费米分布函数电子的总数ppt课件

合集下载

费米狄拉克分布函数解析图像和应用

费米狄拉克分布函数解析图像和应用

费米狄拉克分布函数解析图像和应用文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]各能级被电子占据的数目服从特定的统计规律这个规律就是费米-狄拉克分布规律。

一般而言,电子占据各个能级的几率是不等的。

占据低能级的电子多而占据高能级的电子少。

统计物理学指出,电子占据能级的几率遵循费米的统计规律:在热平衡...状态下,能量为E 的能级被一个电子占据的几率为: f(E)称为电子的费米(费米-狄拉克)分布函数,k 、TE fermi 称为费米能级,它与物质的特性有关。

只要知道了费米能级E fermi 的数值,在一定温度下,电子在各量子态上的统计分布就完全确定了。

费米分布函数的一些特性:【根据f(E)公式来理解】第一,费米能级E fermi 是一种用来描述电子的能级填充水平的假想能级....,E f 越大,表示处于高能级的电子越多;E f 越小,则表示高能级的电子越少。

(E f 反映了整体平均水平)第二,假定费米能级E f 为已知,则f(E)f(E)式可画出f(E)的曲线如图所示,但要注意因变量f(E)不像普通习惯画在纵轴,而是破天荒的画在横轴。

的能级都空着。

因而费米能级E f 是在绝对零度时电子所具有的最大能量,是能级在绝对零度时能否被占据的一个界限,因而它是一个很重要的参数。

费米分布函数变化曲线T 3>T 2>T 1>T 0第五,在T≠0K时即不处于绝对零度的前提下,若E-E f>5kT,则f(E)<0.007;在T≠0K 前提下,若E-E f<-5kT,则f(E)>0.993。

(k、T分别为波耳兹曼常数和绝对温度)可见,温度T高于绝对零度的前提下,能量比E f高5kT的能态被电子占据的几率只有0.7%,几率很小,能级几乎是空的;而能级比E f低5kT的能态被电子占据的几率是99.3%,几率很大,该能级范围几乎总有电子。

一般可以认为,在T不为绝对零度但也不很高时,能量小于E f的能态基本上为电子所占据,能量大于E f的能态基本上没有被电子占据;而电子占据费米能级E f这个能级的概率是(不论任何温度下)都是1/2。

电子在各量子态中的分布

电子在各量子态中的分布

k BT 范围内
第五章 金属电子论
§5.4 电子热容
π 2 (k BT ) 2 3 电子的平均能量为 E = E F + 5 4 EF
单位体积中自由电子气的总能量为
N N 3 π 2 (k B T ) 2 E = E = [ EF + ] V V 5 4 EF
对热容的贡献为: 对热容的贡献为

γ =
N 1 2m 3 / 2 ∞ E 1 / 2 dE 电子密度 n = = 2 ( 2 ) ∫0 ( E − µ ) / k BT V 2π ℏ e +1
式中的积分无法严格积出, 式中的积分无法严格积出,通常只能近似求解 可以看出 µ 与
n
和T有关 有关
µ ( n, T ) 针对某种金属 n 是一定的,所以 µ 是一定的,
2 π 2 nk B
∂E N π 2 kB T Ce = )V = 2 EF ∂T V 4
2
2 EF
=
π2
2
nk B
2
T ≈ γT EF
Ce
成正比, 与T成正比,且随 T → 0K , 成正比
Ce → 0
这与经典理论的结果完全不同。 这与经典理论的结果完全不同。
对于金属,除自由电子对热容有贡献外, 对于金属,除自由电子对热容有贡献外, 晶格振动对热容也有贡献, 晶格振动对热容也有贡献, 在低温度下,可用德拜理论,总的热容可表示为: 在低温度下,可用德拜理论,总的热容可表示为
解出 :
ℏ2kF EF = 2m
2
其中
k F = (3π n)
2
1/ 3
N n= V
kF
称为费米波矢
电子的状态在 空间中都落在能量不同的等能面上 电子的状态在 k 空间中都落在能量不同的等能面上 对于自由电子气,其等能面都是球面 对于自由电子气, 其中能量等于费米能 的等能面称为费米面 其中能量等于费米能 E F 的等能面称为费米面 显然自由电子气的费米面为球面。 显然自由电子气的费米面为球面。 费米波矢 k F 就是球形费米面的半径 在绝对零度 费米面内所含有的全部量子态都被电子占满, 费米面内所含有的全部量子态都被电子占满, 费米面以外的状态全是空的

平均占有数——费米分布函数电子的总数44页PPT

平均占有数——费米分布函数电子的总数44页PPT
平均占有数——费米分布函数 电子的总数
11、战争满足了,或曾经满足过人的 好斗的 本能, 但它同 时还满 足了人 对掠夺 ,破坏 以及残 酷的纪 律和专 制力的 欲望。 ——查·埃利奥 特 12、不应把纪律仅仅看成教育的手段 。纪律 是教育 过程的 结果, 首先是 学生集 体表现 在一切 生活领 域—— 生产、 日常生 活、学 校、文 化等领 域中努 力的结 果。— —培养,只有领 导者本 身在这 方面以 身作则 才能收 到成效 。—— 马卡连 柯 14、劳动者的组织性、纪律性、坚毅 精神以 及同全 世界劳 动者的 团结一 致,是 取得最 后胜利 的保证 。—— 列宁 摘自名言网
15、机会是不守纪律的。——雨果
6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿

【高中物理】优质课件:费米能级和载流子的统计分布

【高中物理】优质课件:费米能级和载流子的统计分布
费米能级的意义
热平衡状态 状态密度
状态密度
导带底E-K关系
E
EC
2k 2 2mn*
要计算能量在E至E+dE之间的量子态数,只要计算这两个 球壳之间的量子态数即可。
dZ
2V
8 3
4k 2dk
1
1
k
(2mn* ) 2
(E
EC
)2
k
dk
mn* 2
dE
热平衡状态 状态密度
状态密度
3
dZ
V
2 2
(2mn* ) 2 3
1
(E EC ) 2 dE
导带底附近状态密度gc(E)
3
gc (E) ຫໍສະໝຸດ dZ dEV2 2
(2mn* ) 2 3
1
(E EC ) 2
热平衡状态 状态密度
状态密度
价带顶附近状态密度gc(E)
3
gV (E)
V
2 2
(2m*p ) 2 3
( EV
E
1
)2
状态密度
热平衡状态 状态密度
半导体中载流子的统计分布
热平衡状态 状态密度 费米能级和载流子的统计分布 本征半导体中的载流子统计 杂质半导体中的载流子统计 简并半导体
两方面知识:
➢ 允许的量子态按能量如何分布? ➢ 电子在允许的量子态中如何分布?
感 谢 观 看
高中物理
费米能级和载流子的统计分布
费米能级和载流子的统计分布
费米分布函数
➢根据量子统计理论,服从泡里不相容原理的电子遵循费米统计分布。
N(E) g(E)
f (E)
1
1 exp( E E f

平均占有数——费米分布函数电子的总数

平均占有数——费米分布函数电子的总数

kBT CV N 0 ( 0 )kB 2 EF

细节
。。。
§费密统计和电子热容量
—— 能带理论是一种单电子近似,每一个电子的运动近似看 作是独立的,具有一系列确定的本征态 —— 一般金属只涉及导带中的电子,所有电子占据的状态都 在一个能带内
1. 费密分布函数
电子气体服从泡利不相容原理和费米 — 狄拉克统计 —— 热平衡下时,能量为E 的本征态被电子占据的几率
2 h 0 EF (3n 2 )2/3 2m
电子的平均能量 —— 5
结论:在绝对零度下,电子仍具有相当大的平均能量 —— 电子满足泡利不相容原理,每个能量状态上只能容许两 个自旋相反的电子
—— 所有的电子不可能都填充在最低能量状态
电子的费密能量
总的电子数
f (E ) e 1
E EF k BT
1
—— 费米分布函数
物理意义:能量为E的本征态上电子的数目 —— 平均占有数 (费米能量?或)化学势 μ —— 体积不变时,系统增加一个电子所需的自由能 电子的总数
N f (Ei )
i
—— 对所有的本征态求和
两本书的差别
黄昆:
f (E ) e
1
E EF k BT
1
—— 温度升高 费密能(=化学势)下降
2 k BT 2 E F E [1 ( 0 ) ] 12 E F
0 F
胡安:
f (E ) e
1
E k BT
1
—— 化学势 费密能 = 0温化学势
2 k BT 2 T E F [1 ( ) ] 12 E F 0 EF
经典电子论的成就 解释金属的特征 —— 电导、热导、温差电、电磁输运等 经典电子论的困难 按照经典能量均分定理,N个电子的能量 对热容量的贡献 大多数金属

第三章 费米分布及玻耳兹曼分布ppt课件

第三章 费米分布及玻耳兹曼分布ppt课件
对于半导体晶体,价电子填满了价带,最外的导带是 空的,费米能级位置在禁带内,且随其中的杂质种类、杂 质浓度以及温度的不同而改变。
.
22
3.2.2 玻耳兹曼分布函数
1. 电子的玻耳兹曼分布函数 EEF kT 时 , ex[p (EF)-/E k T1 ]
此时,电子的费米分布函数近似为
fFE 1 + ex E p k E T F - 1exE pk -E (T F)-
T=0K时,价带中的量子态完全填满,导带完全空着。 本征激发
T>0K后,本征半导体的价带中的电子激发到导带,同时在 价带中产生等量空穴。
本征半导体的电中性条件 本征激发条件下,电子和空穴成对出现,因此导带中电子的 浓度n0应等于价带中空穴的浓度p0,即n0=p0
.
40
3.3.1 本征半导体的电中性条件和费米能级的确定
.
热平衡状态下,电子按能量大小,具有一定的统计分布规律性。 电子是费米子,遵从费米分布。
3.2.1 费米分布函数
绝对温度T 下的物体内,电子达到热平衡状态时,一个 能量为E的独立量子态,被一个电子占据的几率f(E)为:
fnE
1
EEF
电子的费米分布函
1e k0T
K0为玻尔兹曼常数。 EF为一个类似于积分常数的一个待定常数,称为费米能级。
exE pF-(E)kT
这时空穴的费米分布函数转化为空穴的玻耳兹曼分布:
fBVEexpEFk0TE
.
24
3.2.2 玻耳兹曼分布函数
非简并系统和简并系统
通常将可以用玻尔兹曼分布描述的系统称为非简并系统,而 必须用费米分布描述的系统称为简并系统。
对于电子系统,当填充的能级的位置都能满足: E-EF>>kT 时,可以用玻尔兹曼分布来计算电子的填充几率, 此时的电子系统是非简并的; 对于空穴系统,当填充的能级的位置都能满足: EF-E>>kT 时,可以用玻尔兹曼分布来计算空穴的填充几率 ,此时的空穴系统是非简并的。

第2章-费米能级-918ppt课件

第2章-费米能级-918ppt课件

单位体积内能量在E0 - E1的量子态的数量可表示为
E1 g ( E )dE E0
不同半导体材料的能带结构不同,态密度函数也不同。
.
16
电子的统计分布规律
如果知道某个能带中的量子态数在能量上的 分布(态密度)以及能量为E的量子态被电子占据的
概率,那么将两者的乘积在能带范围内积分,就可 以得到这个能带中的电子的浓度。
Iq Vj j所 有 被 占 据 的 状 态
q Vj q Vj
j所 有 状 态
j所 有 空 状 态
q Vj j所有空状态 .
=0 满带电子 不参与导带
7
准自由电子、空穴
价带电子的导电 效于 空穴的导电
I q Vj j所有空状态
如果把价带中的空量子态看成是带正电荷的微观 粒子,那么价带电子形成的电流可以等效为这些带正 电荷的粒子形成的电流,称这种虚拟的粒子为空穴。 空穴不是真实存在的粒子,它是为了便于分析问题而构造的
▪ R ∝ 电子浓度 × 空穴浓度
复合需要 1个空穴 + 1个准自由电子
大多数发光器件发光. 的基于此原理。
10
与半导体导电能力有关的两个主要问题
载流子的浓度
n自由电子浓度cm-3
热平衡状态下载流子浓度 p空穴浓度cm-3
本征半导体与杂质半导体
载流子浓度相关的统计规律
非平衡载流子
载流子的运动
半导体中载流子的统计分布
1、状 态 密 度
假设在能带中能量E与E+dE之间的能量间隔dE内有 量子态dZ个,则定义状态密度g(E)为:
g(E) dZ dE
总目录 章目录 返回 上一页 下一页
1. 态密度
1.3.1 电子的统计分布规律

半导体中电子的费米统计分布 ppt课件

半导体中电子的费米统计分布 ppt课件

一般地:
1 f(E)e(EEF)/kBT 1
对导带中的电子,有: E -EF >Ec -EF >> kBT
则 f(E)e(EEF)/kBT
——导带中的电子接近经典玻耳兹曼分布 ——导带中每个能级上电子的平均占据数很小
一、 载流子的统计分布
(2)价带中空穴占据的几率——能级不被电子占据的几率
1f(E)1e(EEF)1/kBT1
(1) N型半导体导带中电子的数目
如果N型半导体主要含有一种施主,施主的能级: ED 施主的浓度: ND
足够低的温度下,载流子主要是从施主能级激发到导 带的电子, 导带中电子的数目是空的施主能级数目
nND[1f(E)]
1 f(E)e(EEF)/kBT 1
nND[1e(EF1ED)/kBT]
因为
nNe(EcEF)/kBT c
de允许的量子态按能量如何分布de2导带中电子的浓度2导带中电子的浓度二载流子浓度载流子浓度有效能级密度2导带中电子的浓度2导带中电子的浓度二载流子浓度载流子浓度2导带中电子的浓度2导带中电子的浓度二载流子浓度载流子浓度3价带中空穴的浓度3价带中空穴的浓度二载流子浓度载流子浓度得得单位体积中价带空穴数就是如同价带顶e个能级所应含有的空穴数价带顶附近有效能级密度的位置和载流子浓度很简单地把费米能级的位置和载流子浓度很简单地联系了起来4费米能级4费米能级二载流子浓度载流子浓度温度不变导带中电子越多空穴越少温度不变导带中电子越多空穴越少反之亦然二载流子浓度载流子浓度至此我们获得了载流子浓度随温度变化的一般规律
三、 杂质激发-掺杂半导体的载流子浓度
(1) N型半导体导带中电子浓度
1[14(ND)eEi ] /kBT 1/2
n
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
固体物理
Solid State Physics
第一章 第二章 第三章 第四章 第五章 第六章 第七章 第八章
晶体结构 晶体的结合 晶格的热振动 金属电子论 电子的能带论 半导体电子论 固体磁性 固体超导
1 电子的费米统计 2 电子输运
电子是量子的么?
常温常压下是的,确切来说,~106K以下都 是
像声子那样,有经典模型对应么?
3) 在较低温度时,分布函数在
处发生很大变化
k空间的费米面 的费米面内所有状态均被电子占有 一部分电子被激发到费密面外附近
以下推导,我们在做一件什么事情?
1 f (E) EEF
e kBT 1
约束:

N f (E)N (E)dE 0
积分方程!
求解积分方程: EF EF T ?

EF
[1
2 12
( kBT EF
)2 ]
0 EF
费米分布函数
f (E)
1
E EF
e kBT 1
电子填充能量
几率
f (EF ) 1/ 2
f (E) 0 f (E) 1
费米分布函数
f (E)
1
E EF
e kBT 1
f (E) 1 f (E) 0
把《统计物理》放旁边
量子统计物理学好没有?
费米子。。。
1 电子的费米统计和比热容
出发点是什么?
经典理想电子气体Drude模型的问题:比热容不符合实验 泡利不相容原理:从原子级别到固体级别 量子理想电子气体Sommerfeld模型:费米-狄拉克分布
中间推导过程 … …
态密度复习 粒子数密度条件
电子气体服从泡利不相容原理和费米 — 狄拉克统计
—— 热平衡下时,能量为E 的本征态被电子占据的几率
1 f (E ) EEF
e kBT 1
—— 费米分布函数
物理意义:能量为E的本征态上电子的数目 —— 平均占有数
(费米能量?或)化学势 μ
—— 体积不变时,系统增加一个电子所需 Ei ) —— 对所有的本征态求和
i
两本书的差别
黄昆:
1 f (E) EEF
e kBT 1
胡安:
f (E)
1
E
e kBT 1
—— 温度升高
费密能(=化学势)
下降E F

E
0 F
[1

1
2
2
(
kBT
E
0 F
)2
]
—— 化学势
费密能 = 0温化学


T


E
0 F
[1

1
2
2
( kBT
E
0 F
)2 ]
CV

2
N0 2
(
kBT EF0
)kB
。。。
细节
§费密统计和电子热容量
—— 能带理论是一种单电子近似,每一个电子的运动近似 看
作是独立的,具有一系列确定的本征态 —— 一般金属只涉及导带中的电子,所有电子占据的状态 都
在一个能带内 1. 费密分布函数
有! 就是经典自由电子气体,不幸的是我们是在常
温常压下检验它,所以它表现得很糟
交代一下内容逻辑顺序
金属中的电子是怎样存在着的?
矩形盒子:金属电子论
经典理想电子气体:Drude model 量子理想电子气体:Pauli exclusion principle
原子呢?晶格结构呢?
下一章。。。电子的能带论
引入函数
能态密度 应用分部积分
—— 能量E以下的量子态总

SUCCESS
THANK YOU
2019/5/6
因为

f
N

Q(E)(
0
E
)dE
N


Q ( E )(
f
)dE
0
E
分布函数
—— 只在
——
的偶函数
附近有显著的值,具有函数特点
N Q (E )( f )dE
金属电子论
自由电子模型
—— 不考虑电子与电子、电子与离子之间的相互作用
特鲁特(Drude) — 洛伦兹金属电子论 (在2电子输运中介 绍) —— 平衡态下电子具有确定平均速度和平均自由程
—— 电子气体服从麦克斯韦 — 玻尔兹曼统计分布规律, 对电子进行统计计算, 得到金属的直流电导、金属电子的 弛豫时间、平均自由程和热容

E
—— 将
—— 索末菲在自由电子模型基础上,提出电子在离子产生 的平均势场中运动,电子气体服从费密 — 狄拉克分布 —— 计算了电子的热容,解决了经典理论的困难
原子中的电子能级 → Pauli不相容原理 → Fermi-Dirac分布 那么,金属中的自由电子气呢? → 费米面!
教材page 61,(2. 2. 1)中19/125怎么来的?
计算费米能: EF 是温度的函数? (化学势)
能量,比热的低温行为
结论有多可靠?
晶格周期性的影响:能带纳入考虑
紧束缚模型观点的能带:s, p, d, f 电子
这是一个什么问题?
这是一个统计物理问题(3d,1d,2d?)
这是一个量子力学问题
e e 1
r ik
rr
i pr rr 1h
自由电子的费密能级
EF0

h 2 (3n 2 )2/3
2m
电子的平均能量 —— 平均动能
E Kin

3 5
E
0 F
结论:在绝对零度下,电子仍具有相当大的平均能量
—— 电子满足泡利不相容原理,每个能量状态上只能容许两 个自旋相反的电子
—— 所有的电子不可能都填充在最低能量状态
电子的费密能量 总的电子数
经典电子论的成就
解释金属的特征 —— 电导、热导、温差电、电磁输运等
经典电子论的困难
按照经典能量均分定理,N个电子的能量 3 N k B T / 2 对热容量的贡献 3 N k B / 2
大多数金属
C E xperim ental V
/ C C lassical V

0 .0 1
量子力学对金属中电子的处理
V
V
这是一个量子统计(量子多体)问题
凝练的理论问题
出发点(自由)
什么系综?

k
h 2k 2 2m
cˆk
cˆk
主要讨论方法和技巧(分 T = 0 和 T > 0

Tr (e ( H N ) ), 1
kBT
主要结论
1 f (E) EEF
e kBT 1
EF
分两步走: (1) T=0; (2) T>0
2. 的确定
之间状态数
之间的电子数
金属中总的电子数

N f (E)N (E)dE 0
—— 取决于费密统计 分
布函数和电 子的能
态密度函数
回忆态密度
N
(E)

2V
2 2
2m (2
)3/2
E 1/ 2
费米能级 金属中总的电子数 自由电子的能态密度
相关文档
最新文档