD 的平分线AE 交BC 于点E .若∠BCD =80°,则∠AEC 的度数为A .80°B .100°C .120°D .140°8.将三粒均匀的分别标有:1,2,3,4,5,6的正六面体骰子同时掷出,出现的数字分别为a ,b ,c ,则a ,b ,c 正好是直角三角形三边长的概率是A .1216B .172C .136D .1129.如图.在直角坐标系中,矩形ABCO 的边OA 在x 轴上,边OC 在y 轴上,点B 的坐标为(1,3),将矩形沿对角线AC 翻折,B 点落在D 点的位置,且AD 交y 轴于点E .那么点D 的坐标为数学试题 第3页(共6页) 数学试题 第4页(共6页)○………………装………………○………………○………………卷只装订封○………………装………………○………………○………………A .412()55-, B .213()55-, C .113()25-,D .312(55-,10.如图,C 是半圆⊙O 内一点,直径AB 的长为4 cm ,∠BOC =60°,∠BCO =90°,将△BOC 绕圆心O 逆时针旋转至△B ′OC ′,点C ′在OA 上,则边BC 扫过的区域(图中阴影部分)的面积为A .43πB .πC .4πD第Ⅱ卷二、填空题(本大题共5小题,每小题3分,共15分) 110-3-1=__________.12.不等式组211112x x -≤⎧⎪⎨-<⎪⎩的整数解的个数为__________.13.抛物线y =x 2-2x +m 与x 轴只有一个交点,则m 的值为__________.14.如图,四边形ABCD 是菱形,∠DAB =50°,对角线AC ,BD 相交于点O ,DH ⊥AB 于H ,连接OH ,则∠DHO =__________度.15.如图,在Rt △ABC 中,∠ACB =90°,∠A =30°,BC =2,点D 是边AB 上的动点,将△ACD 沿CD 所在的直线折叠至△CDA 的位置,CA'交AB 于点E .若△A'ED 为直角三角形,则AD 的长为__________.三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(本小题满分8分)先化简,再求值:(2x +y )2+(x -y )(x +y )-5x (x -y ),其中x ,y 1.17.(本小题满分9分)某校在一次社会实践活动中,组织学生参观了虎园、烈士陵园、博物馆和植物园,为了解本次社会实践活动的效果,学校随机抽取了部分学生,对“最喜欢的景点”进行了问卷调查,并根据统计结果绘制了如下不完整的统计图.其中最喜欢烈士陵园的学生人数与最喜欢博物馆的学生人数之比为2∶1,请结合统计图解答下列问题: (1)本次活动抽查了__________名学生;(2)请补全条形统计图;(3)在扇形统计图中,最喜欢植物园的学生人数所对应扇形的圆心角是__________度;(4)该校此次参加社会实践活动的学生有720人,请求出最喜欢烈士陵园的人数约有多少人?18.(本小题满分9分)如图,在平面直角坐标系中,四边形ABCD 是菱形,点A (0,4),B (-3,0),反比例函数y =kx(k 为常数,k ≠0,x >0)的图象经过点D . (1)填空:k =__________. (2)已知在y =kx的图象上有一点N ,y 轴上有一点M ,且四边形ABMN 是平行四边形,求点M 的坐标.19.(本小题满分9分)如图,△ABC 内接于⊙O 且AB =AC ,延长BC 至点D ,使CD =CA ,连接AD 交⊙O 于点E ,连接BE 、CE . (1)求证:△ABE ≌△CDE ;(2)填空:①当∠ABC 的度数为__________时,四边形AOCE 是菱形;………订…………………………○……………订…………………………○……___________考号___②若AE=6,EF=4,DE的长为__________.20.(本小题满分9分)为缓解交通压力,市郊某地正在修建地铁站,拟同步修建地下停车库.如图是停车库坡道入口的设计图,其中MN是水平线,MN∥AD,AD⊥DE,CF⊥AB,垂足分别为D,F,坡道AB的坡度=1∶3,AD=9米,点C在DE上,CD=0.5米,CD是限高标志牌的高度.如果进入该车库车辆的高度不能超过线段CF的长,则该停车库限高多少米?(结果精确到0.1≈1.41≈3.16)21.(本小题满分10分)小王是“新星厂”的一名工人,请你阅读下列信息:信息一:工人工作时间:每天上午8:00—12:00,下午14:00—18:00,每月工作25天;信息二:小王生产甲、乙两种产品的件数与所用时间的关系见下表:信息三:按件计酬,每生产一件甲种产品得1.50元,每生产一件乙种产品得2.80元;信息四:该厂工人每月收入由底薪和计酬工资两部分构成,小王每月的底薪为1900元.请根据以上信息,解答下列问题:(1)小王每生产一件甲种产品和一件乙种产品分别需要多少分钟;(2)2019年3月工厂要求小王生产甲种产品的件数不少于60件,则小王该月收入最多是多少元?此时小王生产的甲、乙两种产品分别是多少件?22.(本小题满分10分)如图1,正方形ABCD和正方形AEFG,连接DG,BE.(1)发现当正方形AEFG绕点A旋转,如图2,①线段DG与BE之间的数量关系是__________;②直线DG与直线BE之间的位置关系是__________.(2)探究如图3,若四边形ABCD与四边形AEFG都为矩形,且AD=2AB,AG=2AE,证明:直线DG⊥BE.(3)应用在(2)情况下,连接GE(点E在AB上方),若GE∥AB,且AB AE=1,则线段DG是多少?(直接写出结论)23.(本小题满分11分)如图,抛物线y=ax2+bx-2经过点A(4,0),B(1,0).(1)求出抛物线的解析式;(2)点D是直线AC上方的抛物线上的一点,求△DCA面积的最大值;(3)P是抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.数学试题第5页(共6页)数学试题第6页(共6页)。
2019年河南省郑州市名校联考中考数学二模试卷(含解析)

2019年河南省郑州市名校联考中考数学二模试卷一.选择题(满分30分,每小题3分)1.给出四个数0,,π,﹣1,其中最小的是()A.0 B.C.πD.﹣12.下面是同学们利用图形变化的知识设计的一些美丽的图案,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.3.如图,几何体的左视图是()A.B.C.D.4.下列计算正确的是()A.x2﹣3x2=﹣2x4B.(﹣3x2)2=6x2C.x2y•2x3=2x6y D.6x3y2÷(3x)=2x2y25.利用数轴求不等式组的解集表示正确的是()A.B.C .D.6.某车间20名工人每天加工零件数如表所示:每天加工零件数4 5 6 7 8人数 3 6 5 4 2 这些工人每天加工零件数的众数、中位数分别是()A.5,5 B.5,6 C.6,6 D.6,57.已知点A(1,y1)、B(2,y2)、C(﹣3,y3)都在反比例函数y=的图象上,则y1、y2、y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y28.在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球不放回,再随机摸出一个小球,则两次摸出小球的标号之和为奇数的概率是()A .B .C .D.9.如图,在△AB C中,∠ACB=90°,分别以点A和点C为圆心,以大于的长为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交AC于点E,连接CD.若∠B=34°,则∠BDC的度数是()A.68°B.112°C.124°D.146°10.如图,在平面直角坐标系中,将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2018次得到正方形OA2018B2018C2018,如果点A的坐标为(1,0),那么点B2018的坐标为()A.(1,1)B .(0,)C.()D.(﹣1,1)二.填空题(满分15分,每小题3分)11.计算:(﹣5)0+2=.12.如图,在▱ABCD中,E、F分别是AB、DC边上的点,AF与DE相交于点P,BF与CE相交于点Q,若S△APD =16cm2,S△BQC=25cm2,则图中阴影部分的面积为cm2.13.如图所示,二次函数y=ax2+bx+c(a≠0)的图象与x轴相交于点A,B,若其对称轴为直线x=2,则OB﹣OA的值为.14.如图,在▱ABCD中,以点A为圆心,A B的长为半径的圆恰好与CD相切于点C,交AD 于点E,交BA的延长线于点F,若的长为π,则图中阴影部分的面积为.15.如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C 重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为.三.解答题(共8小题,满分75分)16.(8分)先化简再求值:,其中x是方程x2=2x的根.17.(9分)2018年平昌冬奥会在2月9日到25日在韩国平昌郡举行.为了调查中学生对冬奥会比赛项目的了解程度,某中学在学生中做了一次抽样调查,调查结果共分为四个等级:A、非常了解B、比较了解C、基本了解D、不了解.根据调查统计结果,绘制了如图所示的不完整的三种统计图表.百分比对冬奥会的了解程度A非常了解10%B比较了解15%C基本了解35%D不了解n% (1)本次调查的样本容量是,n=;(2)请补全条形统计图;(3)学校准备开展冬奥会的知识竞赛,该校共有4000名学生,请你估计这所学校本次竞赛“非常了解”和“比较了解”的学生总数.18.(9分)已知:如图,△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC于点F,交⊙O 于点D,DE⊥AB于点E,且交AC于点P,连结AD.(1)求证:∠DAC=∠DBA;(2)求证:P是线段AF的中点;(3)连接CD,若CD=3,BD=4,求⊙O的半径和DE的长.19.(9分)如图,大楼底右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上).已知AB=80m,DE=10m,求障碍物B,C两点间的距离.(结果保留根号)20.(9分)如图,点A的坐标为(3,0),点C的坐标为(0,4),OABC为矩形,反比例函数的图象过AB的中点D,且和BC相交于点E,F为第一象限的点,AF=12,CF=13.(1)求反比例函数和直线OE的函数解析式;(2)求四边形OAFC的面积?21.(10分)某学校计划购买排球、篮球,已知购买1个排球与1个篮球的总费用为180元;3个排球与2个篮球的总费用为420元.(1)求购买1个排球、1个篮球的费用分别是多少元?(2)若该学校计划购买此类排球和篮球共60个,并且篮球的数量不超过排球数量的2倍.求至少需要购买多少个排球?并求出购买排球、篮球总费用的最大值?22.(10分)如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD =AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想:图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.23.(11分)如图1,在平面直角坐标系中,抛物线y=与x轴交于A,C(A在C的左侧),点B在抛物线上,其横坐标为1,连接BC,BO,点F为OB中点.(1)求直线BC的函数表达式;(2)若点D为抛物线第四象限上的一个动点,连接BD,CD,点E为x轴上一动点,当△BCD的面积的最大时,求点D的坐标,及|FE﹣DE|的最大值;(3)如图2,若点G与点B关于抛物线对称轴对称,直线BG与y轴交于点M,点N是线段BG上的一动点,连接NF,MF,当∠NFO=3∠BNF时,连接CN,将直线BO绕点O旋转,记旋转中的直线BO为B′O,直线B′O与直线CN交于点Q,当△OCQ为等腰三角形时,求点Q的坐标.参考答案一.选择题1.解:根据实数比较大小的方法,可得﹣1<0<<π,故给出四个数0,,π,﹣1,其中最小的是﹣1.故选:D.2.解:A、既是轴对称图形又是对称图形,故选项正确;B、不是轴对称图形,是中心对称图形,选项错误;C、是轴对称图形,不是中心对称图形,选项错误;D、是轴对称图形,不是中心对称图形,选项错误.故选:A.3.解:从几何体左面看得到是矩形的组合体,且长方形靠左.故选:A.4.解:A、x2﹣3x2=﹣2x2,此选项错误;B、(﹣3x2)2=9x4,此选项错误;C、x2y•2x3=2x5y,此选项错误;D、6x3y2÷(3x)=2x2y2,此选项正确;故选:D.5.解:,由①得:x≤1,∴不等式组的解集为﹣3<x≤1,表示在数轴上,如图所示:,故选:D.6.解:由表知数据5出现次数最多,所以众数为5;因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为=6,故选:B.7.解:∵点A(1,y1),B(2,y2),C(﹣3,y3)都在反比例函数y=的图象上,∴,,,∵﹣2<3<6,∴y3<y2<y1,故选:B.8.解:画树状图为:共有12种等可能的结果数,其中两次摸出的小球的标号的和为奇数的结果数为8,所以两次摸出的小球的标号的和为奇数的概率为=,故选:B.9.解:∵∠ACB=90°,∠B=34°,∴∠A=56°,∵DE是AC的垂直平分线,∴DA=DC,∴∠DCA=∠A=56°,∴∠BCD=90°﹣56°=34°,∴∠BDC=180°﹣34°﹣34°=112°,故选:B.10.解:∵四边形OABC是正方形,且OA=1,∴B(1,1),连接OB,由勾股定理得:OB=,由旋转得:OB=OB1=OB2=OB3=…=,∵将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45°,依次得到∠AOB=∠BOB1=∠B1OB2=…=45°,∴B1(0,),B2(﹣1,1),B3(﹣,0),…,发现是8次一循环,所以2018÷8=252 (2)∴点B2018的坐标为(﹣1,1)故选:D.二.填空题11.解:(﹣5)0+2=3.12.解:连接E、F两点,∵四边形ABCD是平行四边形,∴AB∥CD,∴△EFC的FC边上的高与△BCF的FC边上的高相等,∴S△EFC =S△BCF,∴S△EFQ =S△BCQ,同理:S△EFD =S△ADF,∴S△EFP =S△ADP,∵S△APD =16cm2,S△BQC=25cm2,∴S四边形EPFQ=41cm2,故答案为:41.13.解:设A(x1,0),B(x2,0),则x1、x2是方程ax2+bx+c=0的两个根,∵抛物线的对称轴是:x=2,∴﹣=2,∴b=﹣4a,由图可知:x1<0,x2>0,∴OB﹣OA=x2﹣(﹣x1)=x2+x1=﹣=﹣=4,故答案为:4.14.解:连结AC,如图,设半径为r,∵AB的长为半径的圆恰好与CD相切于点C,∴AC⊥CD,∴∠ACD=90°,∵四边形ABCD为平行四边形,∴AB∥CD,AD∥BC,∴∠CAF=90°,∠1=∠B,∠2=∠3,而AB=AC,∴∠B=∠3,∴∠1=∠2=45°,∵的长为π,∴=π,解得r=4,在Rt△ACD中,∵∠2=45°,∴AC=CD=4,∴S阴影部分=S△ACD﹣S扇形CAE=×4×4﹣=8﹣2π,故答案为:8﹣2π.15.解:(i)当B′D=B′C时,过B′点作GH∥AD,则∠B′GE=90°,当B′C=B′D时,AG=DH=DC=8,由AE=3,AB=16,得BE=13.由翻折的性质,得B′E=BE=13.∴EG=AG﹣AE=8﹣3=5,∴B′G===12,∴B′H=GH﹣B′G=16﹣12=4,∴DB′===4(ii)当DB′=CD时,则DB′=16(易知点F在BC上且不与点C、B重合).(iii)当CB′=CD时,则CB=CB′,由翻折的性质,得EB=EB′,∴点E、C在BB′的垂直平分线上,∴EC垂直平分BB′,由折叠,得EF也是线段BB′的垂直平分线,∴点F与点C重合,这与已知“点F是边BC上不与点B,C重合的一个动点”不符,故此种情况不存在,应舍去.综上所述,DB′的长为16或4.故答案为:16或4.三.解答题(共8小题,满分75分)16.解:原式=•=•=•=(﹣x﹣2)•(x﹣1),∵解方程x 2=2x 得x 1=0,x 2=2(舍去), ∴当x =0时,原式=(﹣0﹣2)•(0﹣1)=2. 17.解:(1)样本容量为:40÷10%=400,n %=1﹣10%﹣15%﹣35%=40%,n =40.故答案为400,40;(2)D 等级人数为:400﹣40﹣60﹣140=160, 补全条形统计图如图所示:(3)4000×(10%+15%)=1000(名).答:估计这所学校本次竞赛“非常了解”和“比较了解”的学生总数为1000名.18.(1)证明:∵BD 平分∠CBA , ∴∠CBD =∠DBA ,∵∠DAC 与∠CBD 都是弧CD 所对的圆周角, ∴∠DAC =∠CBD , ∴∠DAC =∠DBA ;(2)证明:∵AB 为直径, ∴∠ADB =90°, ∵DE ⊥AB 于E , ∴∠DEB =90°,∴∠1+∠3=∠5+∠3=90°, ∴∠1=∠5=∠2,∴PD=PA,∵∠4+∠2=∠1+∠3=90°,且∠ADB=90°,∴∠3=∠4,∴PD=PF,∴PA=PF,即P是线段AF的中点;(3)解:连接CD,∵∠CBD=∠DBA,∴CD=AD,∵CD=3,∴AD=3,∵∠ADB=90°,∴AB=5,故⊙O的半径为2.5,∵DE×AB=AD×BD,∴5DE=3×4,∴DE=2.4.即DE的长为2.4.19.解:过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.则DE=BF=CH=10m,在Rt △ADF 中,AF =AB ﹣BF =70m ,∠ADF =45°, ∴DF =AF =70m .在Rt △CDE 中,DE =10m ,∠DCE =30°, ∴CE ===10(m ), ∴BC =BE ﹣CE =(70﹣10)m .答:障碍物B ,C 两点间的距离为(70﹣10)m .20.解:(1)依题意,得点B 的坐标为(3,4),点D 的坐标为(3,2), 将D (3,2)代入,得k =6.∴反比例函数的解析式为;设点E 的坐标为(m ,4),将其代入,得m =,∴点E 的坐标为(,4), 设直线OE 的解析式为y =k 1x , 将(,4)代入得k 1=, ∴直线OE 的解析式为y =x ;(2)连接AC ,如图,在Rt △OAC 中,OA =3,OC =4, ∴AC =5,而AF =12,CF =13. ∴AC 2+AF 2=52+122=132=CF 2, ∴∠CAF =90°, ∴S 四边形OAFC =S △OAC +S △CAF =×3×4+×5×12 =6+30 =36.21.解:(1)设每个排球的价格是x元,每个篮球的价格是y元,根据题意得:,解得:,所以每个排球的价格是60元,每个篮球的价格是120元;(2)设购买排球m个,则购买篮球(60﹣m)个.根据题意得:60﹣m≤2m,解得m≥20,又∵排球的单价小于蓝球的单价,∴m=20时,购买排球、篮球的总费用最大,购买排球、篮球总费用的最大值=20×60+40×120=6000元.22.解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形.由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,利用三角形的中位线得,PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形;(3)方法1:如图2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大时,△PMN的面积最大,∴DE∥BC且DE在顶点A上面,∴MN最大=AM+AN,连接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=2,在Rt△ABC中,AB=AC=10,AN=5,∴MN最大=2+5=7,∴S△PMN最大=PM2=×MN2=×(7)2=.方法2:由(2)知,△PMN是等腰直角三角形,PM=PN=BD,∴PM最大时,△PMN面积最大,∴点D在BA的延长线上,∴BD=AB+AD=14,∴PM=7,∴S△PMN最大=PM2=×72=.23.解:(1)令y=0,解得x1=,x2=∴A(,0),B(,0)当x=1时,y=2∴B(1,2)设直线BC的解析式为y=kx+b代入点B和C解得∴直线BC的解析式为y=﹣x+(2)设点D(m,)过点D作x轴的平行线,交BC于点H,则点H(m,﹣m+)HD=﹣m+﹣()=﹣(m﹣)2+∴当m=时,HD取最大值,此时S的面积取最大值.△BCDD(,﹣)作D关于x轴的对称点D′则D′(,)连接D′H交x轴于一点E,此时D′E﹣FE最大,即为D′F的长度∵F为OB的中点∴F(,)∴D′F=∴|FE﹣DE|的最大值为.(3)由题意可知M(0,2)∵∠NFO=3∠BNF∴∠FBN=2∠BNF作∠FBN的角平分线交x轴于点E则∠OBE=∠EBG=∠OEB=∠BNF过点B作x轴的垂线,垂足为点J则J(1,0)∵OB==3∴OE=3∴EJ=2∵BJ=2∴tan∠BEJ=∴tan∠BNF=过点F作MN的垂线,垂足为D则FD=∴ND=1∴N(,2)连接NC∵tan∠NCO=①当OQ1等于CQ1时,过点Q1作OC的垂线,垂足为I∵OC=∴CI=∴Q1I=∴Q1(,)②当OC=CQ3时,过点Q3作OC的垂线,垂足为K∵OC=,∴CQ3=CK=,Q3K=∴Q3(﹣,)③当OQ2=OC时,过点Q2作OC的垂线,垂足为P∵OC=3,∴OQ2=3设PC=a,则Q2P=a,OP=﹣a 根据勾股定理解得a=∴Q2(,)④当Q4在NC的延长线上时,CQ4=OC同理可得,Q4(+,﹣)综上所述:点Q的坐标为Q1(,),Q2(,),Q3(﹣,),Q4(+,﹣).。
2019年河南省郑州市中考数学二模试卷

2019年河南省郑州市中考数学二模试卷一、(每小题3分,满分24分,下列各小题均有四个答案,其中只有一个是正确的,请把正确的选项填在题后的括号内)1.在数﹣3,﹣2,0,3中,大小在﹣1和2之间的数是()A.﹣3B.﹣2C.0D.32.下列各式正确的是()A.(﹣a)2=a2B.(﹣a)3=a3C.|﹣a2|=﹣a2D.|﹣a3|=a33.如图所示得到几何体是由一个圆柱体和一个长方形组成的,则这个几何体的左视图是()A. B. C. D.4.生物学家发现了一种病毒的长度约为0.00000432毫米.数据0.00000432用科学记数法表示为()A.0.432×10﹣5B.4.32×10﹣6C.4.32×10﹣7D.43.2×10﹣75.如图,在平行四边形ABCD中,EF∥AB交AD于E,交BD于F,DE:EA=3:4,EF=3,则CD的长为()A.4B.7C.3D.126.已知边长为m的正方形面积为12,则下列关于m的说法中,错误的是()①m是无理数;②m是方程m2﹣12=0的解;③m满足不等式组;④m是12的算术平方根.A.①②B.①③C.③D.①②④7.餐桌桌面是长为160cm,宽为100cm的长方形,妈妈准备设计一块桌布,面积是桌面的2倍,且使四周垂下的边等宽.若设垂下的桌布宽为xcm,则所列方程为()A.=160×100×2B.=160×100×2C.=160×100D.2=160×1008.如图,△ABC中,∠ACB=90°,∠A=30°,AB=16.点P是斜边AB上一点.过点P作PQ⊥AB,垂足为P,交边AC(或边CB)于点Q,设AP=x,△APQ的面积为y,则y与x之间的函数图象大致为()A. B. C. D.二、填空题(共7小题,每小题3分,满分21分)9.计算:﹣12×= .10.如图,“石头、剪刀、布”是民间广为流传的游戏,游戏时,双方每次任意出“石头”、“剪刀”、“布”这三种手势中的一种,那么双方出现相同手势的概率P= .11.分式方程+=2的解是.12.如图,在菱形ABCD中,点M、N在AC上,ME⊥AD,NF⊥AB,若NF=NM=2,ME=3,则AM= .13.如图,PA、PB分别切⊙O于点A、B,若∠C=55°,则∠P的大小为度.14.如图,函数y=x与y=的图象相交于A、B两点,过A、B两点分别作x轴垂线,垂足分别为点C、D,则四边形ACBD的面积为.15.如图所示,在一张长为4cm、宽为3cm的矩形纸片上,现要剪下一个腰长2cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,另两个顶点在矩形的边上),则剪下的等腰三角形面积为cm2.三、解答题(本大题共8小题,满分75分)16.先化简,再求值:(),其中a=2﹣.17.为了宣传普及交通安全常识,学校随机调查了部分学生来校上学的交通方式,并将结果统计后制成如图所示的不完整统计图.(1)这次被调查学生共有名,“父母接送”上学的学生在扇形统计图中所占的圆心角为度;(2)请把条形图补充完整;(3)该校有1500名学生,要在“走路”的学生中,选取一名学生代表为交通安全义务宣传员,如果你是一名“走路”同学,那么你被选取的概率是多少?18.如图,AB是⊙O的直径,OD垂直于弦AC于点E,且交⊙O于点D,F是BA延长线上一点,若∠CDB=∠BFD.(1)求证:FD是⊙O的一条切线;(2)若AB=10,AC=8,求DF的长.19.若0是关于x的一元二次方程(m﹣2)x2+3x+m2+2m﹣8=0的解,则求出m的值,并讨论方程根的情况.20.小明准备用所学数学知识测量广场上旗杆CD的高度,如图所示,在底面A处测得顶端的仰角为25.5°,在B处测得仰角为36.9°,已知点A、B、C在同一直线上,量得AB=10米.求旗杆的高度.(结果保留一位小数,参考数据:sin25.5°≈0.43,cos25.5°≈0.90,tan25.5°≈0.48;sin36.9°≈0.60,cos36.9°≈0.80,tan36.9°≈0.75.21.学校为了改善办学条件,需要购买500套桌椅,已知甲种桌椅每套150元,乙种桌椅每套120元.(1)若总攻花费66000元,则购买甲、乙两种桌椅各多少套?(2)若购买甲种桌椅的费用不少于购买乙种桌椅费用,则要选择怎样购买方案才能使费用最少?最少费用是多少?22.(1)探究发现:下面是一道例题及其解答过程,请补充完整:如图①在等边△ABC内部,有一点P,若∠APB=150°.求证:AP2+BP2=CP2证明:将△APC绕A点逆时针旋转60°,得到△AP′B,连接PP′,则△APP′为等边三角形∴∠APP′=60° PA=PP′PC=∵∠APB=150°∴∠BPP′=90°∴P′P2+BP2=即PA2+PB2=PC2(2)类比延伸:如图②在等腰三角形ABC中,∠BAC=90°,内部有一点P,若∠APB=135°,试判断线段PA、PB、PC之间的数量关系,并证明.(3)联想拓展:如图③在△ABC中,∠BAC=120°,AB=AC,点P在直线AB上方,且∠APB=60°,满足(kPA)2+PB2=PC2,请直接写出k的值.23.如图,抛物线y=ax2+3x+c经过A(﹣1,0),B(4,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)若点P在第一象限的抛物线上,且点P的横坐标为t,过点P向x轴作垂线交直线BC于点Q,设线段PQ的长为m,求m与t之间的函数关系式,并求出m的最大值;(3)在(2)的条件下,抛物线上点D(不与C重合)的纵坐标为m的最大值,在x轴上找一点E,使点B、C、D、E为顶点的四边形是平行四边形,请直接写出E点坐标.2019年河南省郑州市中考数学二模试卷参考答案与试题解析一、(每小题3分,满分24分,下列各小题均有四个答案,其中只有一个是正确的,请把正确的选项填在题后的括号内)1.在数﹣3,﹣2,0,3中,大小在﹣1和2之间的数是()A.﹣3B.﹣2C.0D.3【考点】有理数大小比较.【分析】根据有理数的大小比较法则比较即可.【解答】解:根据0大于负数,小于正数,可得0在﹣1和2之间,故选:C.2.下列各式正确的是()A.(﹣a)2=a2B.(﹣a)3=a3C.|﹣a2|=﹣a2D.|﹣a3|=a3【考点】幂的乘方与积的乘方;绝对值.【分析】﹣1的偶次幂是1,﹣1的奇次幂是﹣1,一个数的绝对值是非负数.【解答】解:A、(﹣a)2=a2,正确;B、应为(﹣a)3=﹣a3,故本选项错误;C、应为|﹣a2|=a2,故本选项错误;D、|﹣a3|的值不能确定,故本选项错误.故选A.3.如图所示得到几何体是由一个圆柱体和一个长方形组成的,则这个几何体的左视图是()A. B. C. D.【考点】简单组合体的三视图.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看第一层是一较短的个矩形,第二层是一个矩形,故选:D.4.生物学家发现了一种病毒的长度约为0.00000432毫米.数据0.00000432用科学记数法表示为()A.0.432×10﹣5B.4.32×10﹣6C.4.32×10﹣7D.43.2×10﹣7【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000432=4.32×10﹣6,故选:B.5.如图,在平行四边形ABCD中,EF∥AB交AD于E,交BD于F,DE:EA=3:4,EF=3,则CD的长为()A.4B.7C.3D.12【考点】相似三角形的判定与性质;平行四边形的性质.【分析】由EF∥AB,根据平行线分线段成比例定理,即可求得,则可求得AB的长,又由四边形ABCD是平行四边形,根据平行四边形对边相等,即可求得CD的长.【解答】解:∵DE:EA=3:4,∴DE:DA=3:7∵EF∥AB,∴,∵E F=3,∴,解得:AB=7,∵四边形ABCD是平行四边形,∴CD=AB=7.故选B.6.已知边长为m的正方形面积为12,则下列关于m的说法中,错误的是()①m是无理数;②m是方程m2﹣12=0的解;③m满足不等式组;④m是12的算术平方根.A.①②B.①③C.③D.①②④【考点】算术平方根;平方根;无理数;不等式的解集.【分析】①根据边长为m的正方形面积为12,可得m2=12,所以m=2,然后根据是一个无理数,可得m是无理数,据此判断即可.②根据m2=12,可得m是方程m2﹣12=0的解,据此判断即可.③首先求出不等式组的解集是4<m<5,然后根据m=2<2×2=4,可得m 不满足不等式组,据此判断即可.④根据m2=12,而且m>0,可得m是12的算术平方根,据此判断即可.【解答】解:∵边长为m的正方形面积为12,∴m2=12,∴m=2,∵是一个无理数,∴m是无理数,∴结论①正确;∵m2=12,∴m是方程m2﹣12=0的解,∴结论②正确;∵不等式组的解集是4<m<5,m=2<2×2=4,∴m不满足不等式组,∴结论③不正确;∵m2=12,而且m>0,∴m是12的算术平方根,∴结论④正确.综上,可得关于m的说法中,错误的是③.故选:C.7.餐桌桌面是长为160cm,宽为100cm的长方形,妈妈准备设计一块桌布,面积是桌面的2倍,且使四周垂下的边等宽.若设垂下的桌布宽为xcm,则所列方程为()A.=160×100×2B.=160×100×2C.=160×100D.2=160×100【考点】由实际问题抽象出一元二次方程.【分析】本题可先求出桌布的面积,再根据题意用x表示桌面的长与宽,令两者的积为桌布的面积即可.【解答】解:依题意得:桌布面积为:160×100×2,桌面的长为:160+2x,宽为:100+2x,则面积为==2×160×100.故选B.8.如图,△ABC中,∠ACB=90°,∠A=30°,AB=16.点P是斜边AB上一点.过点P 作PQ⊥AB,垂足为P,交边AC(或边CB)于点Q,设AP=x,△APQ的面积为y,则y与x之间的函数图象大致为()A. B. C. D.【考点】动点问题的函数图象.【分析】分点Q在AC上和BC上两种情况进行讨论即可.【解答】解:当点Q在AC上时,∵∠A=30°,AP=x,∴PQ=xtan30°=,∴y=×AP×PQ=×x×=x2;当点Q在BC上时,如下图所示:∵AP=x,AB=16,∠A=30°,∴BP=16﹣x,∠B=60°,∴PQ=BP•tan60°=(16﹣x).∴==.∴该函数图象前半部分是抛物线开口向上,后半部分也为抛物线开口向下.故选:B.二、填空题(共7小题,每小题3分,满分21分)9.计算:﹣12×= 2016 .【考点】实数的运算;零指数幂.【专题】计算题;实数.【分析】原式第一项利用乘方的意义计算,第二项利用零指数幂及二次根式性质计算即可得到结果.【解答】解:原式=﹣1+1×2017=﹣1+2017=2016,故答案为:2016【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.10.如图,“石头、剪刀、布”是民间广为流传的游戏,游戏时,双方每次任意出“石头”、“剪刀”、“布”这三种手势中的一种,那么双方出现相同手势的概率P= .【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与双方出现相同手势的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有9种等可能的结果,双方出现相同手势的有3种情况,∴双方出现相同手势的概率P=.故答案为:.【点评】此题考查了列表法与树状图法求概率的知识.此题比较简单,注意列表法与树状图法可以不重复不遗漏的列出所有可能的结果,注意概率=所求情况数与总情况数之比.11.分式方程+=2的解是x=3 .【考点】分式方程的解.【专题】计算题;分式方程及应用.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x+1+2x2﹣2x=2x2﹣2,解得:x=3,经检验x=3是分式方程的解,故答案为:x=3【点评】此题考查了分式方程的解,求出分式方程的解是解本题的关键.12.如图,在菱形ABCD中,点M、N在AC上,ME⊥AD,NF⊥AB,若NF=NM=2,ME=3,则AM= 6 .【考点】菱形的性质.【分析】根据菱形的对角线平分一组对角可得∠1=∠2,然后求出△AFN和△AEM相似,再利用相似三角形对应边成比例列出求解即可.【解答】解:在菱形ABCD中,∠1=∠2,又∵ME⊥AD,NF⊥AB,∴∠AEM=∠AFN=90°,∴△AFN∽△AEM,∴=,即=,解得AN=4,则AM=AN+MN=6.故答案是:6.【点评】本题考查了菱形的对角线平分一组对角的性质,相似三角形的判定与性质,关键在于得到△AFN和△AEM相似.13.如图,PA、PB分别切⊙O于点A、B,若∠C=55°,则∠P的大小为70 度.【考点】切线的性质.【分析】首先连接OA,OB,由PA、PB分别切⊙O于点A、B,根据切线的性质可得:OA ⊥PA,OB⊥PB,然后由四边形的内角和等于360°,求得∠AOB的度数,又由圆周角定理,即可求得答案.【解答】解:连接OA,OB,∵PA、PB分别切⊙O于点A、B,∴OA⊥PA,OB⊥PB,即∠PAO=∠PBO=90°,∴∠AOB=360°﹣∠PAO﹣∠P﹣∠PBO=360°﹣90°﹣∠P﹣90°=2∠C=110°,∴∠P=360°﹣90°﹣90°﹣110°=70°.故答案为:70【点评】此题考查了切线的性质以及圆周角定理.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.14.如图,函数y=x与y=的图象相交于A、B两点,过A、B两点分别作x轴垂线,垂足分别为点C、D,则四边形ACBD的面积为8 .【考点】反比例函数与一次函数的交点问题.【分析】设A的坐标是(m,n),则B的坐标是(﹣m,﹣n),根据平行四边形的面积公式即可求解.【解答】解:设A的坐标是(m,n),则B的坐标是(﹣m,﹣n),mn=4则AC=n,CD=2m.则四边形ACBD的面积=AC•CD=2mn=8.故答案是:8.【点评】本题考查了反比例函数与一次函数的交点,正确理解反比例函数的中心对称性是关键.15.如图所示,在一张长为4cm、宽为3cm的矩形纸片上,现要剪下一个腰长2cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,另两个顶点在矩形的边上),则剪下的等腰三角形面积为2或cm2.【考点】勾股定理;等腰三角形的判定;矩形的性质.【专题】分类讨论.【分析】根据题意画出符合题意的图形,进而得出答案.【解答】解:如图1,等腰三角形面积为:×2×2=2,如图2,等腰三角形的高为: =,则其面积为:×2×=.故答案为:2或.【点评】此题主要考查了勾股定理以及等腰三角形的性质,正确画出图形是解题关键.三、解答题(本大题共8小题,满分75分)16.先化简,再求值:(),其中a=2﹣.【考点】分式的化简求值.【分析】根据分式混合运算的法则把原式进行化简,再把a的值代入进行计算即可.【解答】解:原式=•=,当a=2﹣时,原式==﹣.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.17.为了宣传普及交通安全常识,学校随机调查了部分学生来校上学的交通方式,并将结果统计后制成如图所示的不完整统计图.(1)这次被调查学生共有100 名,“父母接送”上学的学生在扇形统计图中所占的圆心角为54 度;(2)请把条形图补充完整;(3)该校有1500名学生,要在“走路”的学生中,选取一名学生代表为交通安全义务宣传员,如果你是一名“走路”同学,那么你被选取的概率是多少?【考点】条形统计图;扇形统计图;概率公式.【分析】(1)骑车人数÷骑车所占百分比可得总人数,用父母接送上学占总人数比例乘以360度可得圆心角度数;(2)用总人数减去其他方式上学的人数可得走路的人数,补充图形即可;(3)求出全校1500人中走路上学的人,可得概率.【解答】解:(1)40÷40%=100,×360°=54°;(2)走路的人数有:100﹣40﹣25﹣15=20(人),补全图形如下:(3).∵1500×=300,∴被选取的概率P=.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18.如图,AB是⊙O的直径,OD垂直于弦AC于点E,且交⊙O于点D,F是BA延长线上一点,若∠CDB=∠BFD.(1)求证:FD是⊙O的一条切线;(2)若AB=10,AC=8,求DF的长.【考点】切线的判定;垂径定理;相似三角形的判定与性质.【专题】几何图形问题.【分析】(1)利用圆周角定理以及平行线的判定得出∠FDO=90°,进而得出答案;(2)利用垂径定理得出AE的长,再利用相似三角形的判定与性质得出FD的长.【解答】(1)证明:∵∠CDB=∠CAB,∠CDB=∠BFD,∴∠CAB=∠BFD,∴FD∥AC(同位角相等,两直线平行),∵∠AEO=90°,∴∠FDO=90°,∴FD是⊙O的一条切线;(2)解:∵AB=10,AC=8,DO⊥AC,∴AE=EC=4,AO=5,∴EO=3,∵AE∥FD,∴△AEO∽△FDO,∴=,∴=,解得:FD=.【点评】此题主要考查了相似三角形的判定与性质以及切线的判定等知识,得出△AEO ∽△FDO是解题关键.19.若0是关于x的一元二次方程(m﹣2)x2+3x+m2+2m﹣8=0的解,则求出m的值,并讨论方程根的情况.【考点】根的判别式;一元二次方程的解.【分析】将x=0代入原方程,可得出关于m的一元二次方程,解方程即可得出m的值,再根据原方程为一元二次方程,即二次项系数不为0,确定m的值,将m代入原方程,由根的判别式的符号即可得出根的情况.【解答】解:将x=0代入方程(m﹣2)x2+3x+m2+2m﹣8=0中,得:m2+2m﹣8=0,解得:m1=﹣4,m2=2.∵原方程为一元二次方程,∴m﹣2≠0,即m≠2.∴m=﹣4.当m=﹣4时,原方程为﹣6x2+3x=0,∵△=32﹣4×(﹣6)×0=9>0,∴原方程有两个不相等的实数根.【点评】本题考查了根的判别式以及一元二次方程的解,解题的关键是得出m的值.本题属于基础题,难度不大,解决该题型题目时,将x的值代入原方程求出方程系数中未知数的值是关键.20.小明准备用所学数学知识测量广场上旗杆CD的高度,如图所示,在底面A处测得顶端的仰角为25.5°,在B处测得仰角为36.9°,已知点A、B、C在同一直线上,量得AB=10米.求旗杆的高度.(结果保留一位小数,参考数据:sin25.5°≈0.43,cos25.5°≈0.90,tan25.5°≈0.48;sin36.9°≈0.60,cos36.9°≈0.80,tan36.9°≈0.75.【考点】解直角三角形的应用-仰角俯角问题.【分析】设CD=x米,根据正切的概念用x表示出AC、BC,根据题意列出方程,解方程即可.【解答】解:设CD=x米,在Rt△ADC中,AC==,在Rt△BDC中,BC==,∵AC﹣BC=AB,∴﹣=10,解得x≈13.3.答:旗杆的高度为约13.3米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.21.学校为了改善办学条件,需要购买500套桌椅,已知甲种桌椅每套150元,乙种桌椅每套120元.(1)若总攻花费66000元,则购买甲、乙两种桌椅各多少套?(2)若购买甲种桌椅的费用不少于购买乙种桌椅费用,则要选择怎样购买方案才能使费用最少?最少费用是多少?【考点】一元一次不等式的应用;一元一次方程的应用.【分析】(1)设购买甲种桌椅x套,则购买乙种桌椅(500﹣x)套,根据购买费用=单价×数量可列出关于x的一元一次方程,解方程即可得出结论;(2)根据甲种桌椅的费用不少于购买乙种桌椅费用列出关于x的一元一次不等式,解不等式得出x的值域,根据购买费用=单价×数量可得出总费用w关于x的一次函数,根据函数的单调性即可得出结论.【解答】解:(1)设购买甲种桌椅x套,则购买乙种桌椅(500﹣x)套,根据题意得:150x+120(500﹣x)=66000,解得:x=200,500﹣200=300(套).答:购买甲种桌椅200套,则购买乙种桌椅300套.(2)设购买甲种桌椅x套,则购买乙种桌椅(500﹣x)套,根据题意得:150x≥120(500﹣x),解得:x≥=222.购买桌椅费用w=150x+120(500﹣x)=30x+60000,当正整数x最小时,费用最少.所以当购买甲种桌椅223套,乙种桌椅277套时费用最少,最少费用为30×223+60000=66690(元).【点评】本题考查了一元一次不等式的应用、一元一次方程的应用以及一次函数的性质,解题的关键:(1)列出关于x的一元一次方程;(2)找出w关于x的函数关系式并通过解一元一次不等式得出x的取值范围.本题属于中档题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)是关键.22.(1)探究发现:下面是一道例题及其解答过程,请补充完整:如图①在等边△ABC内部,有一点P,若∠APB=150°.求证:AP2+BP2=CP2证明:将△APC绕A点逆时针旋转60°,得到△AP′B,连接PP′,则△APP′为等边三角形∴∠APP′=60° PA=PP′PC=P′B∵∠APB=150°∴∠BPP′=90°∴P′P2+BP2= P′B2即PA2+PB2=PC2(2)类比延伸:如图②在等腰三角形ABC中,∠BAC=90°,内部有一点P,若∠APB=135°,试判断线段PA、PB、PC之间的数量关系,并证明.(3)联想拓展:如图③在△ABC中,∠BAC=120°,AB=AC,点P在直线AB上方,且∠APB=60°,满足(kPA)2+PB2=PC2,请直接写出k的值.【考点】几何变换综合题.【分析】(1)根据旋转的性质和勾股定理直接写出即可;(2)将△APC绕A点逆时针旋转90°,得到△AP′B,连接PP′,论证PP′=PA,再根据勾股定理代换即可;(3)将△APC 绕A点顺时针旋转120°得到△AP′B,连接PP′,过点A作AH⊥PP′,论证PP′=PA,再根据勾股定理代换即可.【解答】解:(1)PC=P′BP′P2+BP2=P′B2.(2)关系式为:2PA2+PB2=PC2证明如图②:将△APC绕A点逆时针旋转90°,得到△AP′B,连接PP′,则△APP′为等腰直角三角形∴∠APP′=45°PP′=PA,PC=P′B,∵∠APB=135°∴∠BPP′=90°∴P′P2+BP2=P′B2,∴2PA2+PB2=PC2(3)k=.证明:如图③将△APC 绕A点顺时针旋转120°得到△AP′B,连接PP′,过点A作AH⊥PP′,可得∠APP′=30°PP′=PA,PC=P′B,∵∠APB=60°,∴∠BPP′=90°,∴P′P2+BP2=P′B2,∴(PA)2+PB2=PC2∵(kPA)2+PB2=PC2,∴k=.【点评】此题主要考查几何变换中的旋转变换,熟悉旋转变换的性质,并通过旋转构造直角三角形运用勾股定理是解题的关键.23.如图,抛物线y=ax2+3x+c经过A(﹣1,0),B(4,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)若点P在第一象限的抛物线上,且点P的横坐标为t,过点P向x轴作垂线交直线BC于点Q,设线段PQ的长为m,求m与t之间的函数关系式,并求出m的最大值;(3)在(2)的条件下,抛物线上点D(不与C重合)的纵坐标为m的最大值,在x轴上找一点E,使点B、C、D、E为顶点的四边形是平行四边形,请直接写出E点坐标.【考点】二次函数综合题.【分析】(1)将点A、B的坐标代入抛物线的解析式得到关于a、c的方程组,从而可求得a、c的值;(2)先求得点C的坐标,然后依据待定系数法求得直线BC的解析式,由直线可抛物线的解析式可知P(t,﹣t2+3t+4),Q(t,﹣t+4),从而可求得QP与t的关系式,最后依据配方法可求得m的最大值;(3)将y=4代入抛物线的解析式求得点D的坐标,依据一组对边平行且相等的四边形是平行四边形可得到BE=CD=3时,B、C、D、E为顶点的四边形是平行四边形,从而可求得点E的坐标.【解答】解(1)∵抛物线y=ax2+3x+c经过A(﹣1,0),B(4,0)两点,∴.解得:a=﹣1,c=4.∴抛物线的解析式为y=﹣x2+3x+4.(2)∵将x=0代入抛物线的解析式得:y=4,∴C(0,4).设直线BC的解析式为y=kx+b.∵将B(4,0),C(0,4)代入得:,解得:k=﹣1,b=4∴直线BC的解析式为:y=﹣x+4.过点P作x的垂线PQ,如图所示:∵点P的横坐标为t,∴P(t,﹣t2+3t+4),Q(t,﹣t+4).∴PQ=﹣t2+3t+4﹣(﹣t+4)=﹣t2+4t.∴m=﹣t2+4t=﹣(t﹣2)2+4(0<t<4).∴当t=2时,m的最大值为4.(3)将y=4代入抛物线的解析式得:﹣x2+3x+4=4.解得:x1=0,x2=3.∵点D与点C不重合,∴点D的坐标为(3,4).又∵C(0,4)∴CD∥x轴,CD=3.∴当BE=CD=3时,B、C、D、E为顶点的四边形是平行四边形.∴点E(1,0)或(7,0).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数、二次函数的解析式、配方法求二次函数的最值、平行线四边形的判定,由抛物线和直线BC的解析式得到点P和Q的坐标,从而得到PQ与t的函数关系式是解题的关键.。
河南省2019年中考数学调考试卷(二)含答案解析

2019年河南省中考数学调考试卷(二)参考答案与试题解析一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个正确的. 1.(3分)2019的相反数是()A.B.﹣C.﹣2019 D.2019分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.解答:解:2019的相反数是﹣2019,故选:C.点评:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(3分)如图,已知AB∥CD,AD平分∠BAE,∠D=38°,则∠AEC的度数是()A.19° B.38° C.72°D.76°考点:平行线的性质.分析:根据平行线的性质得出∠CEA=∠EAB,∠D=∠BAD=38°,求出∠EAB,即可求出∠AEC.解答:解:∵CD∥AB,∴∠CEA=∠EAB,∠D=∠BAD=38°,∵AD平分∠BAE,∴∠EAB=2∠DAB=76°,∴∠AEC=∠EAB=76°,故选D.点评:本题考查了平行线的性质和角平分线性质,关键是求出∠EAB的度数,题目比较好,难度适中.3.(3分)已知反比例函数y=,下列结论中不正确的是()A.图象必经过点(1,﹣5)B. y随x的增大而增大C.图象在第二、四象限内 D.若x>1,则﹣5<y<0考点:反比例函数的性质.分析:根据反比例函数图象上点的坐标特点:横纵坐标之积=k,可以判断出A的正误;根据反比例函数的性质:k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x的增大而增大可判断出B、C、D的正误.解答:解:A、反比例函数y=,所过的点的横纵坐标之积=﹣5,此结论正确,故此选项不符合题意;B、反比例函数y=,在每一象限内y随x的增大而增大,此结论不正确,故此选项符合题意;C、反比例函数y=,图象在第二、四象限内,此结论正确,故此选项不合题意;D、反比例函数y=,当x>1时图象在第四象限,y随x的增大而增大,故x>1时﹣5<y<0;故选:B.点评:此题主要考查了反比例函数的性质,以及反比例函数图象上点的坐标特点,关键是熟练掌握反比例函数的性质:(1)反比例函数y=(k≠0)的图象是双曲线;(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.4.(3分)将1,2,3三个数字随机生成的点的坐标,列成下表.如果每个点出现的可能性相等,那么从中任意取一点,则这个点在函数y=x图象上的概率是()(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)(3,1)(3,2)(3,3)A.0.3 B.0.5 C.D.考点:列表法与树状图法;一次函数图象上点的坐标特征.专题:压轴题.分析:根据一次函数的性质,找出符合点在函数y=x图象上的点的个数,即可根据概率公式求解.解答:解:由题中所列表格知1、2、3三个数字随机生成的点的坐标随机排列,共有9种情况,组成的九个点中在函数y=x图象上的点,即横、纵坐标相等的点有(1,1),(2,2)和(3,3)共3个,故这个点在函数y=x图象上的概率是=.故选C.点评:用到的知识点为:概率=所求情况数与总情况数之比.5.(3分)如图中的几何体的主视图是()A.B.C.D.考点:简单组合体的三视图.专题:常规题型.分析:根据主视图的画法进行判断.解答:解:此几何体的主视图由四个正方形组成,下面一层三个正方形,且有边有两层.故选D.点评:本题考查了简单组合体的三视图:画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.画物体的三视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.6.(3分)如图,△ABC经过位似变换得到△DEF,点O是位似中心且OA=AD,则△ABC 与△DEF的面积比是()A.1:6 B.1:5 C.1:4 D. 1:2考点:位似变换.分析:由△ABC经过位似变换得到△DEF,点O是位似中心且OA=AD,根据位似图形的性质,即可得AC∥DF,即可求得AC:DF=OA:OD=1:2,然后根据相似三角形面积的比等于相似比的平方,即可求得△ABC与△DEF的面积比.解答:解:∵△ABC经过位似变换得到△DEF,点O是位似中心且OA=AD,∴AC∥DF,∴△OAC∽△ODF,∴AC:DF=OA:OD=1:2,∴△ABC与△DEF的面积比是1:4.故选C.点评:此题考查了位似图形的性质.注意掌握位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方.7.(3分)已知k1<0<k2,则函数y=k1x和的图象大致是()A.B.C.D.考点:反比例函数的图象;正比例函数的图象.专题:压轴题.分析:根据反比例函数的图象性质及正比例函数的图象性质可作出判断.解答:解:∵k1<0<k2,∴直线过二、四象限,并且经过原点;双曲线位于一、三象限.故选D.点评:本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.8.(3分如图,在四边形ABCD中,∠BAD=∠ADC=90°,AB=AD=2,CD=,点P 在四边形ABCD的边上,若P到BD的距离为1,则点P的个数为()A. 1 B. 2 C. 3 D. 4考点:直角梯形;解直角三角形.分析:首先作出AB、AD边上的点P(点A)到BD的垂线段AE,即点P到BD的最长距离,作出BC、CD的点P(点C)到BD的垂线段CF,即点P到BD的最长距离,由已知计算出AE、CF的长与1比较得出答案.解答:解:过点A作AE⊥BD于E,过点C作CF⊥BD于F,∵∠BAD=∠ADC=90°,AB=AD=2,CD=,∴∠ABD=∠ADB=45°,∴∠CDF=90°﹣∠ADB=45°,∵sin∠ABD=,∴AE=AB•sin∠ABD=2•sin45°=2•=2>1,所以在AB和AD边上有符合P到BD的距离为1的点2个,∵sin∠CDF=,∴CF=CD•sin∠CDF=•=1,所以在边BC和CD上到BD的距离为1的点有1个,总之,P到BD的距离为1的点有3个.故选:C.点评:此题考查了解直角三角形和点到直线的距离,解题的关键是先求出各边上点到BD 的最大距离比较得出答案.二、填空题(每小题3分,共21分)9.(3分)请写出一个比小的整数答案不唯一,小于或等于2的整数均可,如:2,1等.考点:估算无理数的大小.专题:开放型.分析:首先找到所求的无理数在哪两个和它接近的整数之间,然后即可判断出所求的整数的范围.解答:解:∵2<<3,∴所有小于或等于2的整数都可以,包括任意负整数.点评:此题主要考查了实数的大小的比较,其中“夹逼法”是估算的一般方法,也是常用方法.10.(3分)国家统计局发布2011年宏观数据显示,2011年全国国内生产总值约为472000亿元.这个数据用科学记数法可表示为 4.72×1013元.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:47200000000000=4.72×1013.故答案为:4.72×113.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.(3分)已知⊙O1和⊙O2的半径分别是一元二次方程(x﹣1)(x﹣2)=0的两根,且O1O2=2,则⊙O1和⊙O2的位置关系是相交.考点:圆与圆的位置关系;解一元二次方程-因式分解法.分析:本题可根据方程解出两个半径的值,将两个半径的和或差与圆心距比较,若d>R+r 则两圆相离,若d=R+r则两圆外切,若d=R﹣r则两圆内切,若R﹣r<d<R+r则两圆相交.本题可把半径的值代入,看符合哪一种情况.解答:解:解方程(x﹣1)(x﹣2)=0,得x1=1,x2=2,∵2﹣1=1<2<2+1=3,所以两圆相交.点评:本题主要考查两圆的位置关系.两圆的位置关系有:外离(d>R+r)、内含(d<R ﹣r)、相切(外切:d=R+r或内切:d=R﹣r)、相交(R﹣r<d<R+r).12.(3分)如图,先将一平行四边形纸片ABCD沿AE,EF折叠,使点E,B′,C′在同一直线上,再将折叠的纸片沿EG折叠,使AE落在EF上,则∠AEG=45度.考点:翻折变换(折叠问题).分析:利用翻折和平角定义易得组成∠AEF的两个角的和等于平角的一半,得出∠AEF=90°,再利用将折叠的纸片沿EG折叠,使AE落在EF上,得出∠AEG=∠GEA′进而得出答案.解答:解:根据沿直线折叠的特点,△ABE≌△AB′E,△CEF≌△C′EF,∴∠AEB=∠AEB′,∠CEF=∠C′EF,∵∠AEB+∠AEB′+∠CEF+∠C′EF=180°,∴∠AEB′+∠C′EF=90°,∵点E,B′,C′在同一直线上,∴∠AEF=90°,∵将折叠的纸片沿EG折叠,使AE落在EF上,∴∠AEG=∠GEA′=∠AEF=45°,故答案为:45.点评:本题考查了折叠的性质,利用折叠的性质:折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等得出对应关系是解题关键.13.(3分)海安火车站的显示屏,每隔5分钟显示一次火车班次的信息,显示时间持续1分钟,某人到达该车站时,显示屏上正好显示火车班次信息的概率是.考点:概率公式.分析:根据题意,分析可得该显示屏每6分钟中显示火车班次信息一分钟,由概率的计算公式可得答案.解答:解:根据题意,该显示屏每隔5分钟显示一次火车班次的信息,显示时间持续1分钟,即每6分钟中显示火车班次信息一分钟;根据概率的计算方法,可得某人到达该车站时,显示屏上正好显示火车班次信息的概率为.点评:本题考查概率的计算,解决本题时,注意对题意的理解.用到的知识点为:概率=所求情况数与总情况数之比.14.(3分)如图,是用同样大小的正方形按一定规律摆放而成的一系列图案,则第n个图案中正方形的个数是(n+1)2.考点:规律型:图形的变化类.专题:规律型.分析:求出前三个图形中的正方形的个数,从而得到图案中正方形的个数的规律,再根据规律写出第n个图案中的正方形的个数即可.解答:解:第1个图案,正方形的个数为:1+3=4,4=22,第2个图案,正方形的个数为1+3+5=9,9=32,第3个图案,正方形的个数为:1+3+5+7=16,16=42,…,依此类推,第n个图案,正方形的个数为(n+1)2.故答案为:(n+1)2.点评:本题是对图形变化规律的考查了,根据计算结果得到图案中的正方形的个数是平方数是解题的关键.15.(3分)如图,在△ABC中,AB=AC,D、E分别是AB、AC的中点,M、N为BC上的点,连接DN、EM.若AB=10cm,BC=12cm,MN=6cm,则图中阴影部分的面积为24 cm2.考点:相似三角形的判定与性质;三角形的面积;等腰三角形的性质;勾股定理;三角形中位线定理.专题:压轴题.分析:由勾股定理求出BC上的高AN为8cm,求出AO=ON=4cm,求出MN=DEMN∥DE,求出MN与DE间的距离是4cm,求出△MNO和△DEO的高均为cm2,求出阴影部分面积即可.解答:解:连接DE,过A作AH⊥BC于H,过O作ZF⊥BC于F,交DE于Z,∵AB=AC=10cm,AH⊥BC,BC=12cm,∴BH=CH=6cm,∵AB=AC=10cm,由勾股定理得:AH=8cm,∵D、E分别是AB和AC中点,∴DE=BC=6cm,DE∥BC,∴DE和MN间的距离是4cm,∵MN=6cm,BC=12cm,∴MN=DE,MN∥DE,∴∠DEO=∠NMO,在△DEO和△NMO中,∵,∴△DEO≌△NMO(AAS),∴DO=NO,∵DE∥MN,∴△DZO∽△NFO,∴=,∵DO=ON,∴ZO=OF=ZF=2cm,∴阴影部分的面积是:S梯形DECB﹣S△DOE﹣S△OMN=×(DE+BC)×FZ﹣×DE×OZ﹣×MN×OF=×(6+12)×4﹣×6×2﹣×6×2=24(cm2).故答案为:24.点评:本题考查了相似三角形的性质和判定,三角形的面积,等腰三角形的性质,勾股定理,三角形的中位线定理等知识点的综合运用.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:﹣•,其中a=2﹣.考点:分式的化简求值.分析:因式分解后约分,然后通分相加,再代入求值.解答:解:原式=﹣•=﹣=﹣,当a=2﹣时,原式=﹣=﹣=﹣1.点评:本题考查了分式的化简求值,熟悉因式分解和通分是解题的关键.17.(9分)我市某区对参加市模拟考试的8000名学生的数学成绩进行抽样调查,抽取了部分学生的数学成绩(分数为整数)进行统计,绘制成频率分布直方图.如下图,已知从左到右五个小组的频数是之比依次是6:7:11:4:2,第五小组的频数是40.(1)本次调查共抽取了多少名学生?(2)若72分以上(含72分)为及格,96分以上(含96分)为优秀,那么抽取的学生中,及格的人数、优秀的人数各占所抽取的学生数的百分之多少?(3)根据(2)的结论,该区所有参加市模拟考试的学生,及格人数、优秀人数各约是多少人?考点:频数(率)分布直方图;用样本估计总体.专题:图表型.分析:(1)因总数一定;故频数的比值就是频率的比值,可得从左到右各小组的频率之比依次是6:7:11:4:2;且频率之和为1;可求得:第五小组的频率,进而求得共抽查的学生人数;(2)根据频率的计算方法,计算可得;(3)用样本估计总体,按照求得的比例,计算可得答案.解答:解:(1)∵从左到右各小组的频数之比依次是6:7:11:4:2,∴设第一小组的频数为6a,则其它小组的频数依次为7a,11a,4a,2a,∵第五小组的频数是40,∴2a=40,∴a=20,∴本次调查共抽取的学生数为6a+7a+11a+4a+2a=600(人).答:本次调查共抽取的学生数为600人.(2)由(1)知及格学生的人数为480人,优秀学生的人数为120人,∴它们各占的百分比为×100%=80%×100%=20%(1分).答:及格学生的人数,优秀学生的人数各占的百分比为80%和20%;(3)由(2)知:及格人数为8000×80%=6400(人),优秀人数为8000×20%=1600(人).答:8000名学生中,及格人数约为6400人,优秀人数约为1600人.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.18.(9分)已知:如图在平行四边形ABCD中,过对角线BD的中点O作直线EF分别交DA的延长线、AB、DC、BC的延长线于点E、M、N、F.(1)观察图形并找出一对全等三角形:△≌△,请加以证明;(2)在(1)中你所找出的一对全等三角形,其中一个三角形可由另一个三角形经过怎样的变换得到?考点:平行四边形的性质;全等三角形的判定.专题:证明题;压轴题;开放型.分析:(1)本题要证明如△ODE≌△BOF,已知四边形ABCD是平行四边形,具备了同位角、内错角相等,又因为OD=OB,可根据AAS能判定△DOE≌△BOF;本题还可证明①△BOM≌△DON;②△ABD≌△CDB;(2)平行四边形是中心对称图形,这三对全等三角形中的一个都是以其中另一个三角形绕点O旋转180°后得到或以点O为中心作对称变换得到.解答:解:(1)△DOE≌△BOF;证明:∵四边形ABCD是平行四边形,∴AD∥BC.∴∠EDO=∠FBO,∠E=∠F.又∵OD=OB,∴△DOE≌△BOF(AAS).①△BOM≌△DON.证明:∵四边形ABCD是平行四边形,∴AB∥CD.∴∠MBO=∠NDO,∠BMO=∠DNO.又∵BO=DO,∴△BOM≌△DON(AAS).②△ABD≌△CDB.证明:∵四边形ABCD是平行四边形,∴AD=CB,AB=CD.又∵BD=DB,∴△ABD≌△CDB(SSS).(2)绕点O旋转180°后得到或以点O为中心作对称变换得到.点评:本题考了全等三角形和平行四边形的性质和中心对称图形,比较容易.(1)可以不限制△ODE≌△BOF,增加题目的“含金量”.19.(9分)甲、乙两条轮船同时从港口A出发,甲轮船以每小时30海里的速度沿着北偏东60°的方向航行,乙轮船以每小时15海里的速度沿着正东方向行进,1小时后,甲船接到命令要与乙船会合,于是甲船改变了行进的速度,沿着东南方向航行,结果在小岛C处与乙船相遇.假设乙船的速度和航向保持不变,求:(1)港口A与小岛C之间的距离;(2)甲轮船后来的速度.考点:解直角三角形的应用-方向角问题.专题:应用题;压轴题.分析:(1)根据题意画出图形,再根据平行线的性质及直角三角形的性质解答即可.(2)根据甲乙两轮船从港口A至港口C所用的时间相同,可以求出甲轮船从B到C所用的时间,又知BC间的距离,继而求出甲轮船后来的速度.解答:解:(1)作BD⊥AC于点D,如图所示:由题意可知:AB=30×1=30海里,∠BAC=30°,∠BCA=45°,在Rt△ABD中,∵AB=30海里,∠BAC=30°,∴BD=15海里,AD=ABcos30°=15海里,在Rt△BCD中,∵BD=15海里,∠BCD=45°,∴CD=15海里,BC=15海里,∴AC=AD+CD=15+15海里,即A、C间的距离为(15+15)海里.(2)∵AC=15+15(海里),轮船乙从A到C的时间为=+1,由B到C的时间为+1﹣1=,∵BC=15海里,∴轮船甲从B到C的速度为=5(海里/小时).点评:本题考查了解直角三角形的应用中的方向角问题,解答此题的关键是过B作BD⊥AC,构造出直角三角形,利用特殊角的三角函数值及直角三角形的性质解答.20.(9分)已知:如图一次函数y=x﹣3的图象与x轴、y轴分别交于A、B两点,过点C (4,0)作AB的垂线交AB于点E,交y轴于点D,求点D、E的坐标.考点:两条直线相交或平行问题.专题:计算题.分析:先求出点A坐标为(6,0),点B坐标为(0,﹣3),由于DE⊥AB,则∠AEC=90°,利用等角的余角相等得到∠ODC=∠EAC,易证得Rt△ODC∽Rt△OAB,得到OD:OA=OC:OB,即OD:6=4:3,可求出OD=8,得到点D的坐标为(0,8);然后利用待定系数法求出直线CD的解析式为y=﹣2x+8,再解由y=x﹣3和y=﹣2x+8的方程组即可得到点E坐标.解答:解:对于y=x﹣3,令x=0,则y=﹣3;令y=0,x=6,∴点A坐标为(6,0),点B坐标为(0,﹣3),∵DE⊥AB,∴∠AEC=90°,∴∠ODC=∠EAC,∴Rt△ODC∽Rt△OAB,∴OD:OA=OC:OB,即OD:6=4:3,∴OD=8,∴点D的坐标为(0,8);设过CD的直线解析式为y=kx+8,将C(4,0)代入得0=4k+8,解得k=﹣2,∴直线CD的解析式为y=﹣2x+8,解方程组得.∴点E的坐标为(,﹣).点评:本题考查了两条直线相交或平行问题:若直线y=k1x+b1与直线y=k2x+b2平行,则k1=k2;若直线y=k1x+b1与直线y=k2x+b2相交,则由两解析式所组成的方程组的解为交点坐标.也考查了待定系数法求函数解析式以及相似三角形的判定与性质.21.(10分)某商店销售一种商品,每件的进价为2.5元,根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.5元时,销售量为500件,而单价每降低1元,就可以多售出200件.请你分析,销售单价多少时,可以获利最大?考点:二次函数的应用.专题:应用题.分析:通过阅读,我们可以知道,商品的利润和售价、销售量有关系,它们之间呈现如下关系式:总利润=单个商品的利润×销售量.要想获得最大利润,并不是单独提高单个商品的利润或仅大幅提高销售量就可以的,这两个量之间应达到某种平衡,才能保证利润最大.因为已知中给出了商品降价与商品销售量之间的关系,所以,我们完全可以找出总利润与商品的价格之间的关系,利用这个等式寻找出所求的问题,这里我们不妨设每件商品降价x元,商品的售价就是(13.5﹣x)元了.单个的商品的利润是(13.5﹣x﹣2.5),这时商品的销售量是(500+200x),总利润可设为y元.利用上面的等量关式,可得到y与x的关系式了,若是二次函数,即可利用二次函数的知识,找到最大利润.解答:解:设每件商品降价x元,商品的售价就是(13.5﹣x)元,单个的商品的利润是(13.5﹣x﹣2.5)元,这时商品的销售量是(500+200x)件.设总利润为y元,则y=(13.5﹣x﹣2.5)(500+200x)=﹣200x2+1700x+5500,∵﹣200<0,∴y有最大值;∴当x=﹣=4.25时,y最大值==9112.5,即当每件商品降价4.25元,即售价为13.5﹣4.25=9.25时,可取得最大利润9112.5元.点评:此题运用了数学建模思想把实际问题转化为数学问题.运用函数性质求最值常用公式法或配方法.22.(10分)如图,已知直线AB与x轴、y轴分别交于A和B,OA=4,且OA、OB长是关于x的方程x2﹣mx+12=0的两实根,以OB为直径的⊙M与AB交于C,连接CM并延长交x轴于N.(1)求⊙M的半径.(2)求线段AC的长.(3)若D为OA的中点,求证:CD是⊙M的切线.考点:一次函数综合题.专题:代数几何综合题.分析:(1)由OA、OB长是关于x的方程x2﹣mx+12=0的两实根,得OA•OB=12,而OA=4,所以OB=3,又由于OB为⊙M的直径,即可得到⊙M的半径.(2)连接OC,根据OB是⊙M直径,得到OC⊥BC,利用面积相等得到OC•AB=OA•OB 可以求得OC的长,然后利用勾股定理求得AC的长即可.(3)连MD,OC,由OB为⊙M的直径,得∠OCB=90°,则∠OCD=90°,由于D为OA的中点,所以CD=OA=OD,因此可证明△MCD≌△MOD,所以∠MCD=∠MOD=90°,即CD是⊙M的切线.解答:解:(1)∵OA=4∴A(4,0)又OA•OB长是x2﹣mx+12=0的两根∴OA•OB=12∴OB=3 故B(0,3)(2分)∵OB为直径∴半径MB=(4分)(2)连接OC∵OB是⊙M直径∴OC⊥BC (5分)∴OC•AB=OA•OB∵AB==5 (6分)∴OC•5=3•4∴OC=(7分)∴AC==(8分)(3)∵OM=MC∴∠MOC=∠MCO (9分)又CD是Rt△OCA斜边上中线∴DC=DO∴∠DOC=∠DCO (10分)∵∠DOC+∠MOC=90°∴∠MCO+∠DCO=90°∴DC⊥MC (11分)∴CD是⊙M的切线(12分)(注:由于解法不一,可以视方法的异同与合理性分步计分)点评:本题考查的难点是圆的切线的判定方法.经过半径的外端点与半径垂直的直线是圆的切线.当已知直线过圆上一点,要证明它是圆的切线,则要连接圆心和这个点,证明这个连线与已知直线垂直即可;当没告诉直线过圆上一点,要证明它是圆的切线,则要过圆心作直线的垂线,证明垂线段等于圆的半径.同时考查了直径所对的圆周角为90度,直角三角形斜边上的中线等于斜边的一半以及三角形全等的判定和性质.23.(11分)两个直角边为6的全等的等腰直角三角形Rt△AOB和Rt△CED,按如图一所示的位置放置,点O与E重合.(1)Rt△AOB固定不动,Rt△CED沿x轴以每秒2个单位长度的速度向右运动,当点E 运动到与点B重合时停止,设运动x秒后,Rt△AOB和Rt△CED的重叠部分面积为y,求y与x之间的函数关系式;(2)当Rt△CED以(1)中的速度和方向运动,运动时间x=2秒时,Rt△CED运动到如图二所示的位置,若抛物线y=x2+bx+c过点A,G,求抛物线的解析式;(3)现有一动点P在(2)中的抛物线上运动,试问点P在运动过程中是否存在点P到x 轴或y轴的距离为2的情况?若存在,请求出点P的坐标;若不存在,请说明理由.考点:二次函数综合题.专题:压轴题.分析:(1)根据题意,得重叠部分是等腰直角三角形.根据运动的路程=速度×时间=2x.再根据等腰直角三角形斜边上的高等于斜边的一半,即可进一步求得等腰直角三角形的面积;(2)只需求得点A和点G的坐标.根据等腰直角三角形的两条直角边的长即可写出点A 的坐标,根据运动的路程=速度×时间,得到OE=4,再进一步根据等腰直角三角形的性质求得G(2,2),然后根据待定系数法代入求解;(3)根据题意,应考虑两种情况.若点P到y轴的距离是2,即点的横坐标是±2;当点P 到x轴的距离是2,即点的纵坐标是±2.解答:解:(1)①由题意知重叠部分是等腰直角三角形,作GH⊥OE.∴OE=2x,GH=x,∵y=OE•GH=•2x•x=x2(0≤x≤3)(2)A(6,6)当x=2时,OE=2×2=4.∴OH=2,HG=2,∴G(2,2).∴∴y=x2﹣x+3.(3)设P(m,n).当点P到y轴的距离为2时,有|m|=2,∴|m|=2.当m=2时,得n=2,当m=﹣2时,得n=6.当点P到x轴的距离为2时,有|n|=2.∵y=x2﹣x+3=(x﹣2)2+2>0∴n=2.当n=2时,得m=2.综上所述,符合条件的点P有两个,分别是P1(2,2),P2(﹣2,6).点评:能够熟练根据等腰直角三角形的性质进行计算;能够运用待定系数法求得函数的解析式;点到y轴的距离即是该点的横坐标的绝对值,点到x轴的距离即是该点的纵坐标的绝对值.。
2019年河南省中考数学试卷及答案(Word解析版)

2019年河南省初中学业水平暨高级中等学校招生考试试卷数 学注意事项:1. 本试卷共8页,三个大题,满分120分,考试时间100分钟,请用蓝、黑色水笔或圆珠笔直接答在试卷上。
参考公式:二次函数图像2(0)y ax bx c a =++≠的顶点坐标为24(,)24b ac b a a-- 一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填在题后括号内。
1、-2的相反数是【】(A )2 (B)2-- (C)12 (D)12- 【解析】根据相反数的定义可知:-2的相反数为2【答案】A2、下列图形中,既是轴对称图形又是中心对称图形的是【】【解析】轴对称是指在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形。
中心对称图形是指平面内,如果把一个图形绕某个点旋转180°后,能与自身重合,那么就说这两个图形关于这个点成中心对称。
结合定义可知,答案是D【答案】D3、方程(2)(3)0x x -+=的解是【】(A )2x = (B )3x =- (C )122,3x x =-= (D )122,3x x ==-【解析】由题可知:20x -=或者30x +=,可以得到:122,3x x ==-【答案】D4、在一次体育测试中,小芳所在小组8个人的成绩分别是:46,47,48,48,49,49,49,50.则这8个人体育成绩的中位数是【】(A ) 47 (B )48 (C )48.5 (D )49【解析】中位数是将数据按照从小到大的顺序排列,其中间的一个数或中间两个数的平均数就是这组数的中位数。
本题的8个数据已经按照从小到大的顺序排列了,其中间的两个数是48和49,它们的平均数是48.5。
因此中位数是48.5【答案】C5、如图是正方形的一种张开图,其中每个面上都标有一个数字。
那么在原正方形中,与数字“2”相对的面上的数字是【】(A )1 (B )4 (C )5 (D )6【解析】将正方形重新还原后可知:“2”与“4”对应,“3”与“5”对应,“1”与“6”对应。
2019河南省中招考试数学试题【含答案】

2019年河南省中招考试题(满分120分,考试时间100分钟)一、选择题(每小题3分,共30分)的绝对值是 ( ) B.C.2D.-22.成人每天维生素D 的摄入量约为0.0000046克.数据 “0.0000046”用科学记数法表示为 ( )A.46×10-7B.4.6×10-7C.4.6×10-6D.0.46×10-5 3.如图, AB//CD,ZB=75°,ZE=27°,则ZD 的度数为 ( ) A.45° B.48° C.50° D.58°4.下列计算正确的是 ( ) A.2a+3a=6a B.(-3a)²=6a² C.(x-y)²=x²-y² D.3√2-√2=2√25.如图(1)是由大小相同的小正方体搭成的几何体,将上层的小正方体平移后得到图(2).关于平移前后几何体的三 视图,下列说法正确的是 ( )图(1) 图(2)A. 主视图相同B. 左视图相同C. 俯视图相同D. 三种视图都不相同 6.一元二次方程(x+1)(x- 1)=2x+3的根的情况是( ) A. 有两个不相等的实数根B.有两个相等的实数根C. 只有一个实数根D.没有实数根 7.某超市销售A,B,C,D 四种矿泉水,它们 的单价依次是5元、3元、2元、1元.某天 的销售情况如图所示,则这天销售的矿泉 水的平均单价是 ( ) A . 1 . 95元 B . 2 . 15元 C . 2 . 25元 D . 2 . 75元8.已知抛物线y =-x²+bx+4经过(-2,n )和(4,n)两点, 则n 的值为 ( ) A.-2 B.-4 C.2 D.49.如图,在四边形ABCD 中, AD//BC,ZD=90°,AD=4, BC=3.分别以点A,C 为圆心、大于的长为半径作弧,两弧交于点E ,作射线BE 交AD 于点F ,交AC 于点 0.若点0是AC 的中点,则CD 的长为 ( ) A.2√2 B.4 C.3 D.√ 10(第10题)10.如图,在△OAB 中,顶点0(0,0),A(-3,4),B(3,4).将△OAB 与正方形ABCD 组成的图形绕点0顺时针旋转, 每次旋转90°,则第70次旋转结束时,点D 的坐标为( )A.(10,3)B.(-3,10)C.(10,-3)D.(3,- 10) 二、填空题(每小题3分,共15分)11.计算:/4-2-1=12. 不等式丝的解集是13.现有两个不透明的袋子, 一个装有2个红球、1个白球, 另一个装有1个黄球、2个红球,这些球除颜色外完全相 同.从两个袋子中各随机摸出1个球,摸出的2个球颜 色相同的概率是14.如图,在扇形AOB 中,ZAOB =120°,半径0C 交弦AB于点D,且0C10A.若0A=2 √ 3,则阴影部分的面积为(第15题)15.如图,在矩形ABCD 中, AB=1,BC=a,点E 在边BC 上, 且.连接AE,将△ABE 沿AE 折叠,若点B 的对应点B'落在矩形ABCD 的边上,则a 的值为(第14题)( 第 9 题 )三、解答题(本大题共8个小题,满分75分)16. (8分)先化简,再求值;,其中x=/3.(每组包含最小值,不包含最大值)b. 七年级成绩在70≤x<80这一组的是:17 . (9分)如图,在△ABC 中,BA=BC,ZABC=90°, 以AB为直径的半圆0交AC于点D,点E是BD上不与点B,D重合的任意一点,连接AE交BD于点F,连接BE并延长交AC于点G.(1)求证:△ADF一△BDG;(2)填空:①若AB=4.且点E是BD的中点,则DF的长为②取正的中点H,连接EH,OH,当ZEAB的度数为时,四边形OBEH为菱形.根据以上信息,回答下列问题:(1)在这次测试中,七年级在80分以上(含80分)的有人;(2)表中m的值为;(3)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级的排名谁更靠前,并说明理由;(4)该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数. 18. (9分)某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理、描述和分析.部分信息如下:a.七年级成绩频数分布直方图:70 72 74 75 76 76 77 77 77 78 79c.七、八年级成绩的平均数、中位数(单位:分)如下:年级平均数七中位数76.9八m79.2 79.5◆2019河南省中招试题◆19. (9分)数学兴趣小组到黄河风景名胜区测量炎帝塑像(塑像中高者)的高度.如图所示,炎帝塑像DE在高55 m 的小山EC上,在A处测得塑像底部E的仰角为34°,再沿AC方向前进21 m到达B处,测得塑像顶部D的仰角为60°,求炎帝塑像DE的高度. (精确到1 m.参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67,√3≈1.73)20. (9分)学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A奖品和2个B奖品共需120元;购买5 个A奖品和4个B奖品共需210元.(1)求A,B两种奖品的单价;(2)学校准备购买A,B两种奖品共30个,且A奖品的数量不少于B奖品数量的.请设计出最省钱的购买方案,并说明理由.◆2019河南省中招试题◆21. (10分)模具厂计划生产面积为4,周长为m的矩形模具.对于m的取值范围,小亮已经能用“代数”的方法解决,现在他又尝试从“图形”的角度进行探究,过程如下:(1)建立函数模型设矩形相邻两边的长分别为x,y,由矩形的面积为4,得xy=4,民;由周长为m,得2(x+y)=m,满足要求的(x,y)应是两个函数图象在第象限内交点的坐标.(2)画出函数图象函数的图象如图所示,函数y=- ×+的图象可由直线y=-x平移得到.请在同一直角坐标系中直接画出直线y=-x.(3)平移直线y=-x,观察函数图象①当直线平移到与函的图象有唯一交点(2,2)时,周长m的值为 ;②在直线平移过程中,交点个数还有哪些情况?请写出交点个数及对应的周长m的取值范围.(4)得出结论若能生产出面积为4的矩形模具,则周长m的取值范围为◆2019河南省中招试题◆22 . (10分)在△ABC 中, CA=CB,ZACB =α .点P 是平面内不与点A,C 重合的任意一点,连接AP,将线段AP 绕 点P 逆时针旋转α得到线段DP,连接AD,BD,CP.(1)观察猜想如图(1),当α=60°时,的值是 ,直线BD 与直线CP 相交所成的较小角的度数是(2)类比探究当α=90°时,请写出的值及直线BD 与直线CP相交所成的较小角的度数,并就图(2)的情形说明理由. (3)解决问题当α=90°时,若点E,F 分别是CA,CB 的中点,点P 在直线EF 上,请直接写出点C,P,D 在同一直线上值.图(1)备用图图(2)◆2019河南省中招试题◆23. (11分)如图,抛物线交x轴于A,B两点,交y轴于点C.直线经过点A,C.(1)求抛物线的解析式;(2)点P是抛物线上一动点,过点P作x轴的垂线,交直线AC于点M,设点P的横坐标为m.①连接PC,当△PCM是直角三角形时,求点P的坐标;②作点B关于点C的对称点B',则平面内存在直线l,使点M,B,B'到该直线的距离都相等,当点P在y轴右侧的抛物线上,且与点B不重合时,请直接写出直线I:y=hx+b的解析式. (k,b可用含m的式子表示)备用图48 不等式姓 数体米米间水姓 ,》6,可小8解集*>6<*<*无都◆2019河南省中招试题◆藻2019年河南省普通高中招生考试2.C 【解析】 0.0000046=4.6×10-*,故选C3.B 【素养落地】 本题考查平行线的性质,体现了逻辑推理的核 心素养.技法1 求不等式解集公共部分的两种方法中所有不等式解集的公共部分,找1数赫法巡不等式组中所有不等式的解集在间一条数轴上表苏出来,利用 数形结合用燃,自观北得到公共部分,两个一元一次不等式所级 减故不美式湖的剂集有以巴种类(设4<6):【解析】 如图,∵AB//CD,:21=2B=75°,又∵Z1=ZD+ZE, . . 2D=Z1 - ZE=75° - 27°=48°,故选B .4.D 【素养落地】 本题考查了整式的运算、二次根式的运算,体现了数学运算的核心素养.【解析】 2a+3a=(2+3)a=5a,故A 项错误; ( - 3a)²= ( - 3)²a²=9a²,故B 项错误; (x - y)²=x² - 2y+y²,故C 项错误;3、/2- √Z=2 √2,故D 项正确.5.C 【素养落地】 本题考查几何体的三视图,体现了直观想象的口使法 遂用口状”大大取夜大,小小取教小;大小小大中同找,大大小 能不了”来殊定13. 【素养落地】 本题考查用列举法求事件的概率,体现了数据分析的核心素养.【解析】 根据题意列表如下:核心素养.【解析】 根据俯视图的定义,可知平移前后几何体的俯视图相同,均如图所示,故选C.6.A 【解析】 把该方程变形为一般形式,为x²-2x-4=0,由一元二次方程根的判别式△=b²-4ac=(-2)²-4×1×(-4)=20> 0,可知该方程有两个不相等的实数根.故选A. 7.C 【素养落地】本题考查扇形统计图的识图能力及平均数的求解方法,体现了数据分析的核心素养,【解析】 5×10%+3×15%+2×55%+1×20%=2.25(元),故这天销售的矿泉水的平均单价为2.25元. 8.B 【素养落地】 本题考查二次函数的图象与性质,体现了逻辑推理的核心素养,【解析】 根据该抛物线经过(-2,n)和(4,n)两点,可知这条抛 物线的对称轴是直线,”,解得b=2,:该抛物线的解析式为y=-z²+2x+4,把x=4或x=-2代入, 得y =-4,即n =-4 .9.A 【素养落地】 本题考查尺规作图、垂直平分线的判定与性质、勾股定理等,体现了逻辑推理的核心素养. 【解析】 由作图可知,点E 在线段AC 的垂直平分线上,又点0是AC 的中点, .直线BE 是线段AC 的垂直平分线,AB=BC=3.过点B 作BM 工AD 于点M,则四边形BMDC 为矩形, .BM=CD, DM=BC=3 . :4M=1 .根据勾股定理,可得BM= √AB -AM=√ 3²-1⁷=2/2,即CD=2 √ 2.故选A.10.D 【素养落地】 本题考查旋转的性质,体现了直观想象、逻辑推理的核心素养.【解析】 根据题意,易知在旋转过程中,组合图形每4次一循环,而70÷4=17……2,.第70次旋转结東时,组合图形的位置如图所示,延长DA 交x 轴于点E, 易知AEIx 轴,则0E=3,AE=4,:AD=AB=20E=6,:DE=AD+AE=10,故点D 的坐标 为(3,-10),故选D. 11. 【解析】 Ⅱ12.x≤-2 【素养落地】 本题考查不等式组的解法,体现了数学 运算的核心素养. 【解析】 解不等;,得x≤-2,解不等式-x+7>4,得红 , 红2白 黄 (红,,黄) (红2,黄) (白,黄) 红 , (红,,红;) (红2,红,) (白,红,) 红4 (红,红4) (红2,红) (白,红4) 由表格可知,共有9种等可能的结果,其中摸出的2个球颜色相 同的结果有4种,故所求概率为 · 高分技法 14. π+J3【素养落地】本题考查不规 则图形面积的计算,体现了逻辑推理、 数学运算的核心素养. 【解析】 :0A=0B,ZAOB=120°, :.Z0AB=Z0BA=30° . ∵0C10A, : .ZBOC=120° - 90°=30°=Z0BA,,OD=BD .如图,过点0 作OELAB 于点E,在Rt △AOE 中, 0E=0A · sinZOAE=2/3× sin30°=√3.在Rt △AOD 中, 0D=0A ·tanZ0AD=25×tan 30°= 2.".BD=2," 2+15.【素养落地】 本题考查折叠的性质及分类讨论思想,体现了逻辑推理、直观想象的核心素养.技法2列举法求概率的解题通法时(则是表北或用西引树表状法图近)法一;数下一散适用于两步只不更不源地川半出改有下能出见的结笑,并到断每种结装出 现的可能性是香然茶;48公式户4)=拉求事件以发你的概③1定开有可已现的结是有不及所家事件A 出现的结果疗 m ; 混半问通,消好状图法适用于再与及两步以上泉敬率问题; 1.B 【解析】 根据负数的绝对值等于它的相反数,可高分技法◆2019河南省中招试题◆则四边形ABEB'是正方形, .BE=AB=1,即 · , ; ②当点B'落在边CD 上时,如图(2),易证△ECB '~~△B'DA,,即,”. ,<a=AD=√BA² B'D=.综上可知,a 的值)图(2)高分技法16. 【素养落地】本题考查了分式的化简求值,体现了数学运算的核心素养.【参考答案及评分标准】(4分) (6分)当x=\3时,(8分)17. 【素养落地】本题以圆为背景,考查了圆的相关性质、全等三角形的判定与性质、菱形的性质等,体现了逻辑推理的核心素养 【参考答案及评分标准】 (1)证明:∵BA=BC,ZABC=90°, .LCAB=ZC=45° .∵AB 为半圆0的直径, :ZADF=ZBDG=90°, :ZDBA=ZDAB=45°, .:AD=BD.∵ZDAF 和ZDBG 都是充所对的圆周角, :LDAF=ZDBG, . △ADF △BDG. (2)①4-2 √/2 2300解法提示:①:AB为半圆0的直径, ZAEB=90°,AEIBG. .ZAEG=90° · · 点E 是丽的中点, .ZGAE=ZBAE, 又AE=AE,:△AEB=△AEG, ..AG=AB=4...DG=AG-AD=4-2√2. :DF=DG=4-2√2. ∵四边形0BEH 是菱形, ..0B=BE, 又0B=OE,..△0BE是等边三角形, :2EOB=60°,:ZEAB=30° ·分析的核心素养.【参考答案及评分标准】(1)23 (2分) 解法提示:由七年级成绩频数分布直方图可知,80分以上(含80 分)的有15+8=23(人).(2)77.5 (4分) 解法提示:(3)七年级学生甲在本年级的排名更靠前. (5分) 理由:七年级学生甲的成绩大于七年级抽测成绩的中位数,而八 年级学生乙的成绩小于八年级抽测成绩的中位数.' ( 6 分 )答:估计七年级成绩超过平均数76.9分的人数为224人,(9分)19. 【素养落地】“本题以实际生活为背景,考查解直角三角形的实 际应用,体现了逻辑推理、数学抽象、数学建模的核心素养.【参考答案及评分标准】在Rt △ACE 中,∵ZA =34°,CE=55,1,:BC=AC-AB=82.1-21=61.1. 在Rt △BCD 中,∵2CBD=60°, :CD=BC ·tan60°≈61. 1×1.73≈105.7, :.DE=CD-CE=105.7-55≈51.鼓炎帝塑像DE 的高度约为51 m.(4分) (7分) (9分)圜高分技法20.【素养落地】本题材料来源于生活,通过构建一次函数、方程组、不等式模型解决实际问题,体现了数学抽象、数学建模、数学 运算的核心素养.【参考答案及评分标准】(1)设A 奖品的单价为x 元,B 奖品的 单价为y 元, (1分) 根据题意,得 ’解得故A 奖品的单价为30元,B 奖品的单价为15元. (4分) (2)最省钱的购买方案:A 奖品8个,B 奖品22个. ( 5 分 ) 理由:设购买A 奖品a 个,则购买B 奖品(30-a)个,共需w 元, 根据题意,得w=30a+15(30-a)=15a+450. (6分) :15>0,:当a 取最小值时,w 取最小值.:.a≥7.5,又a 为正整数,:当a=8时,w 取得最小值. 30-8=22.故当购买A 奖品8个,B 奖品22个时最省钱. 21. 【参考答案及评分标准】(1) 一(2)画直线y=-x 如图所示:(3)①8 (4分) ②直线与函数 的图象交点还有两种情况: 技法4解直角三角形的实际应用题目的解题通法(1)心用“解直角三角形”时党型解央问过,关健是把已知角或 特株角放在自角二角形中,当两卜直角三尚形有公共边时,公共劲是联系两个直角三角形的汛管,通常要水出这条公共边的长 度,进而解决问题,(2)当图形中设有直单三角形洲,则需要根据实际情况构造直角三角形.(3)运用“解直角一角形”的模型解决实际问题的步骤:①审题, 报据题干,弄明白图形中哪些是已知量,哪些是米知量;②将已知条件转化到示意图中,把实际问巡转化为解直角三角形的问题;③选择置当的关系式解直角三有形技法3解决折叠间题的方法掌器折叠的性成;直战对称;②公千浙泉两假的保形(指脊后变合的测形)合等,对放议角,线段,例长,百长多均相务,③对原点的徙线改浙报从在真线垂直平分;2.我出隐全的折叠前后的位置关系(平行或垂直)和数量关累 (相筹);3.一服运甲全等三角形,匀没是理,据似三僧形等知识及方程思 想,设出恰当的未和效,解方栓米求线设长,幻辽于折痕两侧的因形(进管后重台的周形)失于析很所在 (3分)(5分) (7分) (9分)(9分) (1分) (3分)②连接OE,图(1)由(1)知△ADF≥△BDG,◆2019河南省中招试题◆当有2个交点时,周长m 的取值范围是m>8. (8分)(4)m≥8 (10分)22.【素养落地】 本题是几何图形的类比探究题,主要考查了等腰 三角形的性质、等腰直角三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质及分类讨论思想的运用等,体现了 逻辑推理、直观想象的核心素养.【解题思路】 (1)利用“SAS”证得△ACPm △ABD,可得CP= BD,ZACP=ZABD,继而可得直线BD 与直线CP 相交所成的较 小角等于ZBAC. (2)根据(1)中的思路,可以证明△DAB △PAC,直线BD 与直线CP 相交所成的较小角仍然等于ZBAC. (3)分点P 在线段CD 上和点P 在线段CD 延长线上两种情况进 行讨论即可.【参考答案及评分标准】(1)160° (2分)解法提示:∵AC=BC,ZACB=60°, △ABC是等边三角形, ..ZCAB=60°,AC=AB. 由旋转可得ZAPD=60°,AP=PD, △APD是等边三角形,.ZPAD=60°=ZCAB,AP=AD, ZCAP=ZBAD, :△ACP=△ABD,:CP=BD,ZACP= ZABD,如图(1),延长CP,BD 交于点M ,CM 与AB 交于点N,在△ANC 和△BNM 中,ZACN=ZMBN,ZCN=ZBNM, ZM=ZCAN=60° · ,直线BD 与直线CP 相交所成的较小角的度数为45° · (4分)理由如下:∵ZACB=90°,CA=CB, .ZCAB=45°,同理可得,23. 【解题思路】(1)根据直线AC 的解析式求出点A,C 的坐标,再 △PCM 是直角三角形, ZCMP<90°,可知分ZPCM=90°和ZMPC=90°两种情况进行讨论,据此求解即可;②易知满足条件的直线1即为△MBB'的三条中位线所在的直线,故先求出点B,B',M 的坐标,再求出线段BM,B'M 的中点坐标,即可求得直 线1的解析式.【参考答案及评分标准】 (1)∵直线经过点A,C,:A(-4,0),C(0,-2).∵抛物线经过点A,C,故抛物线的解析式为 (3分)(2)①:点P 的横坐标为m, :点P 的坐标为(m,当△PCM是直角三角形时,因ZPMC<90°,故分以下两种情况 讨论(i)当ZCPM=90° 时, PC//x 轴,则· 解得m;=0(舍去),mz=-2.:点P 的坐标为(-2,-2). (5分)(i)方法一:当ZPCM=90°时,如图,过点P 作PNly 轴于点N,ZCAB+ZDAC=ZPAD+ZDAC, 即ZDAB=ZPAC,:. △DAB △PAC, (6分)。
2019年河南省大联考中考数学二模试卷(解析版)

2019年河南省大联考中考数学二模试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.﹣2的绝对值是()A.2B.﹣2C.D.﹣2.某校组织学生参观绿博园时,了解到某种花的花粉颗粒的直径大约为0.0000065米.将0.0000065用科学记数法表示应为()A.6.5×10﹣2B.6.5×10﹣6C.6.5×10﹣5D.0.65×10﹣63.下列计算正确的是()A.a3+a3=a6B.(x﹣3)2=x2﹣9C.a3•a3=a6D.4.如图是由棱长为1的正方体搭成的某几何体三视图,则图中棱长为1的正方体的个数是()A.9B.8C.7D.65.如图,已知AB∥CD,∠1=∠2,∠EFD=56°,则∠D=()A.60°B.58°C.28°D.62°6.某校团委组织“阳光助残”献爱心捐款活动,九年级(2)班学生捐款如表:学生捐款的中位数和众数是()A.10元,15元B.15元,15元C.10元,20元D.16元,17元7.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AC交BC于点E.若∠BCD=80°,则∠AEC的度数为()A.80°B.100°C.120°D.140°8.将三粒均匀的分别标有:1,2,3,4,5,6的正六面体骰子同时掷出,出现的数字分别为a,b,c,则a,b,c正好是直角三角形三边长的概率是()A.B.C.D.9.如图.在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折,B点落在D点的位置,且AD交y轴于点E.那么点D的坐标为()A.B.C.D.10.如图,C是半圆⊙O内一点,直径AB的长为4cm,∠BOC=60°,∠BCO=90°,将△BOC 绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过的区域(图中阴影部分)的面积为()A.πB.πC.4πD.+π二、填空题(本大题共5小题,每小题3分,共15分)11.计算:()0﹣3﹣1=.12.不等式组的整数解的个数为.13.抛物线y=x2﹣2x+m与x轴只有一个交点,则m的值为.14.如图,四边形ABCD是菱形,∠DAB=50°,对角线AC,BD相交于点O,DH⊥AB于H,连接OH,则∠DHO=度.15.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,点D是边AB上的动点,将△ACD 沿CD所在的直线折叠至△CDA的位置,CA'交AB于点E.若△A'ED为直角三角形,则AD的长为.三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(8分)先化简,再求值:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),其中x=+1,y=﹣1.17.(9分)某校在一次社会实践活动中,组织学生参观了虎园、烈士陵园、博物馆和植物园,为了解本次社会实践活动的效果,学校随机抽取了部分学生,对“最喜欢的景点”进行了问卷调查,并根据统计结果绘制了如下不完整的统计图.其中最喜欢烈士陵园的学生人数与最喜欢博物馆的学生人数之比为2:1,请结合统计图解答下列问题:(1)本次活动抽查了名学生;(2)请补全条形统计图;(3)在扇形统计图中,最喜欢植物园的学生人数所对应扇形的圆心角是度;(4)该校此次参加社会实践活动的学生有720人,请求出最喜欢烈士陵园的人数约有多少人?18.(9分)如图,在平面直角坐标系中,四边形ABCD是菱形,点A(0,4),B(﹣3,0)反比例函数y=(k为常数,k≠0,x>0)的图象经过点D.(1)填空:k=.(2)已知在y=的图象上有一点N,y轴上有一点M,且四边形ABMN是平行四边形,求点M 的坐标.19.(9分)如图,△ABC内接于⊙O且AB=AC,延长BC至点D,使CD=CA,连接AD交⊙O 于点E,连接BE、CE.(1)求证:△ABE≌△CDE;(2)填空:①当∠ABC的度数为时,四边形AOCE是菱形;②若AE=6,EF=4,DE的长为.20.(9分)为缓解交通压力,市郊某地正在修建地铁站,拟同步修建地下停车库.如图是停车库坡道入口的设计图,其中MN是水平线,MN∥AD,AD⊥DE,CF⊥AB,垂足分别为D,F,坡道AB的坡度=1:3,AD=9米,点C在DE上,CD=0.5米,CD是限高标志牌的高度(标志牌上写有:限高米).如果进入该车库车辆的高度不能超过线段CF的长,则该停车库限高多少米?(结果精确到0.1米,参考数据:≈1.41,≈1.73,≈3.16)21.(10分)小王是“新星厂”的一名工人,请你阅读下列信息:信息一:工人工作时间:每天上午8:00﹣12:00,下午14:00﹣18:00,每月工作25天;信息二:小王生产甲、乙两种产品的件数与所用时间的关系见下表:信息三:按件计酬,每生产一件甲种产品得1.50元,每生产一件乙种产品得2.80元.信息四:该厂工人每月收入由底薪和计酬工资两部分构成,小王每月的底薪为1900元,请根据以上信息,解答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分钟;(2)2018年1月工厂要求小王生产甲种产品的件数不少于60件,则小王该月收入最多是多少元?此时小王生产的甲、乙两种产品分别是多少件?22.(10分)如图1,正方形ABCD和正方形AEFG,连接DG,BE.(1)发现当正方形AEFG绕点A旋转,如图2,①线段DG与BE之间的数量关系是;②直线DG与直线BE之间的位置关系是.(2)探究如图3,若四边形ABCD与四边形AEFG都为矩形,且AD=2AB,AG=2AE,证明:直线DG⊥BE.(3)应用在(2)情况下,连结GE(点E在AB上方),若GE∥AB,且AB=,AE=1,则线段DG是多少?(直接写出结论)23.(11分)如图,抛物线y=ax2+bx﹣2经过点A(4,0),B(1,0).(1)求出抛物线的解析式;(2)点D是直线AC上方的抛物线上的一点,求△DCA面积的最大值;(3)P是抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.2019年河南省大联考中考数学二模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.【分析】根据负数的绝对值等于它的相反数可得答案.【解答】解:﹣2的绝对值是2,故选:A.【点评】此题主要考查了绝对值,关键是掌握绝对值的性质.2.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000065=6.5×10﹣6,故选:B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.【分析】直接利用合并同类项法则以及完全平方公式和同底数幂的乘除运算法则分别计算得出答案.【解答】解:A、a3+a3=2a3,故此选项错误;B、(x﹣3)2=x2﹣6x+9,故此选项错误;C、a3•a3=a6,正确;D、+无法计算,故此选项错误.故选:C.【点评】此题主要考查了合并同类项以及完全平方公式和同底数幂的乘除运算,正确掌握相关运算法则是解题关键.4.【分析】易得这个几何体共有2层,由俯视图可得第一层正方体的个数,由主视图和左视图可得第二层正方体的个数,相加即可.【解答】解:由俯视图易得最底层有6个正方体,第二层有2个正方体,那么共有6+2=8个正方体组成,故选:B.【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.5.【分析】根据平行线性质求出∠BEF,求出∠1,根据平行线性质得出∠D=∠1,代入求出即可.【解答】解:∵AB∥CD,∴∠BEF+∠EFD=180°,∵∠EFD=56°,∴∠BEF=124°,∵∠1=∠2=∠BEF,∴∠1=62°,∵AB∥CD,∴∠D=∠1=62°,故选:D.【点评】本题考查了平行线性质的应用,主要考查学生灵活运用平行线性质进行推理和计算的能力.6.【分析】根据表格中的数据求出众数与中位数即可.【解答】解:根据图表得到捐15元的学生数最多,为17人,故学生捐款的众数为15元;捐款学生一共有13+16+17+10=56(人),按照从小到大顺序排列,得到最中间的两个数都是10元,平均数为10元,即中位数为10元.故选:A.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.一组数据中出现次数最多的数据叫做众数.7.【分析】利用平行四边形的性质得∠BAD=∠BCD=80°,AD∥BC,再由作法得AE平分∠BAD,所以∠FAE=40°,接着利用平行线的性质得到∠AEB=40°,然后根据邻补角的定义计算∠AEC的度数.【解答】解:∵四边形ABCD为平行四边形,∴∠BAD=∠BCD=80°,AD∥BC,由作法得AE平分∠BAD,∴∠FAE=∠BAD=40°,∵AF∥BE,∴∠AEB=∠FAE=40°,∴∠AEC=180°﹣40°=140°.故选:D.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了平行四边形的性质.8.【分析】本题是一个由三步才能完成的事件,共有6×6×6=216种结果,每种结果出现的机会相同,a,b,c正好是直角三角形三边长,则它们应该是一组勾股数,在这216组数中,是勾股数的有3,4,5;3,5,4;4,3,5;4,5,3;5,3,4;5,4,3共6种情况,因而a,b,c正好是直角三角形三边长的概率是.【解答】解:P(a,b,c正好是直角三角形三边长)=.故选C.【点评】用到的知识点为:概率等于所求情况数与总情况数之比;3,5.4为三角形三边的三角形是直角三角形.9.【分析】如图,过D作DF⊥AF于F,根据折叠可以证明△CDE≌△AOE,然后利用全等三角形的性质得到OE=DE,OA=CD=1,设OE=x,那么CE=3﹣x,DE=x,利用勾股定理即可求出OE的长度,而利用已知条件可以证明△AEO∽△ADF,而AD=AB=3,接着利用相似三角形的性质即可求出DF、AF的长度,也就求出了D的坐标.【解答】解:如图,过D作DF⊥AF于F,∵点B的坐标为(1,3),∴AO=1,AB=3,根据折叠可知:CD=OA,而∠D=∠AOE=90°,∠DEC=∠AEO,∴△CDE≌△AOE,∴OE=DE,OA=CD=1,设OE=x,那么CE=3﹣x,DE=x,∴在Rt△DCE中,CE2=DE2+CD2,∴(3﹣x )2=x 2+12, ∴x =, 又DF ⊥AF , ∴DF ∥EO , ∴△AEO ∽△ADF , 而AD =AB =3,∴AE =CE =3﹣=,∴,即,∴DF =,AF =,∴OF =﹣1=,∴D 的坐标为(﹣,).故选:A .【点评】此题主要考查了图形的折叠问题,也考查了坐标与图形的性质,解题的关键是把握折叠的隐含条件,利用隐含条件得到全等三角形和相似三角形,然后利用它们的性质即可解决问题. 10.【分析】根据已知条件和旋转的性质得出两个扇形的圆心角的度数,再根据扇形的面积公式进行计算即可得出答案.【解答】解:∵∠BOC =60°,△B ′OC ′是△BOC 绕圆心O 逆时针旋转得到的, ∴∠B ′OC ′=60°,△BCO =△B ′C ′O , ∴∠B ′OC =60°,∠C ′B ′O =30°, ∴∠B ′OB =120°, ∵AB =4cm ,∴OB 21cm ,OC ′=1,∴B ′C ′=,∴S 扇形B ′OB ==π,S 扇形C ′OC ==π,∴阴影部分面积=S 扇形B ′OB +S △B ′C ′O ﹣S △BCO ﹣S 扇形C ′OC =S 扇形B ′OB ﹣S 扇形C ′OC =π﹣π=π;故选:B .【点评】此题考查了旋转的性质和扇形的面积公式,掌握直角三角形的性质和扇形的面积公式是本题的关键.二、填空题(本大题共5小题,每小题3分,共15分)11.【分析】直接利用负指数幂的性质以及零指数幂的性质分别化简得出答案.【解答】解:原式=1﹣=.故答案为:.【点评】此题主要考查了实数运算,正确化简各数是解题关键.12.【分析】先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.【解答】解:,由不等式①得x ≤1,由不等式②得x >﹣2,其解集是﹣2<x ≤1,所以整数解为﹣1,0,1共3个.故答案为:3.【点评】考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.13.【分析】由抛物线y =x 2﹣2x +m 与x 轴只有一个交点可知,对应的一元二次方程x 2﹣2x +m =0,根的判别式△=b 2﹣4ac =0,由此即可得到关于m 的方程,解方程即可求得m 的值.【解答】解:∵抛物线y =x 2﹣2x +m 与x 轴只有一个交点,∴△=0,∴b2﹣4ac=22﹣4×1×m=0;∴m=1.故答案为:1.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题可转化为解关于x的一元二次方程.对于二次函数y=ax2+bx+c(a,b,c 是常数,a≠0),△=b2﹣4ac决定抛物线与x轴的交点个数.14.【分析】根据菱形的对角线互相平分可得OD=OB,再根据直角三角形斜边上的中线等于斜边的一半可得OH=OB,然后根据等边对等角求出∠OHB=∠OBH,根据两直线平行,内错角相等求出∠OBH=∠ODC,然后根据等角的余角相等解答即可.【解答】解:∵四边形ABCD是菱形,∴OD=OB,∠COD=90°,∵DH⊥AB,∴OH=BD=OB,∴∠OHB=∠OBH,又∵AB∥CD,∴∠OBH=∠ODC,在Rt△COD中,∠ODC+∠DCO=90°,在Rt△DHB中,∠DHO+∠OHB=90°,∴∠DHO=∠DCO==25°,故答案为:25.【点评】本题考查了菱形的对角线互相垂直平分的性质,直角三角形斜边上的中线等于斜边的一半的性质,以及等角的余角相等,熟记各性质并理清图中角度的关系是解题的关键.15.【分析】分两种情况讨论:当∠A'DE=90°时,△A'ED为直角三角形,当∠A'ED=90°时,△A'ED为直角三角形,分别依据直角三角形的边角关系,即可得到AD的长.【解答】解:如图,当∠A'DE=90°时,△A'ED为直角三角形,∵∠A'=∠A=30°,∴∠A'ED=60°=∠BEC=∠B,∴△BEC是等边三角形,∴BE=BC=2,又∵Rt△ABC中,AB=2BC=4,∴AE=2,设AD=A'D=x,则DE=2﹣x,∵Rt△A'DE中,A'D=DE,∴x=(2﹣x),解得x=3﹣,即AD的长为3﹣;如图,当∠A'ED=90°时,△A'ED为直角三角形,此时∠BEC=90°,∠B=60°,∴∠BCE=30°,∴BE=BC=1,又∵Rt△ABC中,AB=2BC=4,∴AE=4﹣1=3,∴DE=3﹣x,设AD=A'D=x,则Rt△A'DE中,A'D=2DE,即x=2(3﹣x),解得x=2,即AD的长为2;综上所述,即AD的长为3﹣或2.故答案为:3﹣或2.【点评】本题主要考查了折叠问题以及含30°角的直角三角形的性质,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,对应边和对应角相等.解题时注意:在直角三角形中,30°角所对的直角边等于斜边的一半.三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.【分析】原式利用完全平方公式,平方差公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=4x2+4xy+y2+x2﹣y2﹣5x2+5xy=9xy,当x=+1,y=﹣1时,原式=9×4=36.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.17.【分析】(1)由虎园人数及其所占百分比可得总人数;(2)设最喜欢博物馆的学生人数为x,则最喜欢烈士陵园的学生人数为2x,根据各参观项目人数和等于总人数求得x的值,据此即可补全图形;(3)用360°乘以最喜欢植物园的学生人数占被调查人数的比例可得;(4)用总人数乘以样本中最喜欢烈士陵园的人数所占比例.【解答】解:(1)本次活动调查的学生人数为18÷30%=60人,故答案为:60;(2)设最喜欢博物馆的学生人数为x,则最喜欢烈士陵园的学生人数为2x,则x+2x=60﹣18﹣6,解得:x=12,即最喜欢博物馆的学生人数为12,则最喜欢烈士陵园的学生人数为24,补全条形图如下:(3)在扇形统计图中,最喜欢植物园的学生人数所对应扇形的圆心角是360°×=36°,故答案为:36;(4)最喜欢烈士陵园的人数约有720×=288人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18.【分析】(1)根据题意可以求得点D的坐标,从而可以求得k的值;(2)根据题意和平行四边形的性质可以求得点M的坐标.【解答】解:(1)∵点A(0,4),B(﹣3,0),∴OA=4,OB=3,∴AB=5,∵四边形ABCD是菱形,∴AD=5,即点D的横坐标是5,∴点D的坐标为(5,4),∴4=,得k=20,故答案为:20;(2)∵四边形ABMN是平行四边形,∴AN∥BM,AN=BM,∴AN可以看作是BM经过平移得到的,首先BM向右平移了3个单位长度,∴N点的横坐标为3,代入y=,得点N的纵坐标为y=,∴M点的纵坐标为﹣4=,∴M点的坐标为(0,).【点评】本题考查反比例函数图象上点的坐标特征、平行四边形的性质、菱形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.19.【分析】(1)根据AAS证明两三角形全等;(2)①先证明∠AOC=∠AEC=120°,∠OAE=∠OCE=60°,可得▱AOCE,由OA=OC可得结论;②证明△AEF∽△DEC,然后依据相似三角形的性质列比例式求解即可.【解答】解:(1)∵AB=AC,CD=CA,∴∠ABC=∠ACB,AB=CD,∵四边形ABCE是圆内接四边形,∴∠ECD=∠BAE,∠CED=∠ABC,∵∠ABC=∠ACB=∠AEB,∴∠CED=∠AEB,∴△ABE≌△CDE(AAS);(2)①当∠ABC的度数为60°时,四边形AOCE是菱形;理由是:连接AO、OC,∵四边形ABCE是圆内接四边形,∴∠ABC+∠AEC=180°,∵∠ABC=60,∴∠AEC=120°=∠AOC,∵OA=OC,∴∠OAC=∠OCA=30°,∵AB=AC,∴△ABC是等边三角形,∴∠ACB=60°,∵∠ACB=∠CAD+∠D,∵AC=CD,∴∠CAD=∠D=30°,∴∠ACE=180°﹣120°﹣30°=30°,∴∠OAE=∠OCE=60°,∴四边形AOCE是平行四边形,∵OA=OC,∴▱AOCE是菱形;②∵△ABE≌△CDE,∴AE=CE=5,BE=ED,∴∠ABE=∠CBE,∠CBE=∠D,又∵∠EAC=∠CBE,∴∠EAC=∠D.又∵∠CED=∠AEB,∴△AEF∽△DEC,∴=,即=,解得DE=9.故答案为:①60°;②9.【点评】本题是圆的综合题,考查了等腰三角形的性质、等边三角形的性质和判定、三角形相似和全等的性质和判定、四点共圆的性质、菱形的判定等知识,难度适中,正确判断圆中角的关系是关键.20.【分析】据题意得出tan B=,即可得出tan A,在Rt△ADE中,根据勾股定理可求得DE,即可得出∠1的正切值,再在Rt△CEF中,设EF=x,即可求出x,从而得出CF=3x的长.【解答】解:据题意得tan B=,∵MN∥AD,∴∠A=∠B,∴tan A=,∵DE⊥AD,∴在Rt△ADE中,tan A=,∵AD=9,∴DE=3,又∵DC=0.5,∴CE=2.5,∵CF⊥AB,∴∠FCE+∠2=90°,∵DE⊥AD,∴∠A+∠CEF=90°,∴∠A=∠FCE,∴tan∠FCE=在Rt△CEF中,CE2=EF2+CF2设EF=x,CF=3x(x>0),CE=2.5,代入得()2=x2+(3x)2解得x=(如果前面没有“设x>0”,则此处应“x=±,舍负”),∴CF=3x=≈2.3,∴该停车库限高2.3米.故答案为2.3.【点评】本题考查了解直角三角形的应用,坡面坡角问题和勾股定理,解题的关键是坡度等于坡角的正切值.21.【分析】(1)设生产一件甲种产品需x分,生产一件乙种产品需y分,利用待定系数法求出x,y的值.(2)设生产甲种产品用x分,则生产乙种产品用(25×8×60﹣x)分,分别求出甲乙两种生产多少件产品.【解答】解:(1)设生产一件甲种产品需x分,生产一件乙种产品需y分.由题意得:,解这个方程组得:,答:生产一件甲产品需要15分,生产一件乙产品需要20分.(2)设生产甲种产品共用x分,则生产乙种产品用(25×8×60﹣x)分.则生产甲种产品件,生产乙种产品件.=1.5×+2.8×∴w总额=0.1x+×2.8=0.1x+1680﹣0.14x=﹣0.04x+1680,又≥60,得x≥900,由一次函数的增减性,当x=900时w取得最大值,此时w=﹣0.04×900+1680=1644(元),则小王该月收入最多是1644+1900=3544(元),此时甲有=60(件),乙有:=555(件),答:小王该月最多能得3544元,此时生产甲、乙两种产品分别60,555件.【点评】本题考查了一次函数和二元一次方程组的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.22.【分析】(1)先判断出△ABE≌△DAG,进而得出BE=DG,∠ABE=∠ADG,再利用等角的余角相等即可得出结论;(2)先利用两边对应成比例夹角相等判断出△ABE∽△DAG,得出∠ABE=∠ADG,再利用等角的余角相等即可得出结论;(3)先求出BE,进而得出BE=AB,即可得出四边形ABEG是平行四边形,进而得出∠AEB=90°,求出BE,借助(2)得出的相似,即可得出结论.【解答】解:(1)①∵四边形ABCD和四边形AEFG是正方形,∴AE=AG,AB=AD,∠BAD=∠EAG=90°,∴∠BAE=∠DAG,在△ABE和△DAG中,,∴△ABE≌△DAG(SAS),∴BE=DG;②如图2,延长BE交AD于G,交DG于H,由①知,△ABE≌△DAG,∴∠ABE=∠ADG,∵∠AGB+∠ABE=90°,∴∠AGB+∠ADG=90°,∵∠AGB=∠DGH,∴∠DGH+∠ADG=90°,∴∠DHB=90°,∴BE⊥DG,故答案为:BE=DG,BE⊥DG;(2)∵四边形ABCD与四边形AEFG都为矩形,∴∠BAD=∠DAG,∴∠BAE=∠DAG,∵AD=2AB,AG=2AE,∴=,∴△ABE∽△ADG,∴∠ABE=∠ADG,∵∠AGB+∠ABE=90°,∴∠AGB+∠ADG=90°,∵∠AGB=∠DGH,∴∠DGH+∠ADG=90°,∴∠DHB=90°,∴BE⊥DG;(3)如图4,(为了说明点B,E,F在同一条线上,特意画的图形)∵EG∥AB,∴∠DME=∠DAB=90°,在Rt△AEG中,AE=1,∴AG=2AE=2,根据勾股定理得,EG=,∵AB=,∴EG=AB,∵EG∥AB,∴四边形ABEG是平行四边形,∴AG∥BE,∵AG∥EF,∴点B,E,F在同一条直线上如图5,∴∠AEB=90°,在Rt△ABE中,根据勾股定理得,BE==2,由(3)知,△ABE∽△ADG,∴=,∴,∴DG=4.【点评】此题是四边形综合题,主要考查了正方形的性质,矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,平行四边形的判定和性质,旋转的性质,判断出△ABE≌△ADG 或△ABE∽△ADG是解本题的关键.23.【分析】(1)把A与B坐标代入解析式求出a与b的值,即可确定出解析式;(2)如图所示,过D作DE与y轴平行,三角形ACD面积等于DE与OA乘积的一半,表示出S与t的二次函数解析式,利用二次函数性质求出S的最大值即可;(3)存在P点,使得以A,P,M为顶点的三角形与△OAC相似,如图所示,分类讨论:当1<m<4时;当m<1时;当m>4时,分别求出P坐标即可.【解答】解:(1)∵该抛物线过点A(4,0),B(1,0),∴将A与B代入解析式得:,解得:,则此抛物线的解析式为y=﹣x2+x﹣2;(2)如图,设D点的横坐标为t(0<t<4),则D点的纵坐标为﹣t2+t﹣2,过D作y轴的平行线交AC于E,由题意可求得直线AC的解析式为y=x﹣2,∴E点的坐标为(t,t﹣2),∴DE=﹣t2+t﹣2﹣(t﹣2)=﹣t2+2t,∴S=×(﹣t2+2t)×4=﹣t2+4t=﹣(t﹣2)2+4,△DAC则当t=2时,△DAC面积最大为4;(3)符合条件的点P为(2,1)或(5,﹣2)或(﹣3,﹣14).存在,如图,设P点的横坐标为m,则P点的纵坐标为﹣m2+m﹣2,当1<m<4时,AM=4﹣m,PM=﹣m2+m﹣2,又∵∠COA=∠PMA=90°,∴①当==2时,△APM∽△ACO,即4﹣m=2(﹣m2+m﹣2),解得:m=2或m=4(舍去),此时P(2,1);②当==时,△APM∽△CAO,即2(4﹣m)=﹣m2+m﹣2,解得:m=4或m=5(均不合题意,舍去)∴当1<m<4时,P(2,1);类似地可求出当m>4时,P(5,﹣2);当m<1时,P(﹣3,﹣14),综上所述,符合条件的点P为(2,1)或(5,﹣2)或(﹣3,﹣14).【点评】此题属于二次函数综合题,涉及的知识有:二次函数图象与性质,待定系数法求二次函数解析式,相似三角形的判定与性质,熟练掌握各自的性质是解本题的关键.。
2019年河南省中招考试数学试卷及答案(解析版)

2019年河南省中招考试数学试卷及答案(解析版)2019年河南省中招考试数学试卷及答案解析⼀、选择题(每⼩题3分,共24分)1.下列各数中,最⼩的数是()(A). 0 (B).13(C).-13(D).-3答案:D解析:根据有理数的⼤⼩⽐较法则(正数都⼤于0,负数都⼩于0,正数都⼤于负数,两个负数,其绝对值⼤的反⽽⼩)⽐较即可.解:∵﹣3<-13<0<13,∴最⼩的数是﹣3,故选A.2. 据统计,2013年河南省旅游业总收⼊达到3875.5亿元.若将3875.5亿⽤科学计数法表⽰为3.8755×10n,则n等于()(A) 10 (B) 11 (C).12 (D).13答案:B解析:科学记数法的表⽰形式为a×10n的形式,其中1≤|a|<10,n为整数,表⽰时关键要正确确定a的值以及n的值.3875.5亿=3.8755×1011,故选B.3.如图,直线AB、CD相交于O,射线OM平分∠AOC,ON⊥OM,若∠AOM =350,则∠CON的度数为()(A) .350 (B). 450 (C) .550(D). 650答案:C解析:根据⾓的平分线的性质及直⾓的性质,即可求解.∠CON=900-350=550,故选C.4.下列各式计算正确的是()(A)a +2a =3a2(B)(-a3)2=a6(C)a3·a2=a6(D)(a+b)2=a2 + b2答案:B解析:根据同底数幂的乘法;幂的乘⽅;完全平⽅公式;同类项加法即可求得;(-a3)2=a6计算正确,故选B5.下列说法中,正确的是()(A)“打开电视,正在播放河南新闻节⽬”是必然事件(B)某种彩票中奖概率为10%是指买⼗张⼀定有⼀张中奖(C)神州飞船发射前需要对零部件进⾏抽样检查(D)了解某种节能灯的使⽤寿命适合抽样调查答案:D解析:根据统计学知识;(A)“打开电视,正在播放河南新闻节⽬”是随机事件,(A)错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年中原名校中考第二次大联考数学试卷
(满分120分,考试时间100分钟)
一、选择题(每小题3分,共30分)
1. 下列四个选项中,计算结果最大的是( )
A
B .|-2|
C .(-2)0
D .12
2. 如图所示的几何体的左视图是( )
正面
A
. B
. C
. D
.
3. 如图,已知直线AB 和CD 相交于点O ,OE ⊥AB ,OF 平分∠DOB .若
∠EOF =107.5°,则∠1的度数为( ) A .70°
B .65°
C .55°
D .45°
1
A
B
C
D E
F
O
4. 下列运算正确的是( )
A .a 5+a 3=a 8
B .(3a 3)2=9a 9
C .a 3·a 3=a 6
D .2a -a =2
5. 若一组数据2,x ,8,4,2的平均数是6,则这组数据的中位数和众数分别
是( ) A .8,2
B .3,2
C .4,2
D .6,8
6. 如图,在△ABC 中,∠C =90°,AC =8,BC =6,按下列步骤作图:①以点A
为圆心,适当长为半径画弧,分别交AC ,AB 于点D ,E ;②分别以D ,E 为圆心,DE 的长为半径画弧,两弧相交于点F ;③作射线AF ,交BC 于点G .
则CG =( ) A .3
B .6
C .
32
D .83
A
B
C
D
E
F G
7. 如图所示为在数轴上表示的某不等式组的解集,则这个不等式组可能是
( )
A .31
215x x -⎧⎨->⎩≥
B .31526
x x ->⎧⎨⎩≤
C .35215x x +⎧⎨-<⎩≥
D .322
313
x x x x <+⎧⎪+⎨--⎪⎩≤
8. 在平面直角坐标系中,把一条抛物线先向上平移1个单位长度,然后绕原点
旋转180°得到抛物线y =x 2+5x +6,则原抛物线的顶点坐标是( )
A .(
52,34-) B .(52-,34-) C .(52,54) D .(52-,5
4
) 9. 在一个不透明的口袋中,有四个完全相同的小球,把它们分别标号为1,
-2,3,4,随机摸取一个小球记下标号后放回,再随机摸取一个小球记下标号,则两次摸取的小球的标号之积为负数的概率为( )
A .58
B .12
C .38
D .14
10. 如图,矩形ABCD 中,AB =4,以顶点A 为圆心,AD 的长为半径作弧交AB
于点E ,以AB 为直径作半圆恰好与DC 相切,则图中阴影部分的面积为( )
A . 2
3
π-
B .2
3
π+
C .23π
D .2π
C
二、填空题(每小题3分,共15分)
11.
1
1=2-⎛⎫
- ⎪⎝⎭
___________.
12. 关于x 的方程(k -1)x 2+2x +1=0有两个不相等的实数根,则实数k 的最大整数
值为_________.
13. 如图,点A 在反比例函数k
y x
=
的图象上,AB ⊥x 轴于点B ,点P 是y 轴上一动点,当△ABP 的面积是2时,k 的值是_______.
14. 如图1,△ABC 中,∠ACB =90°,∠A =30°,点P 是斜边AB 上一动点,过点
P 作PQ ⊥AB ,垂足为P ,交边AC (或边CB )于点Q .设AP =x ,△APQ 的面积为y ,图2是y 关于x 的函数图象,则图象上最高点M 的坐标是______.
图1
A B
C
P
Q
15. 如图,Rt △ABC 中,∠C =90°,AB =5,AC =3,D 是AB 的中点,E 是直线BC
上一点,把△BDE 沿直线ED 翻折后,点B 落在点F 处,当FD ⊥BC 时,线段BE 的长为__________.
三、解答题(本大题共8小题,共75分)
16. (8分)先化简,再求值:222222a b a b ab
a a
b b a b a b
-+÷--+--
,其中2a =-,
b=.
2
17.(9分)如图,Rt△ABC内接于⊙O,∠BCA=90°,∠CBA=60°,AB=10,点
D是AB边上(异于点A,B)的一动点,DE⊥AB交⊙O于点E,交AC于点G,交切线CF于点F.
(1)求证:FG=CG;
(2)①当AE=______时,四边形BOEC为菱形;
②当AD=_______时,OG∥CF.
A B
18.(9分)2019年2月18日,“时代楷模”、伏牛山里的好教师——张玉滚
当选“感动中国2018年度人物”,在中原大地引起强烈反响.为了解学生对张玉滚事迹的知晓情况,某数学课外兴趣小组在本校学生中开展了专题调查活动,随机抽取了部分学生进行问卷调查,根据学生的答题情况,将结果分为A,B,C,D四类,将调查的数据整理后绘制成如下统计表及条形统计图(均不完整):
关注情况
根据以上信息解答下列问题:
(1)在这次抽样调查中,一共抽查了______名学生;
(2)统计表中,m=______,n=_______;
(3)请把条形统计图补充完整;
(4)该校共有学生1 500名,请你估算该校学生中对张玉滚事迹“非常了解”和“比较了解”的学生共有多少名.
19.(9分)某学校有一栋教学楼AB,小明(身高忽略不计)在教学楼一侧的斜
坡底端C处测得教学楼顶端A的仰角为68°,他沿着斜坡向上行走到达斜坡顶端E处,又测得教学楼顶端A的仰角为45°.已知斜坡的坡角(∠ECD)为30°,坡面长度CE=6 m,求楼房AB的高度.(结果精确到0.1 m,参考数
据:tan68°≈2.48
≈1.73)
A
B
C
D
E
68°
45°
20.(9分)如图,已知直线
1
2
y x b
=+与y轴交于点B(0,-3),与反比例函数
k
y
x
=
(x>0)的图象交于点A,与x轴交于点C,BC=3AC.(1)求反比例函数的解析式;
(2)若P是y轴上一动点,M是直线AB上方的反比例函数
k
y
x
=(x>0)
的图象上一动点,直线MN⊥x轴交直线AB于点N,求△PMN面积的最大值.
21.(10分)某商店购进了一种新款小电器,为了寻找合适的销售价格,进行了
为期5周的试营销,试营销的情况如下表所示:
的销量为y 台.
(1)观察表中的数据,推断y 与x 满足什么函数关系,并求出这个函数关系式;
(2)若想每周的利润为9 000元,则其售价应定为多少元?
(3)若每台小电器的售价不低于40元,但又不能高于进价的2倍,则如何定价才能更快地减少库存?此时每周最多可销售多少台?
22. (10分)问题发现:如图1,在△ABC 中,AB =AC ,∠BAC =60°,D 为BC
边上一点(不与点B ,C 重合),将线段AD 绕点A 逆时针旋转60°得到AE ,连接EC ,则
(1)①∠ACE 的度数是_______;
②线段AC ,CD ,CE 之间的数量关系是_______.
拓展探究:(2)如图2,在△ABC 中,AB =AC ,∠BAC =90°,D 为BC 边上一点(不与点B ,C 重合),将线段AD 绕点A 逆时针旋转90°得到AE ,连接EC ,请写出∠ACE 的度数及线段AD ,BD ,CD 之间的数量关系,并说明理由;
解决问题:(3)如图3,在Rt △DBC 中,DB =3,DC =5,∠BDC =90°,若点A 满足AB =AC ,∠BAC =90°,请直接写出线段AD 的长度.
A
B
C
D
E
图1
图2
A
B C
D E
图3
B
C
D
23. (11分)如图,已知二次函数2
12
y x bx c =
++的图象交x 轴于点A ,B ,交y 轴于点C (0,-2),一次函数1
2
y x n =
+的图象经过A ,C 两点,点P 为直线AC 下方二次函数图象上的一个动点,直线BP 交线段AC 于点E ,PF ⊥AC
于点F .
(1)求二次函数的解析式.
(2)求
PE
EB
的最大值及此时点P 的坐标. (3)连接CP ,是否存在点P ,使得Rt △CPF 中的一个锐角恰好等于
2∠BAC ?若存在,请直接写出点P 的坐标;否则,说明理由.。