动量-含弹簧的碰撞模型祥解
动量守恒定律的典型模型

3、人船模型的适用条件是:两个物体组成的 系统动量守恒,系统的合动量为零。
例7. 质量为m的人站在质量为M,长为L的静止小船的 右端,小船的左端靠在岸边。当他向左走到船的左端时, 船左端离岸多远?
解:先画出示意图。人、船系统动量守恒,总动
动量守恒典型问题
碰撞中弹簧模型
三、碰撞中弹簧模型
注意:状态的把握 由于弹簧的弹力随形变量变化,弹簧 弹力联系的“两体模型”一般都是作加速 度变化的复杂运动,所以通常需要用“动 量关系”和“能量关系”分析求解。复杂 的运动过程不容易明确,特殊的状态必须 把握:弹簧最长(短)时两体的速度相同; 弹簧自由时两体的速度最大(小)。
完全非弹性碰撞
碰撞后系统以相同的速度运动 v1=v2=v 动量守恒:
m1v10 m2v20 m1 m2 v
动能损失为
E=
1 2
m1v120
1 2
m2v220
1 2
m1
m2
v 2
m1m1
2 m1 m2
v10 v20 2
例1. 如图所示,光滑水平面上质量为m1=2kg的物 块以v0=2m/s的初速冲向质量为m2=6kg静止的光滑 1/4圆弧面斜劈体。求:
多大的速度做匀速运动.取重力加速度g=10m/s2.
m=1.0kg
C
v0 =2.0m/s
B
A
M=2.0kg M=2.0kg
解:先假设小物块C 在木板B上移动距离 x 后,停在B上.这
时A、B、C 三者的速度相等,设为V.
由动量守恒得 mv0 (m 2M )V
①
在此过程中,木板B 的位移为S,小木块C 的位移为S+x.
专题16 类碰撞模型(解析版)

2023年高三物理二轮常见模型与方法强化专训专练专题16 类碰撞模型一、与弹簧有关的类碰撞模型1.如图所示,两光滑且平行的固定水平杆位于同一竖直平面内,两静止小球m 1、m 2分别穿在两杆上,两球间连接一个保持原长的竖直轻弹簧,现给小球m 2一个水平向右的初速度v 0.如果两杆足够长,则在此后的运动过程中( )A .m 1、m 2组成的系统动量守恒B .m 1、m 2组成的系统机械能守恒C .弹簧最长时,其弹性势能为12m 2v 02 D .当m 1速度达到最大时,m 2速度最小 【答案】A【详解】由于两球竖直方向上受力平衡,水平方向所受的弹力的弹力大小相等,方向相反,所以两球组成的系统所受的合外力为零,系统的动量守恒,A 正确;对于弹簧、12m m 、组成的系统,只有弹力做功,系统的机械能守恒,由于弹性势能是变化的,所以12m m 、组成的系统机械能不守恒,B 错误;当两球的速度相等时,弹簧最长,弹簧的弹性势能最大,以向右为正方向,由动量守恒定律得()2012m v m m v =+,解得2012m v v m m =+,由系统的机械能守恒得()2220121122P m v m m v E =++,解得()2120122Pm m v E m m =+,C 错误;若12m m >,当弹簧伸长时,1m 一直在加速,当弹簧再次恢复原长时1m 速度达到最大.弹簧伸长时2m 先减速后,速度减至零向左加速,最小速度为零.所以1m 速度达到最大时,2m 速度不是最小,D 错误. 2.如图所示,A 、B 、C 三个半径相同的小球穿在两根平行且光滑的足够长的水平杆上,三个球的质量分别为ma =1kg ,mb =3kg ,mc =1kg , 初始状态三个球均静止,B 、C 球之间连着一根轻质弹簧,弹簧处于原长状态。
现给A 一个向左的初速度v 0= 10m/s ,之后A 与B 发生弹性碰撞。
球A 和B 碰后,下列说法正确的是( )A .球A 的速度变为向右的5m/sB .弹簧恢复原长时球C 的速度为5m/s C .球B 的最小速度为2. 5m/sD .弹簧的最大弹性势能为9. 375J【答案】ACD【详解】A .A 与B 发生弹性碰撞,动量守恒得012A A B m v m v m v =+机械能守恒得222012111222A AB m v m v m v =+ 解得15m/s v =−;25m/s v =,A 正确;D .碰后B 向左运动,因为弹簧弹力的作用,B 向左减速,C 向右加速,当B 、C 速度相等时弹簧最长,弹簧的弹性势能最大,由23()B B C m m m =+v v ;22p 2311()22B BC E m m m =−+v v 解得p 9.375J E =,D 正确;BC .接下来B 继续减速,C 继续加速,C 的速度大于B 的速度,弹簧开始缩短,当弹簧恢复原长时球B 的速度最小,由245B B C m m m =+v v v ;222245111222B BC m m m =+v v v 解得4 2.5m/s =v ;57.5m/s =v ,B 错误C 正确。
动量中的弹簧模型

动量中的弹簧模型
动量中的弹簧模型是一种物理模型,用于描述物体在碰撞时弹性和非弹性的行为。
该模型假设物体在碰撞中的动量守恒,同时考虑了弹簧的弹性力和阻力。
在该模型中,物体之间的碰撞会引起弹簧的变形,从而产生弹性力。
弹簧的弹性力大小与其伸缩的程度成正比,与其弹性常数有关。
同时,物体在碰撞中还会受到阻力的作用,这种阻力可以模拟摩擦力或空气阻力等因素。
通过使用动量中的弹簧模型,可以研究物体在碰撞中的运动情况,例如速度和位置的变化、能量的转化等。
该模型在物理学中有广泛的应用,可以用于设计汽车安全气囊、优化体育比赛装备等方面。
- 1 -。
经典高三物理模型水平方向上的碰撞及弹簧模型 知识点分析

水平方向上的碰撞及弹簧模型[模型概述]在应用动量守恒、机械能守恒、功能关系和能量转化等规律考查学生的综合应用能力时,常有一类模型,就是有弹簧参与,因弹力做功的过程中弹力是个变力,并与动量、能量联系,所以分析解决这类问题时,要细致分析弹簧的动态过程,利用动能定理和功能关系等知识解题。
[模型讲解]一、光滑水平面上的碰撞问题例1. 在光滑水平地面上有两个相同的弹性小球A、B,质量都为m,现B球静止,A球向B球运动,发生正碰。
已知碰撞过程中总机械能守恒,两球压缩最紧时的弹性势能为EP,则碰前A球的速度等于()A.B.C.D.解析:设碰前A球的速度为v0,两球压缩最紧时的速度为v,根据动量守恒定律得出,由能量守恒定律得,联立解得,所以正确选项为C。
二、光滑水平面上有阻挡板参与的碰撞问题例2. 在原子核物理中,研究核子与核子关联的最有效途径是“双电荷交换反应”。
这类反应的前半部分过程和下述力学模型类似,两个小球A和B用轻质弹簧相连,在光滑的水平直轨道上处于静止状态,在它们左边有一垂直于轨道的固定挡板P,右边有一小球C沿轨道以速度v0射向B球,如图1所示,C与B发生碰撞并立即结成一个整体D,在它们继续向左运动的过程中,当弹簧长度变到最短时,长度突然被锁定,不再改变,然后,A球与挡板P 发生碰撞,碰后A、D都静止不动,A与P接触而不粘连,过一段时间,突然解除锁定(锁定及解除锁定均无机械能损失),已知A、B、C三球的质量均为m。
图1(1)求弹簧长度刚被锁定后A球的速度。
(2)求在A球离开挡板P之后的运动过程中,弹簧的最大弹性势能。
解析:(1)设C球与B球粘结成D时,D的速度为v1,由动量守恒得当弹簧压至最短时,D与A的速度相等,设此速度为v2,由动量守恒得,由以上两式求得A的速度。
(2)设弹簧长度被锁定后,贮存在弹簧中的势能为EP,由能量守恒,有撞击P后,A与D的动能都为零,解除锁定后,当弹簧刚恢复到自然长度时,势能全部转弯成D的动能,设D的速度为v3,则有以后弹簧伸长,A球离开挡板P,并获得速度,当A、D的速度相等时,弹簧伸至最长,设此时的速度为v4,由动量守恒得当弹簧伸到最长时,其势能最大,设此势能为EP”,由能量守恒,有解以上各式得。
高考物理弹簧类问题的几种模型及其处理方法归纳

第四阶段:弹簧继续被压缩,压缩量继续增加,产生的弹力继续增 加,大于2mg,使得物体AB所受合力变为向上,物体开始向下减速,直
分析:(1)当剪断细线l2瞬间,不仅l2对小球拉力瞬间消失,l1的 拉力也同时消失,此时,小球只受重力作用,所以此时小球的加速度为 重力加速度g。
(2)当把细线l1改为长度相同、质量不计的轻弹簧时,在当剪断细
线l2瞬间,只有l2对小球拉力瞬间消失,弹簧对小球的弹力和剪断l2之 前没变化,因为弹簧恢复形变需要一个过程。如图5所示,剪断l2瞬 间,小球受重力G和弹簧弹力,所以有:
A.A开始运动时 C.B的速度等于零时
B.A的速度等于v时 D.A和B的速度相等时
分析:解决这样的问题,最好的方法就是能够将两个物体作用的过 程细化,明确两个物体在相互作用的过程中,其详细的运动特点。具体 分析如下:
(1)弹簧的压缩过程:A物体向B运动,使得弹簧处于压缩状态,压 缩的弹簧分别对A、B物体产生如右中图的作用力,使A向右减速运动, 使B向右加速运动。由于在开始的时候,A的速度比B的大,故两者之间 的距离在减小,弹簧不断压缩,弹簧产生的弹力越来越大,直到某个瞬 间两个物体的速度相等,弹簧压缩到最短。
2 过程中所加外力F的最大值和最小值。 ⑵此过程中力F所做的功。(设整个过程弹簧都在弹性限度内,取 g=10m/s2)
分析:此题考查学生对A物体上升过程中详细运动过程的理解。在力 F刚刚作用在A上时,A物体受到重力mg,弹簧向上的弹力T,竖直向上的 拉力F。随着弹簧压缩量逐渐减小,弹簧对A的向上的弹力逐渐减小,则 F必须变大,以满足F+T-mg=ma。当弹簧恢复原长时,弹簧弹力消失,只 有F-mg=ma;随着A物体继续向上运动,弹簧开始处于拉伸状态,则物体 A的受到重力mg,弹簧向下的弹力T,竖直向上的拉力F,满足F-Tmg=ma。随着弹簧弹力的增大,拉力F也逐渐增大,以保持加速度不变。 等到弹簧拉伸到足够长,使得B物体恰好离开地面时,弹簧弹力大小等 于B物体的重力。
碰撞模型解析版

碰撞模型一、模型建构1、碰撞问题:完全弹性碰撞:碰撞时产生弹性形变,碰撞后形变完全消失,碰撞过程系统的动量和机械能均守恒。
完全非弹性碰撞:碰撞后物体粘结成一体或相对静止,即相互碰撞时产生的形变一点没有恢复,碰撞后相互作用的物体具有共同速度,系统动量守恒,但系统的机械能不守恒,此时损失的最多。
2、两类问题第一类:完全非弹性碰撞在光滑水平面上,质量为m 1的物体以初速度v 1去碰撞静止的物体m 2,碰后两物体粘在一起.碰撞时间极短,内力很大,故而两物体组成系统动量守恒 碰后两物体速度相等,由动量守恒定律得:()m v m m v 1112=+由能量守恒定律得:()2212112121v m m v m E k +-=∆解得:v =m1m 1+m 2v 1 ∆E k =m 1m 22(m 1+m 2)v 12作用结束后,两物体具有共同的速度,为完全非弹性碰撞,此时系统动能损失最大。
第二类:完全弹性碰撞在光滑水平面上,质量为m 1的物体以初速度v 0去碰撞静止的物体m 2,碰后的m 1速度是v 1,m 2的速度是v 2,碰撞过程无机械能损失。
据动量守恒定律:221101v m v m v m +=一、解题思路:1、判断系统是否动量守恒2、通过受力分析各物体运动情况3、列动量守恒和能量守恒4、求解未知量 二、解题方法: 动量守恒三、解题关键点: 1、确定系统是否动量守恒 2、确定能量如何转化 四、解题易错点1、确定动量守恒的研究对象2、不能跨过碰撞列能量守恒式据能量守恒定律得:222211201212121v m v m v m +=解得: v 1=m 1−m 2m 1+m 2v 0 v 2=2m 1m1+m 2v 0二、例题精析例1、在光滑的水平面上,质量为m 1的小球A 以速率v 0向右运动.在小球的前方O 点处有一质量为m 2的小球B 处于静止状态,如图所示.小球A 与小球B 发生正碰后,小球A 、B 均向右运动.小球B 被在Q 点处的墙壁弹回后与小球A 在P 点相遇,PQ =1.5 PO .假设小球间的碰撞及小球与墙壁之间的碰撞都是弹性碰撞,小球均可看成质点,求:(1)两小球质量之比m 1m 2;(2)若小球A 与小球B 碰后的运动方向以及小球B 反弹后与A 相遇的位置均未知,两小球A 、B 质量满足什么条件,就能使小球B 第一次反弹后一定与小球A 相碰. 解答:(1)两球发生弹性碰撞系统动量守恒得:m 1v 0=m 1v 1+m 2v 2 能量守恒定律得:12m 1v 02=12m 1v 12+12m 2v 22从两球碰撞后到它们再次相遇小球A 和B 通过的路程之比:s 1∶s 2=v 1t ∶v 2t =1∶4, 联立解得m 1m 2=21(2)由(1)中两式解得:v 1=m 1-m 2m 1+m 2v 0,v 2=2m 1m 1+m 2v 0若小球A 碰后静止或继续向右运动,此时有v 1≥0,即m 1≥m 2 若小球A 碰后反向运动,第一次反弹后相碰需满足|v 1|<|v 2|一、解题思路:1、判断系统是否动量守恒2、通过受力分析各物体运动情况3、列动量守恒和能量守恒4、求解未知量即m 2-m 1m 1+m 2v 0<2m 1m 1+m 2v 0 解得m 1>m 23综上所述,只要小球A 、B 质量满足m 1>m 23,就能使小球B 第一次反弹后一定与小球A 相碰.例2、如图所示,一轻质弹簧两端连着物体A 和B ,放在光滑的水平面上,物体A 被水平速度为v 0的子弹射中并且嵌入其中.已知物体B 的质量为m ,物体A 的质量是m ,子弹的质量是m . ①求弹簧压缩到最短时B 的速度. ②弹簧的最大弹性势能.【解答】①当A 、B 速度相等时,弹簧的压缩量最大 从子弹射入A 到弹簧压缩到最短时系统的动量守恒由动量守恒定律得:mv 0=(m+m+m )v ,解得:v =v 0;②设子弹射入A 时,时间很短,内力很大,A 与子弹组成系统动量守恒由动量守恒定律得:mv 0=(m+m )v 1, 解得:v 1=v 0,弹簧的压缩量最大时,弹簧弹性势能最大,由能量守恒定律得: E P =(m+m )v 12﹣(m+m+m )v 2一、解题思路:1、判断系统是否动量守恒2、通过受力分析各物体运动情况3、列动量守恒和能量守恒4、求解未知量解得:E p=mv02;答:①弹簧压缩到最短时B的速度为v0.②弹簧的最大弹性势能为mv02.三、针对训练1.如图所示,小球A的质量为m A=5kg,动量大小为p A=4kg•m/s,小球A在光滑水平面上向右运动,与静止的小球B发生弹性碰撞,碰后A的动量大小为p A′=1kg•m/s 的,方向水平向右,则()A.碰后小球B的动量大小为p B=3kg•m/sB.碰后小球B的动量大小为p B=5kg•m/sC.小球B的质量为15kgD.小球B的质量为5kg【解答】解:AB、由题意可知,小球A和小球B发生弹性碰撞,则碰撞过程系统动量守恒,以向右为正方向,由动量守恒定律得:p A=p A′+p B,代入数据解得:p B=3kg•m/s,故A正确,B错误;CD、两球发生弹性碰撞,碰撞过程系统动量守恒、机械能守恒,以向右为正方向,由动量守恒定律得:m A v A=m A v A′+m B v B由机械能守恒定律得:,碰撞前A的动量p A=m A v A,代入数据解得:m B=3kg,故CD错误。
碰撞与类碰撞模型(解析版)-2024年新高考物理热点

碰撞与类碰撞模型1.碰撞问题是历年高考试题的重点和热点,它所反映出来的物理过程、状态变化及能量关系,对学生的理解能力、逻辑思维能力及分析推理能力要求比较高。
高考中考查的碰撞问题,碰撞时间极短,位移为零,碰撞过程遵循动量守恒定律。
2.高考题命题加重了试题与实际的联系,命题导向由单纯的解题向解决问题转变,对于动量守恒定律这一重要规律我们也要关注其在生活实际中的应用,学会建构模型、科学推理。
3.动量和能量综合考查是高考命题的热点,在选择题和计算题中都可能出现,选择题中可能考查动量和能量知识的简单应用,计算题中一般结合竖直面内的圆周运动模型、板块模型或弹簧模型等压轴考查,难度较大。
此类试题区分度较高,且能很好地考查运动与相互作用观念、能量观念动量观念和科学思维要素,因此备考命题者青睐。
题型一人船模型1.模型简析:如图所示,长为L 、质量为m 船的小船停在静水中,质量为m 人的人由静止开始从船的一端走到船的另一端,不计水的阻力。
以人和船组成的系统为研究对象,在人由船的一端走到船的另一端的过程中,系统水平方向不受外力作用,所以整个系统动量守恒,可得m 船v 船=m 人v 人,因人和船组成的系统动量始终守恒,故有m 船x 船=m 人x 人,由图可看出x 船+x 人=L ,可解得x 人=m 船m 人+m 船L ,x 船=m 人m 人+m 船L 。
2.模型特点(1)两个物体作用前均静止,作用后均运动。
(2)动量守恒且总动量为零。
3.结论:m 1x 1=m 2x 2(m 1、m 2为相互作用物体的质量,x 1、x 2为其对地位移的大小)。
题型二“物块-弹簧”模型模型图例m 1、m 2与轻弹簧(开始处于原长)相连,m 1以初速度v 0运动两种情景1.当弹簧处于最短(最长)状态时两物体瞬时速度相等,弹性势能最大:(1)系统动量守恒:m 1v 0=(m 1+m 2)v 共。
210212共pm 2.当弹簧处于原长时弹性势能为零:(1)系统动量守恒:m1v0=m1v1+m2v2。
动量守恒定律-子弹打木块--弹簧-板块-三模型

一、 子弹大木块【例2】如图所示,质量为M 的木块固定在光滑的水平面上,有一质量为m 的子弹以初速度v 0水平射向木块,并能射穿,设木块的厚度为d ,木块给子弹的平均阻力恒为f .若木块可以在光滑的水平面上自由滑动,子弹以同样的初速度水平射向静止的木块,假设木块给子弹的阻力与前一情况一样,试问在此情况下要射穿该木块,子弹的初动能应满足什么条件?【解析】若木块在光滑水平面上能自由滑动,此时子弹若能恰好打穿木块,那么子弹穿出木块时(子弹看为质点),子弹和木块具有相同的速度,把此时的速度记为v ,把子弹和木块当做一个系统,在它们作用前后系统的动量守恒,即mv 0=(m +M )v 对系统应用动能定理得fd =12mv 20-12(M +m )v 2由上面两式消去v 可得 fd =12mv 20-12(m +M )(mv 0m +M )2整理得12mv 20=m +M M fd即12mv 20=(1+m M)fd 据上式可知,E 0=12mv 20就是子弹恰好打穿木块所必须具有的初动能,也就是说,子弹恰能打穿木块所必须具有的初动能与子弹受到的平均阻力f 和木块的厚度d (或者说与f ·d )有关,还跟两者质量的比值有关,在上述情况下要使子弹打穿木块,则子弹具有的初动能E 0必须大于(1+mM)f ·d .72、如图所示,静止在光滑水平面上的木块,质量为、长度为。
—颗质量为的子弹从木块的左端打进。
设子弹在打穿木块的过程中受到大小恒为的阻力,要使子弹刚好从木块的右端打出,则子弹的初速度应等于多大?涉及子弹打木块的临界问题分析:取子弹和木块为研究对象,它们所受到的合外力等于零,故总动量守恒。
由动量守恒定律得:①要使子弹刚好从木块右端打出,则必须满足如下的临界条件:②根据功能关系得:③解以上三式得:二、 板块1、 如图1所示,一个长为L 、质量为M 的长方形木块,静止在光滑水平面上,一个质量为m 的物块(可视为质点),以水平初速度0v 从木块的左端滑向右端,设物块与木块间的动摩擦因数为μ,当物块与木块达到相对静止时,物块仍在长木块上,求系统机械能转化成内能的量Q 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ABC水平弹簧1、如图所示,光滑的水平面上有m A =2kg ,m B = m C =1kg 的三个物体,用轻弹簧将A 与B 连接.在A 、C 两边用力使三个物体靠近,A 、B 间的弹簧被压缩,此过程外力做功72 J ,然后从静止开始释放,求:(1)当物体B 与C 分离时,B 对C 做的功有多少?(2)当弹簧再次恢复到原长时,A 、B 的速度各是多大?(1)当弹簧恢复原长时,B 与C 分离,0=m A v A -(m B +m c )v C ①,E P =221A A v m +2)(21C C B v m m +②,对C 由动能定理得W =221C C v m -0③,由①②③得W =18J ,v A =v C =6m/s . (2)取A 、B 为研究系统,m A v A -m B v C = m A v A ’ +m B v C ’, 221A A v m +221C B v m =21 m A v A’2+21m B v C ’2,当弹簧恢复到原长时A 、B 的速度分别为:,v A =v B =6m/s 或v A =-2m/s , v B =10m/s .2、(2)如图所示,光滑水平面轨道上有三个木块,A 、B 、C ,质量分别为m B =m c =2m ,m A =m ,A 、B 用细绳连接,中间有一压缩的弹簧 (弹簧与滑块不栓接)。
开始时A 、B 以共同速度v 0运动,C 静止。
某时刻细绳突然断开,A 、B 被弹开,然后B 又与C 发生碰撞并粘在一起,最终三滑块速度恰好相同。
求B 与C 碰撞前B 的速度。
解析:(2)设共同速度为v ,球A 和B 分开后,B 的速度为B v ,由动量守恒定律有0()A B A B B m m v m v m v +=+,()B B B C m v m m v =+,联立这两式得B 和C 碰撞前B 的速度为095B v v =。
考点:动量守恒定律 3、两物块A 、B 用轻弹簧相连,质量均为2 kg ,初始时弹簧处于原长,A 、B 两物块都以v =6 m /s 的速度在光滑的水平地面上运动,质量4 kg 的物块C 静止在前方,如图所示。
B 与C 碰撞后二者会粘在一起运动。
求在以后的运动中:(1)当弹簧的弹性势能最大时,物块A 的速度为多大? (2)系统中弹性势能的最大值是多少?解析:(1)当A 、B 、C 三者的速度相等时弹簧的弹性势能最大. 由A 、B 、C 三者组成的系统动量守恒,()()A B A B C ABC m m v m m m v +=++ (2分)解得 (22)6/3/224ABC v m s m s +⨯==++(2分)(2)B 、C 碰撞时B 、C 组成的系统动量守恒,设碰后瞬间B 、C 两者速度为BC v ,则 m B v =(m B +m C ) BC v BC v =4262+⨯ (2分)v设物ABC速度相同时弹簧的弹性势能最大为E p ,根据能量守恒E p =21(m B +m C )2BC v +21m A v 2-21(m A +m B +m C ) 2ABC v =21×(2+4)×22+21×2×62-21×(2+2+4)×32=12 J (4分4、两物块A 、B 用轻弹簧相连,质量均为2 kg ,初始时弹簧处于原长,A 、B 两物块都以v =6 m/s的速度在光滑的水平地面上运动,质量4 kg 的物块C 静止在前方,如图所示.B 与C 碰撞后二者会粘在一起运动.求在以后的运动中:(1)当弹簧的弹性势能最大时,物块A 的速度为多大?(2)系统中弹性势能的最大值是多少?(3)A 物块的速度有可能向左吗?简略说明理由. 答案 (1)3 m/s(2)12 J(3)A 不可能向左运动5、 用轻弹簧相连的质量均为2 kg 的A 、B 两物块都以v = 6 m /s 的速度在光滑的水平地面上运动,弹簧处于原长,质量4 kg 的物块C 静止在前方,如图所示.B 与C 碰撞后二者粘在一起运动.求:在以后的运动中:(1)当弹簧的弹性势能最大时,物体A 的速度多大? (2)弹性势能的最大值是多大? (3)A 的速度有可能向左吗?为什么?解析:(1)当A 、B 、C 三者的速度相等时弹簧的弹性势能最大.由于A 、B 、C 三者组成的系统动量守恒,(m A +m B )v =(m A +m B +m C )v A ′ 解得 v A ′=4226)22(++⨯+ m/s=3 m/s(2)B 、C 碰撞时B 、C 系统动量守恒,设碰后瞬间B 、C 两者速度为v ′,则 m B v =(m B +m C )v ′ v ′=4262+⨯=2 m/s 设物A 速度为v A ′时弹簧的弹性势能最大为E p ,根据能量守恒E p =21(m B +m C )2v ' +21m A v 2-21(m A +m B +m C )2'A v =21×(2+4)×22+21×2×62-21×(2+2+4)×32=12 J (3)A 不可能向左运动系统动量守恒,m A v +m B v =m A v A +(m B +m C )v B设 A 向左,v A <0,v B >4 m/s 则作用后A 、B 、C 动能之和E ′=21m A v A 2+21(m B +m C )v B 2>21(m B +m C )v B 2=48 J 实际上系统的机械能 E =E p +21(m A +m B +m C )·2'A v =12+36=48 J根据能量守恒定律,E '>E 是不可能的6、 如图15所示,劲度系数为k 的轻弹簧,左端连着绝缘介质小球B ,右端连在固定板上,放在光滑绝缘的水平面上。
整个装置处在场强大小为E 、方向水平向右的匀强电场中。
现有一质量为m 、带电荷量为+q 的小球A ,从距B 球为S 处自由释放,并与B 球发生碰撞。
碰撞中无机械能损失,且A 球的电荷量始终不变。
已知B 球的质量M=3m ,B 球被碰后作周期性运动,其运动周期2T π=、B 小球均可视为质点)。
(1)求A 球与B 球第一次碰撞后瞬间,A 球的速度V 1和B 球的速度V 2;(2)要使A 球与B 球第二次仍在B 球的初始位置迎面相碰,求劲度系数k 的可能取值。
答案:(1)设A 球与B 球碰撞前瞬间的速度为v 0,由动能定理得, 2012qES mv =①解得: 0v =② 碰撞过程中动量守恒 012mv mv Mv =+ ③ 机械能无损失,有222012111222mv mv Mv =+ ④解得 1012v v =-= 负号表示方向向左2012v v ==方向向右 (2)要使m 与M 第二次迎面碰撞仍发生在原位置,则必有A 球重新回到O 处所用 的时间t 恰好等于B 球的1()2n T +Eqa m =⑥ 122v Tt nT a ==+(n =0 、1 、2 、3 ……) ⑦由题意得: 2T π= ⑧ 解得: 223(21)2Eq n k Sπ+=(n =0 、1 、2 、3 ……) ⑨7、下图中,轻弹簧的一端固定,另一端与滑块B 相连,B 静止在水平导轨上,弹簧处在原长状态。
另一质量与B 相同滑块A ,从导轨上的P 点以某一初速度向B 滑行,当A 滑过距离1l 时,与B 相碰,碰撞时间极短,碰后A 、B 紧贴在一起运动,但互不粘连。
已知最后A 恰好返回出发点P 并停止。
滑块A 和B 与导轨的滑动摩擦因数都为μ,运动过程中弹簧最大形变量为2l ,求A 从P 出发时的初速度0v 。
解:设A 、B 质量皆为m ,A 刚接触B 时速度为1v (碰前),由动能关系,有121202121m g l mv mv μ=- ① A 、B 碰撞过程中动量守恒,令碰后A 、B 共同运动的速度为.2v 有212mv mv = ②碰后A 、B 先一起向左运动,接着A 、B 一起被弹回,在弹簧恢复到原长时,设A 、B 的共同速度为3v ,在这过程中,弹簧势能始末两态都为零,利用动能定理,有)2()2()2(21)2(2122322l g m v m v m μ=- ③ 此后A 、B 开始分离,A 单独向右滑到P 点停下,由动能定理有12321mgl mv μ= ④ 由以上各式,解得 )1610(210l l g v +=μ ⑤1.如图所示,EF 为水平地面,O 点左侧是粗糙的,右侧是光滑的,一轻质弹簧右端与墙壁固定,左侧与静止在O 点质量为m 的小物块A 连结,弹簧处于原长状态.. 质量为m 的物块B 在大小为F 的水平恒力作用下由C 处从静止开始向右运动,已知物块B 与地面EO 段间的滑动摩擦力大小为4F,物块B 运动到O 点与物块A 相碰并一起向右运动(设碰撞时间极短),运动到D 点时撤去外力F,已知CO=4S,OD=S.求撤去外力后(1)弹簧的最大弹性势能(2)物块B 最终离O 点的距离1.解:B 与A 碰撞前速度由动能定理:20214)4(mv S F F W =-=得mFSv 60= B 与A 碰撞,由动量守恒定律有mv=2mv 1 .得mFSv 6211=碰后到物块A 、B 运动至速度减为0,弹簧的最大弹性势能FS mv FS E Pm 2522121=+=EC O D(2)设撤去F 后,A 、B 一起回到O 点时速度为v 2,由机械能守恒得22221mv E Pm =,mFSv 252=。
返回至O 点时,A 、B 开始分离,B 在摩擦力作用下向左做匀减速运动,设物块B 最终离O 点最大距离为x ,由动能定理:2221041mv Fx -=-,x=5S6.光滑水平面上放着质量m A =1 kg 的物块A 与质量m B =2 kg 的物块B ,A 与B 均可视为质点,A 靠在竖直墙壁上,A 、B 间夹一个被压缩的轻弹簧(弹簧与A 、B 均不拴接),用手挡住B 不动,此时弹簧弹性势能E P =49 J .在A 、B 间系一轻质细绳,细绳长度大于弹簧的自然长度,如图所示.放手后B 向右运动,绳在短暂时间内被拉断,之后B 冲上与水平面相切的竖直半圆光滑轨道,其半径R =0.5 m ,B 恰能到达最高点C .取g =10 m/s 2,求 (1)绳拉断后瞬间B 的速度vB 的大小; (2)绳拉断过程绳对B 的冲量I 的大小; (3)绳拉断过程绳对A 所做的功W .答案 (1)5 m/s(2)4 N ·s(3)8 J解析 (1)设B 在绳被拉断后瞬间的速度为v B ,到达C 时的速度为v C ,有m B g =m B R c 2v21m B v B 2=21m B v C 2+2m B gR ② 代入数据得v B =5 m/s③(2)设弹簧恢复到自然长度时B 的速度为v 1,取水平向右为正方向,有E p =21m B v 12④ I =m B v B -m B v 1⑤代入数据得I =-4 N ·s,其大小为4 N ·s⑥ (3)设绳断后A 的速度为v A ,取水平向右为正方向,有m B v 1=m B v B +m A v A⑦ W =21m A v A 2⑧ 代入数据得W =8 J⑨13、如图所示,坡道顶端距水平面高度为h ,质量为m 1的小物块A 从坡道顶端由静止滑下,进入水平面上的滑道时无机械能损失,为使A 制动,将轻弹簧的一端固定在水平滑道延长线M 处的墙上,另一端与质量为m 2的档板相连,弹簧处于原长时,B 恰好位于滑道的末端O 点。