8.3 同底数幂的除法(2)
8.3__同底数幂的除法(2)

10 10 10 10
-1 -2 -3 -4
0 .1 0.01 10 0.0001 0.001 0.0001
n 个0
例:用小数或分数表示下列各数
(1) ;(2) 8 ;(3) .6 10 10 7 1 1 1 -3 解:(1) 10 103 1000 0.001 1 1 0 -2 (2) 7 8 1 2 8 64 1 -4 (3) 1.6 10 1.6 4 1.6 0.0001 10 0.00016
-7 m=___.
2-2-2+(-2)-2 (1)2
计算
(2)5-16×(-2)3 (3)4-(-2)-2-32÷(-3)0 (4)10-2×100+103÷105
3.计算:
(1) 279÷97÷3 (2) b2m÷bm-1(m是大于1的整数) (3) (-mn)9÷(mn)4 (4) (a-b)6÷(b-a)3÷(a-b)2
m=3,an=2,求a2m-3n的值. 4.已知a
小结
1.这节课我学到了什么? 2.我从同伴身上学到了什么?
我要 说…
布置作业
课本63页
习题8.3 3、4
会填吗? 1000
4
3 10 2 1
–1 –2
100 10
猜一猜
10 10
1
0 10
0.1 10
0.01 10
0.001 10
–3
填一填
8 2
3
4 2 2 2
1 2
2 1 0 源自4 22=___,
2=___, 4 (-2)
1 1000 (-10)-3=____,
8.3 同底数幂的除法(2)

1 n 0÷a n 0–n =a–n = 1÷ a = a = a n a
2
规 定
1 n a n (a o, n是正整数) a
你能用文字语言叙述这个性质吗?
任何不等于0的数的-n(n是正整 数)次幂,等于这个数的n次幂的倒数.
练 一 练
20= 1 .
1 2-2= 4 ,
我要 说…
2.你认为同底数幂除法与同 底数幂乘法有没有联系?
3
例题解析
10
1000
1 1 (2) 3 3 3 27
3
1 (3) 1.610 1.6 4 10 1.6 0.0001 0.00016
4
练一练:计算
(1) 22-2-2+(-2)-2
(2) (3)
(4) (5)
5-16×(-2)3 4-(-2)-2-32 Nhomakorabea(-3)0
想一想
1=2(
? ) = 20
用同底数幂的除法性质解释
3-3 3 3 1=2 ÷2 =2
做一做: 1=
0 ( ) ( 0 1=3 ,1=10 )
0 m – m m m a a ÷a = a = ,
规定:a0=1(a≠0),
即:任何非零数的0次幂等于1.
想一想
你会计算23 24吗?
1 2 2 2 1 3 4 2 2 2
8.3 同底数幂的除法(2)
知识回顾
3.计算:
1.同底数幂相除,底数不变, 指数 相减. 2.am÷an= am–n .( )
(1) 279÷97÷3 (2) b2m÷bm-1(m是大于1的整数) (3) (-mn)9÷(mn)4 (4) (a-b)6÷(b-a)3÷(a-b)2
七年级数学下册《第八章 幂的运算》复习教案 (新版)苏科版

第八章幂的运算课题:幂的运算的小结与思考教学目标:1、能说出幂的运算的性质;2、会运用幂的运算性质进行计算,并能说出每一步的依据;3、能说出零指数幂、负整数指数幂的意义,能用熟悉的事物描述一些较小的正数,并能用科学记数法表示绝对值小于1的数;4、通过具体例子体会本章学习中体现的从具体到抽象、特殊到一般的思考问题的方法,渗透转化、归纳等思想方法,发展合情推理能力和演绎推理能力。
教学重点:运用幂的运算性质进行计算教学难点:运用幂的运算性质进行证明规律教学方法:引导发现,合作交流,充分体现学生的主体地位一、系统梳理知识:幂的运算:1、同底数幂的乘法2、幂的乘方3、积的乘方4、同底数幂的除法:(1)零指数幂(2)负整数指数幂请你用字母表示以上运算法则。
你认为本章的学习中应该注意哪些问题?二、例题精讲:例1 判断下列等式是否成立:①(-x)2=-x2,②(-x3)=-(-x)3,③(x-y)2=(y-x)2,④(x-y)3=(y-x)3,⑤x-a-b=x-(a+b),⑥x+a-b=x-(b-a).解:③⑤⑥成立.例2 已知10m=4,10n=5,求103m+2n的值.解:因为103m=(10m)3=43 =64,102n=(10n)2=52=25.所以103m+2n=103m×102n=64×25=1680例3 若x=2m+1,y=3+4m,则用x的代数式表示y为______.解:∵2m=x-1,∴y=3+4m=3+22m.=3+(2m)2=3+(x-1)2=x2-2x+4.例4设<n>表示正整数n的个位数,例如<3>=3,<21>=1,<13×24>=2,则<210>=______.解210=(24)2·22=162·4,∴ <210>=<6×4>=4例5 1993+9319的个位数字是( )A.2 B.4C.6 D.8解1993+9319的个位数字等于993+319的个位数字.∵ 993=(92)46·9=8146·9.319=(34)4·33=814·27.∴993+319的个位数字等于9+7的个位数字.则 1993+9319的个位数字是6.三、随堂练习:1、已知a=355,b=444,c=533,则有()A.a<b<c B.c<b<aC.c<a<b D.a<c<b2、已知3x=a,3y =b,则32x-y等于 ( )3、试比较355,444,533的大小.4、已知a=-0.32,b=-3-2,c=(-1/3)-2d=(-1/3)0,比较a、b、c、d的大小并用“,〈”号连接起来。
8_3同底数幂的除法(2)

计算:
三、自学助学:
1.提问:在公式要求m,n都是正整数,并且m>n,但假如m=n或m<nn呢?
2.实例研究:计算:32÷32103÷103am÷am(a≠0)
3.得到结论:a0= (a≠0)
即:任何不等于 的数的0次幂都等于 .
最终结论:同底数幂相除:am÷an=am-n(a≠0,m、n都是正整数,且m≥n)
5.提升训练
计算:( )-1-4×(-2)-2+(- )0-( )-2.
总结:
通过这节课你学到了什么?
六、作业布置:补充习题
个备
江南学校“导学研练”高效课堂教学案
课题
5.6 数幂的意义.
2.会实行零指数幂和负整数指数幂的运算.
3.能准确地用科学记数法表示一个数, 且能将负整数指数幂化为分数或整数
教学
重点
a0= 1(a≠0), a-n= 1/ an(a≠0 ,n是负整数)公式规定的合理性.
3.判断题(对的打“∨”,错的打“×”)
(1)(-1)0=-10=-1;( ) (2)(-3)-2=- ;( )
(3)-(-2)-1=-(-2-1);( ) (4)5x-2= .( )
4.(1)当x_______时, =-2有意义;(2)当x_______时,
(x+5)0=1有意义;
(3)当x_______时,(x+5)-2=1有意义.
(3)a3÷(-10)0; (4)(-3)5÷36.
四、即时巩固:
1.a0=______(a≠0);a-p=_______(a≠0,p是正整数).
2.计算:
(1)-0.10=________; (2)(-0.1)0=_______;
初中数学七年级下册第8章幂的运算8.3同底数幂的除法

8.3 同底数幂的除法教学目标:会正确的运用同底数幂除法的运算性质进行运算,并能说出每一步运算的依据教学重点:会正确的运用同底数幂除法的运算性质进行运算,并能说出每一步运算的依据。
教学难点:会正确的运用同底数幂除法的运算性质进行运算,并能说出每一步运算的依据。
教学过程:1、一颗人造地球卫星运行的速度是7.9×103 m/s,一架喷气式飞机的速度是1.0×103 km/h.人造卫星的速度是飞机速度的几倍?2、计算下列各式:(1)__________,25=___________.8322÷= (2)_________. (-3)3=__________,52(3)(3)-÷-= (3)__________,_________.533344⎛⎫⎛⎫÷= ⎪ ⎪⎝⎭⎝⎭234⎛⎫= ⎪⎝⎭思考:1、从上面的计算中你发现了什么?与同学交流。
2、 猜想的结果,其中是正整数,且。
m n a a ÷0,,a m n ≠m n >当是正整数,且时,0,,a m n ≠m n > = = =m n a a ÷归纳:同底数幂相除,例1、计算:(1) (2) (3)(ab )4÷(ab)2 4622÷46)()(b b -÷-(4)t 2m+3÷t 2(m 是正整数) (5)-a3÷a6; (6)53()()a b b a -÷-例2、计算:(1) (2)5536()y y y y y ∙÷∙+()m m x xx 232÷⋅(3) (4)()()482a a a -÷-÷76228643(813)∙÷-÷⨯例3、写出下列幂的运算公式的逆向形式,完成后面的题目.=+n m a =-n m a=mn a =n n b a (1)已知,求.4,32==b a x x b a x -(2)已知,求.3,5==n m x x n m x 32-(3)已知3=6,27=2,求3和9m n n m 32-nm -2教学目标:明确零指数幂、负整数指数幂的意义,并能与幂的运算法则一起进行运算.教学重点:公式a 0=1,a -n =(a ≠0,n 为正整数)规定的合理性.n a1教学难点:零指数幂、负整数指数幂的意义的理解.教学过程:问题1:一个细胞分裂1次,细胞数目有 个;分裂2次,细胞数目有 个;分裂3、4次呢?……分裂n 次呢?问题2:细胞分裂6次的细胞数目是细胞分裂4次的几倍?细胞分裂4次的细胞数目是细胞分裂4次的几倍?细胞分裂4次细胞数目时是细胞分裂5次时的几倍?思考:从上面的计算中你发现了什么?与同学交流。
同底数幂的除法二

将幂的运算和同底数幂的除法应用于实际问题中,如金融、物理等 领域,提高数学应用能力。
THANKS FOR WATCHING
感谢您的观看
也可以使用等式性质进行推导
设a^m = b,a^n = c,则b ÷ c = a^m ÷ a^n = a^(m-n)。
性质应用举例
计算表达式
2^5 ÷ 2^3 = 2^(5-3) = 2^2 = 4。
化简复杂表达式
(x^5 ÷ x^2) ÷ x^3 = x^(5-2) ÷ x^3 = x^3 ÷ x^3 = x^(3-3) = x^0 = 1(x≠0)。
由于底数相同,我们可以将分子和分 母中的相同因子约去,得到a^(m-n)。
法则应用举例
计算2^5 ÷ 2^3
根据同底数幂的除法法则,2^5 ÷ 2^3 = 2^(5-3) = 2^2 = 4。
计算x^10 ÷ x^7
同样应用同底数幂的除法法则,x^10 ÷ x^7 = x^(10-7) = x^3。
运算技巧应用举例
例1
计算2^5÷2^3。
解
根据同底数幂的除法法则,2^5÷2^3=2^(53)=2^2=4。
例2
计算(3^2)^3。
解
根据幂的乘方法则,(3^2)^3=3^(2*3)=3^6=729 。
计算(2x)^3。
例3
解
根据积的乘方法则,(2x)^3=2^3×x^3=8x^3。
注意事项
在进行同底数幂的除法运算时,需要注意以下几点 1. 底数必须相同;
具体来说,如果a是一个非零实数,m和n是整数,那么a^m ÷ a^n = a^(m-n)。
法则证明
可以通过指数的定义和性质来证明同 底数幂的除法法则。
数学:8.3同底数幂的除法(2)同步练习(苏科版七年级下)
数学:8.3同底数幂的除法(2)同步练习(苏科版七年级下)【基础演练】一、填空题1. 计算:(1)42-= ,(2)4)2(-= ,(3)0)2009(-= ,(4)32-= , ( 5)3)2(--= ,⑹3)21(-= . 2. 用科学记数法表示下列各数:(1)0.000024=___ ____,(2)-0.00063=_____________.3.把数1.54×10-6化成小数是_ .4. 科学家发现一种病毒的直径约为0.000043米,用科学记数法表示为 .5.若0)5(-x 有意义,则x , 若3)1(-+x 有意义,则x .二、选择题6. 25-的正确结果是( )A .-125 ;B .125; C .110; D .-110. 7. 计算0)3(π-的结果是( )A .0;B .1;C .3-π;D .π-3.8. 下列计算中,正确的是( )A.21222=⨯- ; B. 0(9)1-=- ; C.223a13=-a (a≠0) ; D. 3535a a a a ÷=⨯-. 9.计算202)101()101()101(++-后其结果为( ) A.1; B.201; C.1011001; D.1001001. 10. 若23.0-=a ,23--=b ,2)31(--=c ,d=01()3-, 则( ) A.a<b<c<d ; B.b<a<d<c ; C.a<d<c<b ; D.c<a<d<b.三、解答题11.计算:⑴0)2(|3|-+-; ⑵61022÷;⑶652)2(∙--; ⑷47)4()4(-∙--;⑸323-⎛⎫ ⎪⎝⎭; ⑹5(2)--.12.计算: ⑴03321()(1)()333-+-+÷-; ⑵02(3)(0.2)π--+-;⑶15207(27)(9)(3)---⨯-÷-; ⑷132223)32()23()65()56(---+÷-+÷.13.一包饼干的质量是250克,它等于多少吨?用科学记数法表示.【能力提升】14.若02)3()63(2-+--x x 有意义,则x 的取值范围是( )A .x>3;B .x<2 ;C .x ≠3或x ≠2;D .x ≠3且x ≠2.15.某种植物花粉的直径约为35000纳米,1纳米=910-米,用科学记数法表示该种花粉的直径为 . 16. 已知827)32(=-x ,则x= . 17.计算:20082009)81()125.0(---÷-.18.已知:200932122221----+⋅⋅⋅++++=s ,请你计算右边的算式求出S 的值.参考答案1.(1)-16,(2)16,(3)1,(4)81,(5)81-,⑹8.2.(1)5104.2-⨯,(2)-0.00063=4103.6-⨯-.3. 0.00000154.4.5103.4-⨯米.5.5≠x ,1-≠x .6.B ;7.B ;8.D ;9.C ;10.B.11.⑴4; ⑵161; ⑶-2; ⑷641-; ⑸827;⑹321-. 12.⑴3; ⑵26; ⑶9; ⑷2.13.4105.2-⨯.14.D .15.5105.3-⨯米.16. x=3.17.-8.18.解:等式可变形为:200932212121211+⋅⋅⋅++++=s . ①①式两边都乘以2得:20083221212121122+⋅⋅⋅+++++=s . ②②-①得:2009212-=s .。
同底数幂的除法(2)
• [6-2
1997 0 × ] 1988
-2
说说零指数和负整数幂的意义
P61
练一练1,2,3
P63 3、4 本 子 上 百分百:P78 2
代数作业格式 P79 3
评价手册:P28 第2课时
0
用文字概括为: 任何一个非零数的0次幂等于1.
你2 222 1 4 2 2222 2
2 2 2
3 4
2 5
34
2
3
1
1 2 2
1
请计算 10 10 , 3 3
1 规定:a -n= a n
为正整数)
( a≠0, n
即: 任何非零数的- n ( n 为正整数)次幂等于这个数n次幂 的倒数
1 -3 ;(π-3.14) 0 2
(-0.1)0×10-2;
3、把下列各数写成负整数指数幂的形式:
1 1 ;0.0001; 64 8
(5 5 5 ) 5
2 0
2
3
2 (2)
0
3
1 -5 1 3 1 2 • × × 2 2 2
1 10
(
0
)
0.1 10
( -1 ) (
-2
0.01 10
)
)
-3
0.001 10
(
)
8.3 同底数幂的除法(2)
零指数幂与负指数幂
2 2
3 3
10 10
2 2
3 3
5 5
1 1 1
2 3
33
2 3
0
10
2 2
10 0
0
苏科版七(下)数学8.3同底数幂除法教学案(2)
《8.3同底数幂的除法》教案2011-3-10教学目标:1..理解并掌握零指数幂与负指数幂的含义;2.了解指数范围由正整数拓宽到整数范围;3.了解零指数幂与负指数幂对于所有幂的运算性质仍然适用;教学重点、难点:对零指数幂与负指数幂的规定的合理性的认识、理解和应用;教学过程:一、复习回顾1. 同底数幂的除法运算法则2. 计算(1)=÷3622 (2)=÷-462)2(二、自学质疑1.用除法计算 (1)=÷)2()2(44 (2)=÷64222.用同底数幂计算 (1)=÷4422 (2)=÷64223.比较运算结果,观察发现:(1)=02 (2)=-224.对比上式中你能具体说说是怎样变化的吗?猜一猜:n a -=?(n a ,0=是正整数),你的猜想正确吗? 试说出你的理由:我们得到结论,任何不等于0的数的-n(-n 是正整数)次幂,等于这个数的n 次幂的倒数我们知道: 23÷24 = = 1/2 2×2×2×223÷24 =23-4 = 2 1所以我们规定a -n = 1/ a n (a ≠0 ,n 是正整数)语言表述:任何不等于0的数的-n (n 是正整数)次幂,等于这个数的n 次幂的倒数。
三、例题选讲例1用小数或分数表示下列各数(1)4-2 (2)-3-3 (3)3.14×10-5例2计算(1) =÷4622 (2) =-÷-46)()(b b(3)(ab )4÷(ab)2= (4)t 2m+3÷t 2(m 是正整数) 四、矫正反馈1. 计算 (1)(-8)12÷(-8)5; (2)x3÷x2; (3)-a3÷a6; (4)a3m÷a2m-1(m是正整数)《8.3同底数幂的除法》学案2011-3-10一、学习目标1.能说出零指数幂、负整数指数幂的意义2. 会正确的使用科学计数法表示绝对值小于1的数二、复习回顾1.同底数幂的除法运算法则2.计算(1)=÷3622 (2)=÷-462)2(三、自学质疑1.用除法计算 (1)=÷)2()2(44 (2)=÷64222.用同底数幂计算 (1)=÷4422 (2)=÷64223.比较运算结果,观察发现:(1)=02 (2)=-224.对比上式中你能具体说说是怎样变化的吗?猜一猜:n a -=?(n a ,0=是正整数),你的猜想正确吗? 试说出你的理由:四、例题选讲:书本例题 五、矫正反馈1.用小数或分数表示下列数:(1) 310- (2)33-- (3)0)1.0(- (4)3101.2-⨯ 2.把下列小数写成负整数指数幂的形式: (1)001.0 (2)0.0000001 (3)641 (4)811《8.3同底数幂的除法》巩固案2011-3-10班级 姓名1. 用分数或小数表示下列各数: (1)24- (2)0)1615((3)1)21(- (4)610027.1-⨯2.计算:(1)3255--÷ (2)2)31()21(--(3)22)51()51()51(-++ (4)33)2()2()21(-⨯-÷-选做题观察下列式子:.......16,8,4,2,54322------x x x x x (1)第8个式子是什么?()根据你发现的规律,写出第n 个式子。
【开学春季备课】苏科版七年级数学下册8.3同底数幂的除法(2)教案
课时编号 备课时间 课 题 8.3 同底数幂的除法(2) 1、 明确零指数幂、负整数指数幂的意义 2、能与幂的运算法则一起进行运算 a = 1(a≠0), a
0 -n
教学目标 教学重点 教学难点
= 1/ a (a≠0 ,n 是负整数)公式规定的合理性
n
零 指数幂、负整数指数幂的意义的理解 教 教学内容 学 过 程 教师活动 学生活动
0
教师点评
1、2、3、学生 板演,
通过练习进一 步巩固今天所 学的知识。 培养 学生自主学习 能力。整理知 识, 检验目标的 实施情况
习题
板书设计
作业布置 课后随笔
复习提问: 同底数幂的除法法则是什么? 1.做一做 P59 问(1) :幂是如何变化的? (2) :指数是如何变化的? 2.想一想 P59 ( ) 猜想:1=2 依上规律得: ( 0) 左= 2÷2 = 1 右 = 2 0 所以 2 = 1 0 即1 = 2 所以我们规定 a = 1 (a≠0) 语言表述:任何不等于 0 的数的 0 次幂等于 1。 教师说明此规定的合理性。 P59 3 4 问:你会计算 2 ÷2 吗? 2×2×2 3 4 我们知道: 2 ÷2 = = 1/2 2×2×2×2 3 4 3-4 1 2 ÷2 =2 = 2 -n n 所以我们规定 a = 1/ a (a≠ 0 ,n 是正整数) 语言表述: 任何不等于 0 的数的 -n(n 是正整数)次幂,等于这个数 的 n 次幂的倒数。 例2 用小数或分数表示下列各数: -2 (1)4 -3 (2)-3 -5 (3)3.14×10
0
(1)符号语言:a ÷a = a (a≠0 , m 、 n 是正整数 , 且 m > n) (2)文字语言:同底数幂相除, 底数不变,指数相减。 强激烈的讨 论, 通过开放题 的研究, 意识到 自己在学习中 的自主性 学生积极思考。 口头回答问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例:人体中红细胞的直径约为0.000 0077m, 而流感病毒的直径约为0.000 000 08m,用 科学记数法表示这两个量.
1.用科学记数法表示下列各数: (1)0.000 0032= (2)-0.000 00014=
(3)-680 000 000=
(4)314 000 000 000=
2.计算
x1 有意义,则x的取值范围___.
0
6 - (纳米是一个长度单位) (2)知道“纳米”是什么吗? 2161
36 (3)1“纳米”有多长?(1nm=十亿分之一 m)
“纳米”已经进入了社会生活的方方面面(如 纳米食品、纳米衣料…) 1 (1)你听说过“纳米”吗?
(4)纳米记为nm,请你用式子表示1 nm等于 多少米? 1 1
(1) - a 8 a 5 (-a )3 - a 6
4 3 (2)( x 3 ) 2 x x 1 -2 (3)( ) 10-2 10 4 100 10 3 3 3
(4)(5 5
2
-2
5 ) -5
0 -4
-3 -3
2 2
,d
1 3
0
.
试着比较a、b、c、d的大小
3.填空
1 (1) 若2 32
x
,则x=_____.
(2)162b=25· 211,则b=____.
3 x 4 (3)若( ) ,则x= —————— 2 9
(4)256b = 25×211,则 b=__.
(5 )若代数式
你能发现点的位置是如何随着指数的变化而变化的?
问题2:
•细胞分裂6次时的细胞数目是细胞 分裂4次时的几倍? •细胞分裂4次时的细胞数目是细胞 分裂4次时的几倍? 0 规定: a =1(a≠0)
即:任何非零数的0次幂等于1
问题3:
细胞分裂4次时的细胞数目是细胞 分裂5次的几倍? 如果用同底数幂除法 的运算性质计算,你将遇到什么挑战? 你想作什么样的规定?
规定:a -n= a≠0, n为正整数) 即:任何非零数的- n ( n为正整 数)次幂等于这个数n次幂的倒数.
1 n( a
结论: 0 a = 1(a ≠ 0)
-n
1 = n (a ≠ 0, n ≠ 0) 你 a a 能 m÷am= am–m 0, 0 =1; 1 = a ∴ 规定 a a = 说
复合计算
3 6 ( 1 ) ) ( a
7
3 2 7 2 ) ( a a 4 3
-a a
3
-2
3
8 9 (2) 9 8
-7
2 - 3
3 2
1.判断下列式子的对数幂的除法(2)
知识回顾 1.同底数幂相除,底数____, 指数___.
2. am÷an= 且 m > n)
(a≠0, m、n都是正整数,
3.计算: (1) 279÷97÷3 (2) b2m÷bm-1(m是大于1的整数) (3) (-mn)9÷(mn)4 (4) (a-b)6÷(b-a)3÷(a-b)2
明 理 由 吗 ?
1 n 0÷a n 当n是正整数时, = 1÷ a = a n a 0–n –n
a ∴ 规定 :
n
1
=a
=a
n
概念辨析
1、判断: 1) 3-3表示-3个3相乘(
)
2) a -m (a ≠0, m是正整数)表示m 个 a 相乘的积的倒数( )
3)(m-1)0等于1(
2、用小数或分数表示下列各数: 4 - 2; - 4 - 2;
4.已知am=3,an=2,求a2m-3n的值.
问题1:
一个细胞分裂1次,细胞数目有 ___个?细胞分裂2次,细胞数目有___ 个?分裂3、4次呢?.......分裂 n 次呢?
16=24;8=2(
);4=2( );2=2( )
再请仔细观察数轴:
A C B -1 0 1 2 3 4 5 6 7 8 9 10 11 12 1314 15 16 D
1 - 3; 2
)
3.14×10-3; (π-3.14) 0
(-0.1)0×10-2;
例计算:
1 -5 × (1)25÷2-3×20 (2) 2
1 3× 1 2 2 2
(3)[ 6-2 ×
1997 0 ] -2 1988
(5)2
-5
0.5
3
-2
1 3
拓展提升 若 x 3
2 x2
1, 求x的值.
小结
1.am÷an=
m-n a
(a≠o,m,n是正整数,m>n)
2.a0= 1
3. a
n
(a≠0)
( a≠0, n为正整数)
1
a
n
1nm= 1000000000 m,或1nm= 9 m, 或1nm=10-9m. 1 10
(5)怎样用式子表示3nm,5nm等于多少米 呢?18nm呢? 3nm=3×10-9m
5nm=5×10-9m 18nm=1.8×10-8m 一般地,用科学记数法可以把一个正数写 成a×10n的形式,其中1≤a<10, n是整数.
0
1 ()( . 2) . (3) a a a a()
4 4 8 5
2
1
6x
2 () . ( 5 ) 2 xy
a a()
3 2 2 2 3
3
. ( 6) 2 2 2 () x y ()
3
2
5
1 2.若a 0.3 , b 3 , c 3