无刷直流电机结构
无刷直流电动机的结构

无刷直流电动机的结构无刷直流电动机的结构无刷直流电动机是一种利用交错的磁极和通电线圈相互作用,产生转动力矩的电机。
它具有无刷、低噪音、高效率、长寿命等优点,因此在现代工业领域得到了广泛应用。
本文将从结构方面来介绍无刷直流电动机。
无刷直流电动机主要由转子、定子和刷头三部分组成。
1. 转子转子是一个由磁铁制成的圆盘形部件,其外形像一个空心圆柱体。
转子中间有一个空间,用来安装电动机的轴心。
转子表面有若干个等分的凸起部分,这些凸起部分被称为极对。
在每个极对之间都嵌入一定数量的磁石,也就是称为永磁体。
在一些高端的无刷直流电动机中,涂抹有永磁体的空间是由一些磁性材料填充的,称为磁化材料。
转子不仅具有瞬时转速高,转矩大小可控的特点,还具有自旋的性质,使得电动机的耐久性更高。
2. 定子定子是转子周围和转动轴线垂直方向的金属环标。
它内部铜线绕成若干个同心圆的环,并相交连接。
定子内的铜线通过不断的电流交替引起电磁场的产生,在磁场作用下使得转子有了转动的力矩。
定子中的铜线数量、截面积、匝数等参数的不同,直接影响着电动机的电磁特性,进而影响整个电动机的性能表现。
3. 刷头无刷直流电动机叫无刷的原因是因为在电机转子和定子间,没有传统电动机中的刷子。
因此,转子和定子之间的通孔内,配有多个位置传感器或编码器,用于检测转矩大小和转速等。
这些传感器和编码器将转速转矩信号传递给转速控制器,控制器再调节输入电流和电流方向来调节整个电机转速、转速和扭矩输出。
以上就是无刷直流电动机的结构概述。
需要注意的是,因为不同型号的无刷直流电动机在具体的结构设计、磁铁材料、转子形态等方面有很大差异,因此实际的电动机结构要更加复杂。
在后续的应用过程中,需要针对性的优化设计,确保其在不同工况下正常运作,更好地为现代工业的发展增益动力。
无刷直流电机原理结构

无刷直流电机原理结构一、原理:无刷直流电机是以电磁感应的原理工作的。
电机的主要部分包括定子和转子,定子上有若干个线圈,通以交变电流,产生旋转的磁场。
转子上装有多个永磁体,它们随着定子磁场的变化而旋转。
电机通过外部的控制电路来改变定子线圈通电的时间和顺序,从而实现转子的旋转控制。
二、结构:1.定子:定子是电机的静止部分,它通常由若干个相同的定子线圈组成,线圈绕在定子铁芯上,并固定在电机的外部结构上。
定子线圈的数量和形状取决于电机的设计和工作要求。
2.转子:转子是电机的旋转部分,它由多个永磁体组成,永磁体的材料通常是钕铁硼或钴磁体。
转子上的永磁体通过磁力产生旋转力矩,推动转子的旋转。
转子通常由外壳包裹在外,以保护永磁体和提供机械支撑。
3.传感器:无刷直流电机需要通过传感器来检测转子的位置和速度,以确定定子线圈的通电时间和顺序。
常用的传感器有霍尔传感器和编码器。
霍尔传感器通过检测转子上预先安装的霍尔元件的磁场变化来确定转子的位置。
编码器通过检测转子上的刻度盘来实时测量转子的位置和速度。
4.控制电路:控制电路是无刷直流电机的核心部分,通过控制电路可以控制定子线圈的通电时间和顺序,从而控制电机的转速和方向。
控制电路通常由微电子学设备和电磁驱动电路组成。
微电子学设备用于检测传感器信号和计算控制电流的参数,电磁驱动电路用于控制电流的流动和改变线圈的通电顺序。
三、工作过程:1.传感器检测:控制电路通过传感器检测转子的位置和速度。
2.定子线圈通电:根据传感器信号,控制电路决定定子线圈的通电时间和顺序。
3.磁场产生:定子线圈通电后,在定子铁芯上产生旋转的磁场。
4.磁场作用:磁场作用于转子上的永磁体,产生旋转力矩。
5.转子转动:转子随着磁场的变化而旋转,驱动电机的输出轴旋转。
6.循环控制:控制电路根据传感器信号实时调整定子线圈的通电时间和顺序,以保持电机的稳定工作。
永磁无刷直流电机的结构

永磁无刷直流电机的结构一、引言永磁无刷直流电机是一种高效率、高功率密度的电机,被广泛应用于家用电器、工业自动化、交通运输等领域。
本文将介绍永磁无刷直流电机的结构。
二、永磁无刷直流电机的基本结构1.转子永磁无刷直流电机的转子由永磁体和轴承组成。
永磁体通常采用稀土永磁材料,具有高矫顽力和高能量密度等特点,能够提供强大的磁场。
轴承则起到支撑和定位转子的作用。
2.定子永磁无刷直流电机的定子由铜线圈和铁芯组成。
铜线圈通常采用绕组方式制成,通过在定子中产生旋转磁场来驱动转子旋转。
铁芯则起到集中和导向磁场的作用。
3.传感器为了实现精确控制和保护,永磁无刷直流电机通常配备传感器。
传感器可以测量旋转速度、位置和温度等参数,并将其反馈给控制器进行处理。
4.控制器永磁无刷直流电机的控制器是一个重要的部件,它可以实现电机的启停、速度和位置控制、保护等功能。
控制器通常由微处理器、功率驱动芯片和其他电路组成。
三、永磁无刷直流电机的工作原理永磁无刷直流电机的工作原理基于法拉第定律和洛伦兹力定律。
当通过定子绕组通以直流电时,会在定子中产生一个旋转磁场。
由于转子上有永磁体,所以会在转子上产生一个与定子磁场相互作用的力,从而使转子开始旋转。
传感器可以测量转子位置和速度,并将其反馈给控制器进行处理,从而实现精确控制。
四、永磁无刷直流电机的优点1.高效率:由于采用了无刷结构,永磁无刷直流电机具有高效率和低能耗。
2.高功率密度:由于采用了稀土永磁材料和先进加工技术,永磁无刷直流电机具有高功率密度。
3.精确控制:配备传感器和控制器,可以实现精确的速度和位置控制。
4.可靠性高:由于无刷结构和传感器的使用,永磁无刷直流电机具有较高的可靠性。
五、永磁无刷直流电机的应用1.家用电器:如洗衣机、空调、吸尘器等。
2.工业自动化:如机床、自动化生产线等。
3.交通运输:如电动汽车、轮船、飞机等。
六、结论永磁无刷直流电机是一种高效率、高功率密度的电机,具有精确控制和高可靠性等优点,被广泛应用于家用电器、工业自动化和交通运输等领域。
有刷直流电机和无刷直流电机的结构及工作原理

有刷直流电机和无刷直流电机的结构及工作原理一、有刷直流电机的结构及工作原理1.1 有刷直流电机的组成部分有刷直流电机主要由以下几个部分组成:定子、转子、电刷、换向器和轴承。
其中,定子和转子是电机的核心部件,电刷和换向器则起到传输电流和实现换向的作用,轴承则保证了电机的正常运转。
1.2 有刷直流电机的工作原理有刷直流电机的工作原理主要是利用电刷在换向器表面产生摩擦力,使电流在定子和转子之间的线圈中产生磁场,从而实现电机的转动。
当电流通过定子线圈时,会产生一个磁场,这个磁场会与转子上的永磁体相互作用,使转子产生旋转力矩。
而电刷则在换向器表面不断滑动,当电流方向改变时,电刷与换向器之间的接触点也会随之改变,从而实现电流方向的切换。
这样,电机就能连续不断地转动下去。
二、无刷直流电机的结构及工作原理2.1 无刷直流电机的组成部分无刷直流电机与有刷直流电机相比,最大的区别在于它采用了无刷设计,即没有传统的电刷。
因此,无刷直流电机的主要组成部分包括:定子、转子、霍尔传感器、电子控制器和轴承等。
其中,定子和转子是电机的核心部件,霍尔传感器用于检测转子的转速,电子控制器则负责控制电机的运行,轴承则保证了电机的正常运转。
2.2 无刷直流电机的工作原理无刷直流电机的工作原理与有刷直流电机类似,也是通过电磁感应原理实现的。
当电流通过定子线圈时,会产生一个磁场,这个磁场会与转子上的永磁体相互作用,使转子产生旋转力矩。
由于无刷直流电机采用了无刷设计,因此不需要传统的电刷来实现换向。
相反,霍尔传感器会实时监测转子的转速,并将这些信息传递给电子控制器。
电子控制器根据这些信息来判断是否需要进行换向操作,从而实现连续不断地转动下去。
三、总结有刷直流电机和无刷直流电机虽然在结构上有所不同,但其工作原理都是基于电磁感应原理。
有刷直流电机通过电刷在换向器表面产生摩擦力来实现换向和连续转动;而无刷直流电机则采用霍尔传感器和电子控制器来实现换向和连续转动。
永磁无刷直流电机的构造

永磁无刷直流电机的构造永磁无刷直流电机是一种重要的电动机类型,其构造与传统的有刷直流电机有所不同。
在本文中,我们将深入探讨永磁无刷直流电机的构造,了解其工作原理以及与其他类型电机的区别。
一、永磁无刷直流电机的构造永磁无刷直流电机由多个关键组件构成,包括转子、定子和电子调速器。
下面我们将逐一介绍这些部件的功能和特点。
1. 转子转子是电机中的旋转部分,由永磁体和轴承组成。
其中,永磁体通常由稀土永磁材料制成,具有较高的磁场强度和矫顽力,能够提供较大的转矩。
轴承则用于支撑转子的转动,通常采用滚珠轴承或磁悬浮轴承。
2. 定子定子是电机中的固定部分,由线圈、铁心和绕组等组成。
线圈通常由导电材料绕制而成,绕制方式包括单层绕组和多层绕组。
铁心则用于增强磁场,并且通过绕组与转子的磁场相互作用,实现电能到机械能的转换。
3. 电子调速器电子调速器是永磁无刷直流电机的控制中枢,通过电子器件对电机的电流进行控制和调节。
常见的电子调速器包括三相桥式整流器、逆变器和控制芯片等。
电子调速器通过控制转子上的永磁体和定子上的绕组之间的电流关系,实现对电机转速和扭矩的精准调控。
二、永磁无刷直流电机的工作原理永磁无刷直流电机的工作原理基于磁场的相互作用,其具体过程如下:1. 磁场形成当电流通过定子绕组时,会在定子和转子之间产生一个旋转磁场。
这个旋转磁场由定子绕组的电流和转子上的永磁体形成。
2. 磁场相互作用转子上的永磁体与定子绕组之间的磁场相互作用,导致转子受到力矩的作用而开始旋转。
这个力矩的大小与磁场强度、永磁体形状和绕组电流等因素有关。
3. 电子调速器控制电子调速器通过控制定子绕组的电流和磁场强度,可以实现对电机转速和扭矩的调节。
通过改变电子调速器的工作方式,可以实现电机的正转、反转和调速等功能。
三、永磁无刷直流电机与其他电机的区别与传统的有刷直流电机相比,永磁无刷直流电机具有以下特点:1. 无刷结构永磁无刷直流电机采用了无刷结构,消除了传统电机中刷子的使用,减少了能量损耗和机械磨损,并提高了电机的可靠性和寿命。
无刷直流电机的组成结构

无刷直流电机的组成结构
无刷直流电机是一种高效、低噪音、低维护成本的电机,广泛应用于各种领域。
它的组成结构主要包括转子、定子、电子换向器和传感器。
转子是无刷直流电机的旋转部分,通常由永磁体和轴承组成。
永磁体是一种具有恒定磁场的材料,可以产生旋转力矩。
轴承则用于支撑转子,减少摩擦和磨损。
定子是无刷直流电机的静止部分,通常由铁芯、线圈和端盖组成。
铁芯是一种具有高导磁性的材料,可以集中磁场,增强电机的输出功率。
线圈则是通过电流产生磁场,与永磁体相互作用,产生旋转力矩。
端盖则用于固定线圈和铁芯,保护电机内部零部件。
电子换向器是无刷直流电机的控制部分,通常由晶体管、电容器和电阻器组成。
它的主要作用是控制电流的方向和大小,使电机能够按照预定的速度和方向旋转。
电子换向器还可以通过PWM调制技术,实现电机的速度调节和节能控制。
传感器是无刷直流电机的反馈部分,通常由霍尔元件和磁铁组成。
它的主要作用是检测电机的转速和位置,将信号反馈给电子换向器,实现闭环控制。
传感器还可以通过编码器技术,实现电机的精确控制和位置反馈。
无刷直流电机的组成结构是一个复杂的系统,各个部分相互作用,
共同实现电机的高效、稳定和可靠运行。
在实际应用中,需要根据不同的需求和环境,选择合适的电机型号和参数,以达到最佳的性能和效果。
无刷直流电机的结构

无刷直流电机的结构无刷直流电机是一种形式高效、速度快、高性能的电机,它已经在各种应用中得到广泛的应用。
这种电机具有许多优点,如高效、低噪音、低振动、长寿命、高精度、高速度和高扭矩等。
本文将详细介绍无刷直流电机的结构。
一、电机的结构无刷直流电机主要由四部分组成:转子、定子、电子换相器和磁极。
它们各自承担着不同的任务,使电机能够正常运转。
1.转子转子通常是由一些磁体或永磁体组成。
当电流通过定子的线圈时,它们会产生一个磁干扰,使转子始终朝向电机的开口处旋转。
这种旋转使电机能够产生扭矩和功率。
2.定子定子是轴承转子的零件,它由一个或多个线圈组成。
当电流通过这些线圈时,它们会产生一个磁场,转子就会受到作用力而旋转。
定子的线圈数量和排列方式对电机的速度和扭矩产生很大的影响。
3.电子换相器电子换相器是一个用来控制电流方向和大小的设备。
它通过将交流电流转换为直流电流来驱动电机。
电子换相器还可以控制电机的速度和扭矩等参数,从而使电机能够满足不同的需求。
4.磁极磁极是电机中的一个重要部分。
它通常由永磁体或电磁铁制成,承担着产生磁场的任务。
磁极的数量和排列方式决定了电机的运行效果。
二、电机的工作原理无刷直流电机主要依靠磁场的吸引力和斥力来完成旋转。
当电流通过定子的线圈时,它们会产生一个磁场,将转子对应的磁极吸引到它面前,并将其推到下一个磁极。
这个过程持续进行,直到电机停止。
通过轮换磁极的方式,电机能够实现高效的旋转,并同时保证多种参数,如速度、扭矩和功率等方面的控制。
与传统的直流电机相比,无刷直流电机的结构更加简单和紧凑,具有更高的运行效率和LED控制方式等优点。
总之,无刷直流电机的结构在现代工业和民用领域中得到了广泛应用,具有固定的技术,广阔的市场前景和规模化的应用方向。
因此,我们应该在实际生产和使用中重视无刷直流电机的研究和推广,使得这种电机能够满足更多的需求。
步进电机和直流无刷电机内部结构

步进电机和直流无刷电机内部结构
步进电机和直流无刷电机是常见的两种电机类型,它们在内部结构上有一些区别。
1. 步进电机的内部结构:
步进电机由定子、转子、磁路和绕组等组成。
定子通常是由磁铁或电磁铁制成,用于产生磁场。
转子通常是由带有磁性材料的齿轮或磁铁制成,围绕着定子旋转。
步进电机中的绕组被连到外部的电源,从而使电机产生磁场并实现旋转。
步进电机的转子以步进的方式运动,每次接收一个控制信号就会迈进一个固定的角度。
2. 直流无刷电机的内部结构:
直流无刷电机由永磁体、定子、转子和电子元件等组成。
永磁体通常由强磁性材料制成,用于产生磁场。
定子是包含绕组的部分,它的绕组被连接到外部电源,使电机产生磁场。
转子通常由带有磁性材料的永磁体制成,并通过与定子磁场的相互作用来旋转。
直流无刷电机的电子元件负责控制定子绕组的电流,以实现转子的旋转控制。
总的来说,步进电机是一种根据控制信号进行精确步进运动的电机,而直流无刷电机则通过电子元件控制定子电流,实现平滑的旋转运动。
这两种电机在不同的应用场景中有着各自的优势和特点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 磁回路分析法图1-4 (摘自Freescale PZ104文档)在图1-4中,当两头的线圈通上电流时,根据右手螺旋定则,会产生方向指向右的外加磁感应强度B(如粗箭头方向所示),而中间的转子会尽量使自己部的磁力线方向与外磁力线方向保持一致,以形成一个最短闭合磁力线回路,这样转子就会按顺时针方向旋转了。
“当转子磁场方向与外部磁场方向垂直时,转子所受的转动力矩最大”。
注意这里说的是“力矩”最大,而不是“力”最大。
诚然,在转子磁场与外部磁场方向一致时,转子所受磁力最大,但此时转子呈水平状态,力臂为0,当然也就不会转动了。
当转子转到水平位置时,虽然不再受到转动力矩的作用,但由于惯性原因,还会继续顺时针转动,这时若改变两头螺线管的电流方向,如下图所示,转子就会继续顺时针向前转动,见图1-5所示:图1-5 (摘自Freescale PZ104文档)如此不断改变两头螺线管的电流方向,转子就会不停转起来了。
改变电流方向的这一动作,就叫做换相(commutation)。
注意:何时换相只与转子的位置有关,而与转速无关。
以上是两相两级无刷电机的工作原理,,下面我们来看三相两极无刷电机的构造。
2. 三相二极转子电机结构定子三相绕组有星形联结方式和三角联结方式,而“三相星形联结的二二导通方式”最常用。
图1-6 (修改自Freescale PZ104文档)图1-6显示了定子绕组的联结方式(转子未画出),三个绕组通过中心的连接点以“Y”型的方式被联结在一起。
整个电机就引出三根线A, B, C。
当它们之间两两通电时,有6种情况,分别是AB, AC, BC, BA, CA, CB,图1-7(a)~(f)分别描述了这6种情况下每个通电线圈产生的磁感应强度的方向(红、兰色表示)和两个线圈的合成磁感应强度方向(绿色表示)。
在图(a)中,AB相通电,中间的转子(图中未画出)会尽量往绿色箭头方向对齐,当转子到达图(a)中绿色箭头位置时,外线圈换相,改成AC相通电,这时转子会继续运动,并尽量往图(b)中的绿色箭头处对齐,当转子到达图(b)中箭头位置时,外线圈再次换相,改成BC相通电,再往后以此类推。
当外线圈完成6次换相后,转子正好旋转一周(即360°)。
再次重申一下:何时换相只与转子位置有关,而与转速无关。
图1-8中画出了换相前和换相后合成磁场方向的比较与转子位置的变化。
一般来说,换相时,转子应该处于,比与新的合成磁力线方向垂直的位置不到一点的钝角位置,这样可以使产生最大的转矩的垂直位置正好处于本次通电的中间时刻。
(a) AB相通电情形(b) AC相通电情形(c) BC相通电情形(d) BA 相通电情形(e) CA 相通电情形(f) CB相通电情形图1-8 换相前和换相后的情形(摘自Freescale PZ104文档)3. 三相多绕组多极转子电机的结构搞清了最简单的三相三绕组二极电机,我们再来看一个复杂点的,图1-9(a)是一个三相九绕组六极(三对极)转子电机,它的绕组连线方式见图1-9(b)。
从图(b)可见,其三相绕组也是在中间点连接在一起的,也属于星形联结方式。
一般而言,电机的绕组数量都和永磁极的数量是不一致的(比如用9绕组6极,而不是6绕组6极),这样是为了防止定子的齿与转子的磁钢相吸而对齐,产生类似步进电机的效果,此种情况下转矩会产生很大波动。
(a) 电机定子与转子结构(b) 绕组联结方式(摘自5iMX论坛)图1-9 三相9绕组3对极转子无刷直流电机结构二二导通时的6种通电情况自行分析,原则是转子的N(S)极与通电绕组的S(N)极有对齐的运动趋势。
图1-10给出了一个对齐的运动趋势的图例。
图1-10 某2相通电时的转子磁极和定子磁极对齐运动的最终位置1.4 无刷直流电机转矩的理论分析1. 传统的无刷电机绕组结构其线圈形状见图1-16,线圈包围整个转子。
电机三相绕组示意图见图1-17。
图1-16 磁场中的线圈图1-17 电机绕组和转子抽象示意图图1-17中为简略示意起见,每相只画出了一个线圈,其实每相应该有N匝线圈。
其绕组联结方式为:A’、B’、C’端通过星形联结在一起,A、B、C为电机的三根引出线。
无刷直流电机定子绕组结构如下:2.转子磁场的分布情况图1-19展示了转子磁极的磁感应强度B的分布情况。
我们预定义磁感应强度方向向外为正,从图中可以看出,在0°的时候,处于正反方向交界处,磁感应强度为零,然后开始线性增加,在A点时达到最大,然后一直保持恒定值不变,直到B点开始下降,到180°的时候下降到零。
然后开始负向增长,在C点处达到负值最大,然后保持恒定负值不变,直到D点强度开始减弱,到0°时又回到零。
至于A点到底在几度的位置,不同的电机不一样。
如果A非常接近0°的位置,上升和下降直线就会非常陡峭,“梯形波”就变成了“方波”。
根据右手定则E=BLV的公式,在匀速转动下,各绕组产生的反电动势波形也呈梯形波/方波。
——解释“梯形波/方波”是什么意思图1-19 转子磁感应强度分布情况与此类似,上文提到的另一种“正弦波”电机就是一种磁感应强度呈正弦波图形分布的直流无刷电机,也叫永磁同步电机。
这种电机的绕组结构和我们的梯形波电机的绕组结构不太相同,进而驱动方式也不太相同,需要用到矢量分析法,由于本文只关注于梯形波的无刷直流电机,故对这种正弦波电机不展开讨论了。
3、转子的受力分析在图1-20(a)中,AB相通电,电流处于转子产生的磁场,根据左手定则,我们判断线圈AA’中的上半部导线A受到一个顺时针方向的电磁力,而AA’的下半部导线A’也受到一个顺时针方向的电磁力。
由于线圈绕组在定子上,定子是固定不动的,故根据作用力与反作用力,定子绕组AA’会施加给转子一个逆时针方向的反作用力,转子在这个力的作用下,就转起来了。
同理,与AA’的情况类似,BB’也会对转子产生一个逆时针的反作用力。
当转子逆时针转过60°后,到达图1-20(b)的位置,这时线圈BB’已经到达转子磁极的边缘位置了,再转下去就要产生反方向的力了,所以这时就要换相,换成AC相通电,见图1-20(c)。
这样,每过60°换相通电,转子就可以一直转下去了。
(a) AB相通电(b) 转过60°(c) AC相通电(d) 转过60°(e) BC相通电(f) 转过60°(g) BA相通电(h) 转过60°(i) CA相通电(j) 转过60°(k) CB相通电(l) 转过60°4. 一种近似分析模型刚才的讨论全都基于一个假设,就是转子磁场的磁力线是垂直穿过绕组的导线的。
但事实上,磁力线总是倾向于沿磁阻最小的路径前进,其实并不穿过导线,见下图图1-21 磁力线分布现仍以新西达2212电机为例,为了方便说明问题,每个绕组的N匝线圈现都简化成了一个,而且我们对所有绕组和磁极都做一了个编号,见图1-22。
AB相通电时,A1-1导线处在N极下,根据左手定则,受到一个顺时针方向的作用力,即同时施加给转子一个逆时针方向的反作用力。
同时,A1-2导线处于S极下,但电流方向与A1-1相反,所以还是会施加给转子一个逆时针方向的作用力。
图1-22 新西达2212电机AB相通电时情形1.5 换相与调速1. 换相基本原理(1) 转子位置与过零检测前面已经唧唧歪歪过很多遍了,换相的时机只取决于转子的位置,那顺理成章的问题就是:转子的位置怎么测?一种比较简单的方式是用光电编码盘,这个东西在工业上用得比较多。
不过由于其价格比较贵,而且还要接联轴器等一堆乱七八糟的东西,分量也不轻,显然不适合我们做四轴用。
图1-23一种4位二进制编码盘霍耳效应测量器件可以根据转子不同位置时的不同磁场方向分布情况,而给出1或0的输出,一般在电机的不同位置上装三个霍尔传感器,就可测出转子的位置。
这就是所谓的“有感无刷电机的驱动”。
接下来就是我们本文要主讲的“无感”测量方式。
无传感器怎么测量?答:利用第三相的感生电动势。
无感驱动方式的优点在于省略了三个霍尔传感器,整套系统分量更轻,结构更简单。
回过头再去看图1-20,先看图(a)和图(b),在AB通电期间,你会发现线圈CC’的C边在图(a)中切割N极的磁力线并产生一个正向的感生电动势,在图(b)中确是切割S极的磁力线而产生一个反向的感生电动势了;C’边的情况也类似。
(这里我们定义:在转子逆时针旋转时,C边切割N极磁力线和C’边切割S极磁力线产生的感生电动势为正;AA’和BB’也用类似的定义)。
这说明,在AB相通电期间,如果我们去测量线圈CC’上的电压,会发现其间有一个从正到负的变化过程。
与此类似,图(c)~图(l)中的情况也可以用相同的方法分析出来,如图1-24所示(图在下页)。
这里需要说明一下的是,在AB相通电期间,不只是线圈CC’上产生感生电动势,其实AA’和BB’也在切割磁力线,也都会产生感生电动势,其电动势方向与外加的12V电源相反,所以叫“反向感生电动势”(BEMF)。
其等效电路图见图1-25。
图1-25 AB相通电期间线圈AA’和BB’的等效电路图1-24 六种通电情形下各绕组的电流和感生电动势从图1-25可以看出,线圈绕组AA’和BB’上产生的反电动势是很大的,两个加起来几乎略小于12V。
为什么呢,因为线圈绕组本身的等效电阻很小(约0.1欧左右),如果反电动势不大的话,端电压加载在线圈绕组等效电阻上,会产生巨大的电流,线圈非烧掉不可。
为方便理解,我们姑且假设在额定转速下AA’和BB’各产生5.7V的反电动势,那么它们串联起来就产生11.4V的反电动势,结合图1-25看,那么加载在等效电阻上的电压就为V,最终通过绕组AB的电流就是1211.40.6−=0.6/(20.1)3×=A,看来这个假设还是比较合理的。
同理,由于各绕组的结构是相同的,切割磁力线的速度也是相同的,所以线圈CC’也应该会产生一个大小约为5.7V的感生电动势;不同的是:在AB相通电期间,CC’的感生电动势会整个换一个方向,也即所谓的“过零点”。
在图1-24的t0时刻(即图1-20(a)的位置),为AB相通电刚开始时的情况,CC’产生的感生电动势的等效电路图如图1-26(a)所示;而在图1-24的t1时刻(即图1-20(b)的位置),为AB相通电快结束时的情况,CC’产生的感生电动势的等效电路图如图1-26(b)所示。
(a) t0时刻的等效电路图(b) t1时刻的等效电路图图1-26 AB相通电期间CC’的感生电动势由于中点电势值始终为6V,CC’的线圈产生的感生电动势只能在以中点6V电势为基准点的基础上叠加,仍旧假设在额定转速下CC’上会产生5.7V的感生电动势,那么在t0时刻,如果我们去测量C点的电压,其值应为65.711.7+=V;在t1时刻,C点的电压值应为。