动量-含弹簧的碰撞模型

合集下载

动量守恒定律的典型模型

动量守恒定律的典型模型
是匀速行走还是变速行走,甚至往返行走,只要 人最终到达船的左端,那么结论都是相同的。
3、人船模型的适用条件是:两个物体组成的 系统动量守恒,系统的合动量为零。
例7. 质量为m的人站在质量为M,长为L的静止小船的 右端,小船的左端靠在岸边。当他向左走到船的左端时, 船左端离岸多远?
解:先画出示意图。人、船系统动量守恒,总动
动量守恒典型问题
碰撞中弹簧模型
三、碰撞中弹簧模型
注意:状态的把握 由于弹簧的弹力随形变量变化,弹簧 弹力联系的“两体模型”一般都是作加速 度变化的复杂运动,所以通常需要用“动 量关系”和“能量关系”分析求解。复杂 的运动过程不容易明确,特殊的状态必须 把握:弹簧最长(短)时两体的速度相同; 弹簧自由时两体的速度最大(小)。
完全非弹性碰撞
碰撞后系统以相同的速度运动 v1=v2=v 动量守恒:
m1v10 m2v20 m1 m2 v
动能损失为
E=
1 2
m1v120
1 2
m2v220
1 2
m1
m2
v 2
m1m1
2 m1 m2
v10 v20 2
例1. 如图所示,光滑水平面上质量为m1=2kg的物 块以v0=2m/s的初速冲向质量为m2=6kg静止的光滑 1/4圆弧面斜劈体。求:
多大的速度做匀速运动.取重力加速度g=10m/s2.
m=1.0kg
C
v0 =2.0m/s
B
A
M=2.0kg M=2.0kg
解:先假设小物块C 在木板B上移动距离 x 后,停在B上.这
时A、B、C 三者的速度相等,设为V.
由动量守恒得 mv0 (m 2M )V

在此过程中,木板B 的位移为S,小木块C 的位移为S+x.

高三总复习物理课件 动量守恒中的三类典型模型

高三总复习物理课件 动量守恒中的三类典型模型
动量守恒中的三类典型模型
01
着眼“四翼” 探考点
题型·规律·方法
பைடு நூலகம்
02
聚焦“素养” 提能力
巧学·妙解·应用
01
着眼“四翼” 探考点
题型·规律·方法
模型一 “滑块—弹簧”模型
模型 图示
模型 特点
(1)两个或两个以上的物体与弹簧相互作用的过程中,若系统所受外力的 矢量和为零,则系统动量守恒。 (2)在能量方面,若系统所受的外力和除弹簧弹力以外的内力不做功,系 统机械能守恒。 (3)弹簧处于最长(最短)状态时两物体速度相等,弹性势能最大,系统动 能通常最小(完全非弹性碰撞拓展模型)。 (4)弹簧恢复原长时,弹性势能为零,系统动能最大(完全弹性碰撞拓展模 型,相当于碰撞结束时)
[例 1] 如图甲所示,物块 A、B 的质量分别是 mA=4.0 kg 和 mB=3.0 kg。用轻弹 簧拴接,放在光滑的水平地面上,物块 B 右侧与竖直墙相接触。另有一物块 C 从 t=0 时以一定速度向右运动,在 t=4 s 时与物块 A 相碰,并立即与 A 粘在一起不再分开, 物块 C 的 v-t 图像如图乙所示。求:
()
A.13mv02 C.112mv02
B.15mv02 D.145mv02
解析:当 C 与 A 发生弹性正碰时,根据动量守恒定律和能量守恒定律有 mv0=mv1+ 2mv2,12mv02=12mv12+12(2m)v22,联立解得 v2=23v0,当 A、B 速度相等时,弹簧的弹 性势能最大,设共同速度为 v,以 A 的初速度方向为正方向,则由动量守恒定律得 2mv2 =(2m+3m)v,由机械能守恒定律可知,Ep+12(5m)v2=12(2m)v22,解得 Ep=145mv02; 当 C 与 A 发生完全非弹性正碰时,根据动量守恒定律有 mv0=3mv1′,当 A、B、C 速度相等时弹簧的弹性势能最大,设共同速度为 v′,则由动量守恒定律得 3mv1′= 6mv′,由机械能守恒定律可知,Ep′=12(3m)v1′2-12(6m)v′2,解得 Ep′=112mv02,由 此可知,碰后弹簧的最大弹性势能范围是112mv02≤Ep≤145mv02,故选 A。 答案:A

专题16 类碰撞模型(解析版)

专题16 类碰撞模型(解析版)

2023年高三物理二轮常见模型与方法强化专训专练专题16 类碰撞模型一、与弹簧有关的类碰撞模型1.如图所示,两光滑且平行的固定水平杆位于同一竖直平面内,两静止小球m 1、m 2分别穿在两杆上,两球间连接一个保持原长的竖直轻弹簧,现给小球m 2一个水平向右的初速度v 0.如果两杆足够长,则在此后的运动过程中( )A .m 1、m 2组成的系统动量守恒B .m 1、m 2组成的系统机械能守恒C .弹簧最长时,其弹性势能为12m 2v 02 D .当m 1速度达到最大时,m 2速度最小 【答案】A【详解】由于两球竖直方向上受力平衡,水平方向所受的弹力的弹力大小相等,方向相反,所以两球组成的系统所受的合外力为零,系统的动量守恒,A 正确;对于弹簧、12m m 、组成的系统,只有弹力做功,系统的机械能守恒,由于弹性势能是变化的,所以12m m 、组成的系统机械能不守恒,B 错误;当两球的速度相等时,弹簧最长,弹簧的弹性势能最大,以向右为正方向,由动量守恒定律得()2012m v m m v =+,解得2012m v v m m =+,由系统的机械能守恒得()2220121122P m v m m v E =++,解得()2120122Pm m v E m m =+,C 错误;若12m m >,当弹簧伸长时,1m 一直在加速,当弹簧再次恢复原长时1m 速度达到最大.弹簧伸长时2m 先减速后,速度减至零向左加速,最小速度为零.所以1m 速度达到最大时,2m 速度不是最小,D 错误. 2.如图所示,A 、B 、C 三个半径相同的小球穿在两根平行且光滑的足够长的水平杆上,三个球的质量分别为ma =1kg ,mb =3kg ,mc =1kg , 初始状态三个球均静止,B 、C 球之间连着一根轻质弹簧,弹簧处于原长状态。

现给A 一个向左的初速度v 0= 10m/s ,之后A 与B 发生弹性碰撞。

球A 和B 碰后,下列说法正确的是( )A .球A 的速度变为向右的5m/sB .弹簧恢复原长时球C 的速度为5m/s C .球B 的最小速度为2. 5m/sD .弹簧的最大弹性势能为9. 375J【答案】ACD【详解】A .A 与B 发生弹性碰撞,动量守恒得012A A B m v m v m v =+机械能守恒得222012111222A AB m v m v m v =+ 解得15m/s v =−;25m/s v =,A 正确;D .碰后B 向左运动,因为弹簧弹力的作用,B 向左减速,C 向右加速,当B 、C 速度相等时弹簧最长,弹簧的弹性势能最大,由23()B B C m m m =+v v ;22p 2311()22B BC E m m m =−+v v 解得p 9.375J E =,D 正确;BC .接下来B 继续减速,C 继续加速,C 的速度大于B 的速度,弹簧开始缩短,当弹簧恢复原长时球B 的速度最小,由245B B C m m m =+v v v ;222245111222B BC m m m =+v v v 解得4 2.5m/s =v ;57.5m/s =v ,B 错误C 正确。

(完整版)动量守恒定律弹簧模型

(完整版)动量守恒定律弹簧模型

弹簧模型+子弹打木块模型弹簧模型1.两物块A、B用轻弹簧相连,质量均为2kg,初始时弹簧处于原长,A、B两物块都以v=6m/s的速度在光滑的水平地面上运动,质量为4kg的物块C静止在前方,如图4所示.B 与C碰撞后二者会粘在一起运动.则在以后的运动中:(1)当弹簧的弹性势能最大时,物块A的速度为多大?(2)系统中弹性势能的最大值是多少?2.(多选)光滑水平地面上,A、B两物体质量都为m,A以速度v向右运动,B原来静止,左端有一轻弹簧,如图所示,当A撞上弹簧,弹簧被压缩最短时()A.A、B系统总动量仍然为mvB.A的动量变为零C.B的动量达到最大值D.A、B的速度相等3.如图所示,质量相等的两个滑块位于光滑水平桌面上,其中弹簧两端分别与静止的滑块N 和挡板P相连接,弹簧与挡板的质量均不计;滑块M以初速度v0向右运动,它与档板P碰撞(不粘连)后开始压缩弹簧,最后滑块N以速度v0向右运动。

在此过程中( )A.M的速度等于0时,弹簧的弹性势能最大B.M与N具有相同的速度时,两滑块动能之和最小C.M的速度为v0/2时,弹簧的长度最长D.M的速度为v0/2时,弹簧的长度最短4.如图甲所示,一轻弹簧的两端与质量分别是m1和m2的两木块A、B相连,静止在光滑水平面上.现使A瞬间获得水平向右的速度v=3 m/s,以此时刻为计时起点,两木块的速度随时间变化规律如图乙所示,从图示信息可知()A.t1时刻弹簧最短,t3时刻弹簧最长B.从t1时刻到t2时刻弹簧由伸长状态恢复到原长C.两木块的质量之比为m1:m2=1:2D.在t2时刻两木块动能之比为E K1:E K2=1:45.质量为m的物块甲以3 m/s的速度在光滑水平面上运动,有一轻弹簧固定其上,另一质量也为m的物块乙以4 m/s的速度与甲相向运动,如图所示,则()A.甲、乙两物块在弹簧压缩过程中,由于弹力作用,动量不守恒B.当两物块相距最近时,物块甲的速率为零C.当物块甲的速率为1 m/s时,物块乙的速率可能为2 m/s,也可能为0D.物块甲的速率可能达到5 m/s6.如图所示,质量M=4 kg的滑板B静止放在光滑水平面上,其右端固定一根轻质弹簧,弹簧的自由端C到滑板左端的距离L=0.5 m,这段滑板与木块A(可视为质点)之间的动摩擦因数μ=0.2,而弹簧自由端C到弹簧固定端D所对应的滑板上表面光滑.小木块A以速度v0=10 m/s由滑板B左端开始沿滑板B表面向右运动.已知木块A的质量m=1 kg,g取10 m/s2.求:(1)弹簧被压缩到最短时木块A的速度大小;(2)木块A压缩弹簧过程中弹簧的最大弹性势能.7.如图光滑水平直轨道上有三个质量均为m的物块A、B、C.B的左侧固定一轻弹簧(弹簧左侧的挡板质量不计).设A以速度v0朝B运动,压缩弹簧;当A、B速度相等时,B与C恰好相碰并粘接在一起,然后继续运动.假设B和C碰撞过程时间极短.求从A开始压缩弹簧直至与弹簧分离的过程中,(3)整个系统损失的机械能;(4)弹簧被压缩到最短时的弹性势能.8.质量为m的钢板与直立弹簧的上端连接,弹簧下端固定在地上,平衡时,弹簧的压缩量为x0,如图所示,一物块从钢板正上方距离为3x0的A处自由落下,打在钢板上并立刻与钢板一起向下运动,但不粘连,它们到达最低点后又向上运动.已知物块质量也为m时,它们恰能回到O点。

动量守恒中几种常见的模型

动量守恒中几种常见的模型
模型一: 子弹击打木块模型
1、动力学规律:子弹和木块构成旳系统受到大小相等方 向相反旳一对相互作用力,故加速度旳大小和质量成反比, 方向相反。
2、运动学及热量计算:子弹穿过木块旳过程能够看作是 两个做匀变速直线运动旳物体间旳追及问题,在一段时间 内子弹射入木块旳深度,就是两者相对位移旳大小。而整 个过程产生旳热量等于滑动摩擦力和相对位移旳乘积。即 Q=Ff*s
代 根而入据f=数能μm据量g得守代:恒入定V=数律2m据得/解s:得fL: 12Lm=1v002m .12 M mv2
模型四:
带弹簧旳木板与滑块模型
如图所示,坡道顶端距水平面高度为h,质量为m1旳小物块 A从坡道顶端由静止滑下,进入水平面上旳滑道时无机械能 损失,为使A制动,将轻弹簧旳一端固定在水平滑道延长线 M处旳墙上,另一端与质量为m2旳档板B相连,弹簧处于原 长时,B恰位于滑道旳末端O点.A与B碰撞时间极短,碰后 结合在一起共同压缩弹簧,已知在OM段A、B与水平面间旳 动摩擦因数均为μ,其他各处旳摩擦不计,重力加速度为g, 求: (1)物块A在与挡板B碰撞前瞬间速度v旳大小; (2)弹簧最大压缩量为d时旳弹性势能Ep(设弹簧处于原长 时弹性势能为零).
μ
mgL
1 2
m0
m
v2 1
1 2
Mv 2
1 2
m0
m
M
v 2 2

由①②③解得v0=149.6m/s为最大值, 所以v0≤149.6m/s
解:(1)物块A从坡道顶端由静止滑至O点旳过程,
由机械能守恒定律,得:m1gh 1 m1v2
代入数据得:v 2gh
2
(2)A、B在碰撞过程中内力远不小于外力,系统动
量守恒,以向左为正方向,由动量守恒定律得:

动量中的弹簧模型

动量中的弹簧模型

动量中的弹簧模型
动量中的弹簧模型是一种物理模型,用于描述物体在碰撞时弹性和非弹性的行为。

该模型假设物体在碰撞中的动量守恒,同时考虑了弹簧的弹性力和阻力。

在该模型中,物体之间的碰撞会引起弹簧的变形,从而产生弹性力。

弹簧的弹性力大小与其伸缩的程度成正比,与其弹性常数有关。

同时,物体在碰撞中还会受到阻力的作用,这种阻力可以模拟摩擦力或空气阻力等因素。

通过使用动量中的弹簧模型,可以研究物体在碰撞中的运动情况,例如速度和位置的变化、能量的转化等。

该模型在物理学中有广泛的应用,可以用于设计汽车安全气囊、优化体育比赛装备等方面。

- 1 -。

高考物理弹簧类问题的几种模型及其处理方法归纳

高考物理弹簧类问题的几种模型及其处理方法归纳
弹力仍为mg,小于AB整体重力2mg,所以物体AB所受合力仍然为向下, 物体仍然向下加速,做加速度减小的加速运动。当弹簧的弹力增大到正 好为2mg时,物体AB合力为0,物体继续向下运动。
第四阶段:弹簧继续被压缩,压缩量继续增加,产生的弹力继续增 加,大于2mg,使得物体AB所受合力变为向上,物体开始向下减速,直
分析:(1)当剪断细线l2瞬间,不仅l2对小球拉力瞬间消失,l1的 拉力也同时消失,此时,小球只受重力作用,所以此时小球的加速度为 重力加速度g。
(2)当把细线l1改为长度相同、质量不计的轻弹簧时,在当剪断细
线l2瞬间,只有l2对小球拉力瞬间消失,弹簧对小球的弹力和剪断l2之 前没变化,因为弹簧恢复形变需要一个过程。如图5所示,剪断l2瞬 间,小球受重力G和弹簧弹力,所以有:
A.A开始运动时 C.B的速度等于零时
B.A的速度等于v时 D.A和B的速度相等时
分析:解决这样的问题,最好的方法就是能够将两个物体作用的过 程细化,明确两个物体在相互作用的过程中,其详细的运动特点。具体 分析如下:
(1)弹簧的压缩过程:A物体向B运动,使得弹簧处于压缩状态,压 缩的弹簧分别对A、B物体产生如右中图的作用力,使A向右减速运动, 使B向右加速运动。由于在开始的时候,A的速度比B的大,故两者之间 的距离在减小,弹簧不断压缩,弹簧产生的弹力越来越大,直到某个瞬 间两个物体的速度相等,弹簧压缩到最短。
2 过程中所加外力F的最大值和最小值。 ⑵此过程中力F所做的功。(设整个过程弹簧都在弹性限度内,取 g=10m/s2)
分析:此题考查学生对A物体上升过程中详细运动过程的理解。在力 F刚刚作用在A上时,A物体受到重力mg,弹簧向上的弹力T,竖直向上的 拉力F。随着弹簧压缩量逐渐减小,弹簧对A的向上的弹力逐渐减小,则 F必须变大,以满足F+T-mg=ma。当弹簧恢复原长时,弹簧弹力消失,只 有F-mg=ma;随着A物体继续向上运动,弹簧开始处于拉伸状态,则物体 A的受到重力mg,弹簧向下的弹力T,竖直向上的拉力F,满足F-Tmg=ma。随着弹簧弹力的增大,拉力F也逐渐增大,以保持加速度不变。 等到弹簧拉伸到足够长,使得B物体恰好离开地面时,弹簧弹力大小等 于B物体的重力。

弹性碰撞模型-动量守恒的十种模型(解析版)

弹性碰撞模型-动量守恒的十种模型(解析版)

动量守恒的八种模型弹性碰撞模型模型解读1.碰撞过程的四个特点(1)时间短:在碰撞现象中,相互作用的时间很短。

(2)相互作用力大:碰撞过程中,相互作用力先急剧增大,后急剧减小,平均作用力很大。

(3)位移小:碰撞过程是在一瞬间发生的,时间极短,在物体发生碰撞的瞬间,可忽略物体的位移,认为物体在碰撞前后仍在同一位置。

(4)满足动量守恒的条件:系统的内力远远大于外力,所以即使系统所受合外力不为零,外力也可以忽略,系统的总动量守恒。

(5).速度要符合实际(i)如果碰前两物体同向运动,则后面物体的速度必大于前面物体的速度,即v后>v前,否则无法实现碰撞。

碰撞后,原来在前的物体的速度一定增大,且原来在前的物体的速度大于或等于原来在后的物体的速度v'前≥v'后。

(ii)如果碰前两物体是相向运动,则碰后两物体的运动方向不可能都不改变,除非两物体碰撞后速度均为零。

若碰后沿同向运动,则前面物体的速度大于或等于后面物体的速度,即v'前≥v'后。

2.动动弹性碰撞已知两个刚性小球质量分别是m1、m2,m1v1+m2v2=m1v1'+m2v2',1 2m1v21+12m2v22=12m2v'22+12m乙v2乙,3.一动一静"弹性碰撞模型如图所示,已知A、B两个刚性小球质量分别是m1、m2,小球B静止在光滑水平面上,A以初速度v0与小球B发生弹性碰撞,取小球A初速度v0的方向为正方向,因发生的是弹性碰撞,碰撞前后系统动量守恒、动能不变,有m1v0=m1v1+m2v21 2m1v20=12m1v21+12m2v22联立解得v1=(m1-m2)v0m1+m2,v2=2m1v0m1+m2讨论:(1)若m1>m2,则0<v1<v0、v2>v0,物理意义:入射小球质量大于被碰小球质量,则入射小球碰后仍沿原方向运动但速度变小,被碰小球的速度大于入射小球碰前的速度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ABCv水平弹簧1、如图所示,光滑的水平面上有m A =2kg ,m B = m C =1kg 的三个物体,用轻弹簧将A 与B 连接.在A 、C 两边用力使三个物体靠近,A 、B 间的弹簧被压缩,此过程外力做功72 J ,然后从静止开始释放,求:(1)当物体B 与C 分离时,B 对C 做的功有多少?(2)当弹簧再次恢复到原长时,A 、B 的速度各是多大?(1)当弹簧恢复原长时,B 与C 分离,0=m A v A -(m B +m c )v C ①,E P =221AA v m +2)(21C C B v m m +②,对C 由动能定理得W =221CC v m -0③,由①②③得W =18J ,v A =v C =6m/s . (2)取A 、B 为研究系统,m A v A -m B v C = m A v A ’ +m B v C ’, 221AA v m +221C B v m =21 m A v A ’2+21 m B v C ’2,当弹簧恢复到原长时A 、B 的速度分别为:,v A =v B =6m/s 或v A =-2m/s , v B =10m/s .2、(2)如图所示,光滑水平面轨道上有三个木块,A 、B 、C ,质量分别为m B =m c =2m ,m A =m ,A 、B 用细绳连接,中间有一压缩的弹簧 (弹簧与滑块不栓接)。

开始时A 、B 以共同速度v 0运动,C 静止。

某时刻细绳突然断开,A 、B 被弹开,然后B 又与C 发生碰撞并粘在一起,最终三滑块速度恰好相同。

求B 与C 碰撞前B 的速度。

解析:(2)设共同速度为v ,球A 和B 分开后,B 的速度为B v ,由动量守恒定律有0()A B A B B m m v m v m v +=+,()B B B C m v m m v =+,联立这两式得B 和C 碰撞前B 的速度为095B v v =。

考点:动量守恒定律 3、两物块A 、B 用轻弹簧相连,质量均为2 kg ,初始时弹簧处于原长,A 、B 两物块都以v =6 m /s 的速度在光滑的水平地面上运动,质量4 kg 的物块C 静止在前方,如图所示。

B 与C 碰撞后二者会粘在一起运动。

求在以后的运动中:(1)当弹簧的弹性势能最大时,物块A 的速度为多大? (2)系统中弹性势能的最大值是多少?解析:(1)当A 、B 、C 三者的速度相等时弹簧的弹性势能最大. 由A 、B 、C 三者组成的系统动量守恒,()()A B A B C ABC m m v m m m v +=++ (2分)解得 (22)6/3/224ABC v m s m s +⨯==++(2分)(2)B 、C 碰撞时B 、C 组成的系统动量守恒,设碰后瞬间B 、C 两者速度为BC v ,则 m B v =(m B +m C ) BC v BC v =4262+⨯=2 m/s (2分) 0v设物ABC速度相同时弹簧的弹性势能最大为E p ,根据能量守恒E p =21(m B +m C )2BC v +21m A v 2-21(m A +m B +m C ) 2ABC v =21×(2+4)×22+21×2×62-21×(2+2+4)×32=12 J (4分)4、两物块A 、B 用轻弹簧相连,质量均为2 kg ,初始时弹簧处于原长,A 、B 两物块都以v =6 m/s的速度在光滑的水平地面上运动,质量4 kg 的物块C 静止在前方,如图所示.B 与C 碰撞后二者会粘在一起运动.求在以后的运动中:(1)当弹簧的弹性势能最大时,物块A 的速度为多大? (2)系统中弹性势能的最大值是多少?(3)A 物块的速度有可能向左吗?简略说明理由. 答案 (1)3 m/s(2)12 J(3)A 不可能向左运动5、 用轻弹簧相连的质量均为2 kg 的A 、B 两物块都以v = 6 m /s 的速度在光滑的水平地面上运动,弹簧处于原长,质量4 kg 的物块C 静止在前方,如图所示.B 与C 碰撞后二者粘在一起运动.求:在以后的运动中:(1)当弹簧的弹性势能最大时,物体A 的速度多大? (2)弹性势能的最大值是多大? (3)A 的速度有可能向左吗?为什么?解析:(1)当A 、B 、C 三者的速度相等时弹簧的弹性势能最大.由于A 、B 、C 三者组成的系统动量守恒,(m A +m B )v =(m A +m B +m C )v A ′ 解得 v A ′=4226)22(++⨯+ m/s=3 m/s(2)B 、C 碰撞时B 、C 系统动量守恒,设碰后瞬间B 、C 两者速度为v ′,则 m B v =(m B +m C )v ′ v ′=4262+⨯=2 m/s 设物A 速度为v A ′时弹簧的弹性势能最大为E p ,根据能量守恒E p =21(m B +m C )2v ' +21m A v 2-21(m A +m B +m C )2'A v=21×(2+4)×22+21×2×62-21×(2+2+4)×32=12 J (3)A 不可能向左运动系统动量守恒,m A v +m B v =m A v A +(m B +m C )v B设 A 向左,v A <0,v B >4 m/s 则作用后A 、B 、C 动能之和E ′=21m A v A 2+21(m B +m C )v B 2>21(m B +m C )v B 2=48 J 实际上系统的机械能 E =E p +21(m A +m B +m C )·2'A v =12+36=48 J根据能量守恒定律,E '>E 是不可能的6、 如图15所示,劲度系数为k 的轻弹簧,左端连着绝缘介质小球B ,右端连在固定板上,放在光滑绝缘的水平面上。

整个装置处在场强大小为E 、方向水平向右的匀强电场中。

现有一质量为m 、带电荷量为+q 的小球A ,从距B 球为S 处自由释放,并与B 球发生碰撞。

碰撞中无机械能损失,且A 球的电荷量始终不变。

已知B 球的质量M=3m ,B 球被碰后作周期性运动,其运动周期2MT kπ=(A 、B 小球均可视为质点)。

(1)求A 球与B 球第一次碰撞后瞬间,A 球的速度V 1和B 球的速度V 2;(2)要使A 球与B 球第二次仍在B 球的初始位置迎面相碰,求劲度系数k 的可能取值。

答案:(1)设A 球与B 球碰撞前瞬间的速度为v 0,由动能定理得, 2012qES mv =① 解得: 02qESv m=② 碰撞过程中动量守恒 012mv mv Mv =+ ③ 机械能无损失,有222012111222mv mv Mv =+ ④ 解得 1011222qESv v m=-=- 负号表示方向向左 2011222qES v v m== 方向向右 (2)要使m 与M 第二次迎面碰撞仍发生在原位置,则必有A 球重新回到O 处所用 的时间t 恰好等于B 球的1()2n T +Eqa m =⑥ 122v Tt nT a ==+(n =0 、1 、2 、3 ……) ⑦由题意得: 2MT kπ= ⑧ 解得: 223(21)2Eq n k Sπ+=(n =0 、1 、2 、3 ……) ⑨7、下图中,轻弹簧的一端固定,另一端与滑块B 相连,B 静止在水平导轨上,弹簧处在原长状态。

另一质量与B 相同滑块A ,从导轨上的P 点以某一初速度向B 滑行,当A 滑过距离1l 时,与B 相碰,碰撞时间极短,碰后A 、B 紧贴在一起运动,但互不粘连。

已知最后A 恰好返回出发点P 并停止。

滑块A 和B 与导轨的滑动摩擦因数都为μ,运动过程中弹簧最大形变量为2l ,求A 从P 出发时的初速度0v 。

解:设A 、B 质量皆为m ,A 刚接触B 时速度为1v (碰前),由动能关系,有121202121mgl mv mv μ=- ① A 、B 碰撞过程中动量守恒,令碰后A 、B 共同运动的速度为.2v 有212mv mv = ②碰后A 、B 先一起向左运动,接着A 、B 一起被弹回,在弹簧恢复到原长时,设A 、B 的共同速度为3v ,在这过程中,弹簧势能始末两态都为零,利用动能定理,有)2()2()2(21)2(2122322l g m v m v m μ=- ③ 此后A 、B 开始分离,A 单独向右滑到P 点停下,由动能定理有12321mgl mv μ= ④ 由以上各式,解得 )1610(210l l g v +=μ ⑤1.如图所示,EF 为水平地面,O 点左侧是粗糙的,右侧是光滑的,一轻质弹簧右端与墙壁固定,左侧与静止在O 点质量为m 的小物块A 连结,弹簧处于原长状态.. 质量为m 的物块B 在大小为F 的水平恒力作用下由C 处从静止开始向右运动,已知物块B 与地面EO 段间的滑动摩擦力大小为4F,物块B 运动到O 点与物块A 相碰并一起向右运动(设碰撞时间极短),运动到D 点时撤去外力F,已知CO=4S,OD=S.求撤去外力后(1)弹簧的最大弹性势能(2)物块B 最终离O 点的距离1.解:B 与A 碰撞前速度由动能定理:20214)4(mv S F F W =-=得mFSv 60= B 与A 碰撞,由动量守恒定律有mv=2mv 1 .得mFSv 6211=碰后到物块A 、B 运动至速度减为0,弹簧的最大弹性势能FS mv FS E Pm 2522121=+=EC O D(2)设撤去F 后,A 、B 一起回到O 点时速度为v 2,由机械能守恒得22221mv E Pm =,mFSv 252=。

返回至O 点时,A 、B 开始分离,B 在摩擦力作用下向左做匀减速运动,设物块B 最终离O 点最大距离为x ,由动能定理:2221041mv Fx -=-,x=5S6.光滑水平面上放着质量m A =1 kg 的物块A 与质量m B =2 kg 的物块B ,A 与B 均可视为质点,A 靠在竖直墙壁上,A 、B 间夹一个被压缩的轻弹簧(弹簧与A 、B 均不拴接),用手挡住B 不动,此时弹簧弹性势能E P =49 J .在A 、B 间系一轻质细绳,细绳长度大于弹簧的自然长度,如图所示.放手后B 向右运动,绳在短暂时间内被拉断,之后B 冲上与水平面相切的竖直半圆光滑轨道,其半径R =0.5 m ,B 恰能到达最高点C .取g =10 m/s 2,求 (1)绳拉断后瞬间B 的速度v B 的大小; (2)绳拉断过程绳对B 的冲量I 的大小; (3)绳拉断过程绳对A 所做的功W . 答案 (1)5 m/s(2)4 N ·s(3)8 J解析 (1)设B 在绳被拉断后瞬间的速度为v B ,到达C 时的速度为v C ,有m B g =m B Rc 2v21m B v B 2=21m B v C 2+2m B gR ② 代入数据得v B =5 m/s③(2)设弹簧恢复到自然长度时B 的速度为v 1,取水平向右为正方向,有E p =21m B v 12④ I =m B v B -m B v 1⑤ 代入数据得I =-4 N ·s,其大小为4 N ·s⑥(3)设绳断后A 的速度为v A ,取水平向右为正方向,有m B v 1=m B v B +m A v A⑦ W =21m A v A 2⑧ 代入数据得W =8 J⑨13、如图所示,坡道顶端距水平面高度为h ,质量为m 1的小物块A 从坡道顶端由静止滑下,进入水平面上的滑道时无机械能损失,为使A 制动,将轻弹簧的一端固定在水平滑道延长线M 处的墙上,另一端与质量为m 2的档板相连,弹簧处于原长时,B 恰好位于滑道的末端O 点。

相关文档
最新文档