ArcGIS实验-Ex18-利用水文分析方法提取山脊、山谷线

合集下载

arcgis 山体范围提取

arcgis 山体范围提取

arcgis 山体范围提取摘要:1.引言2.ArcGIS 简介3.山体范围提取的方法4.提取山体范围的步骤5.结论正文:【引言】在地理信息系统(GIS) 中,山体范围提取是一项非常重要的任务。

山体是地球表面的重要地貌特征之一,对于地理学、地质学、环境科学等领域的研究都具有重要意义。

ArcGIS 是一款功能强大的GIS 软件,可以进行山体范围提取等空间分析任务。

本文将介绍如何使用ArcGIS 提取山体范围。

【ArcGIS 简介】ArcGIS 是由美国Esri 公司开发的一款GIS 软件,具有强大的空间数据处理和分析能力,被广泛应用于地理学、地质学、环境科学、城市规划等领域。

ArcGIS 包括桌面、服务器和移动端等多个平台,支持多种数据格式和空间分析算法,可以满足不同用户的需求。

【山体范围提取的方法】山体范围提取的方法有很多种,其中比较常用的方法是基于DEM(数字高程模型) 的山体提取方法。

该方法通过对DEM 进行处理,提取出山体的轮廓线和高度等信息,从而确定山体的范围。

【提取山体范围的步骤】下面是使用ArcGIS 提取山体范围的具体步骤:1.准备数据:需要一幅包含地形信息的DEM 数据,可以使用遥感影像、地形图等数据源获取。

2.填充DEM:使用ArcGIS 中的"Fill"工具,对DEM 数据进行填充,以生成完整的地形表面。

3.计算坡度:使用ArcGIS 中的"Slope"工具,计算填充后的地形表面的坡度。

4.确定山体范围:根据坡度的大小,将地形表面划分为平地、缓坡、陡坡和山峰等不同区域。

可以使用ArcGIS 中的"Raster Calculator"工具进行操作。

5.提取山体轮廓线:对山峰区域进行处理,提取出山体的轮廓线。

可以使用ArcGIS 中的"Hillshade"工具,将山峰区域转换为轮廓线。

6.聚合轮廓线:对提取出的山体轮廓线进行聚合,以生成最终的山体范围。

山脊线山谷线提取实验报告

山脊线山谷线提取实验报告

山脊线山谷线提取实验报告实验容描述:山脊线和山谷线构成了地形起伏变化的分界线(骨架线),因此它对于地形地貌研究具有重要意义;另一方面,对于水文物理过程研究而言,由于山脊、山谷分别代表示分水性与汇水性,山脊线和山谷线的提取实质上也是分水线与汇水线的提取。

本次实验通过某区域栅格DEM掌握山脊线和山谷线这两个基本地形特征信息的理论及其基于DEM的提取方法与原理;同时,熟练掌握利用ArcGIS软件对这两个地形特征信息的提取方法。

实验原理:1.本实验基于规则格网DEM数据使用平面曲率与坡形组合法提取山脊线和山谷线,首先利用DEM数据提取地面的平面曲率及地面的正负地形,取正地形上平面曲率的大值即为山脊,负地形上平面曲率的大值为山谷。

实际应用中,由于平面曲率的提取比较繁琐,而坡向变率(SOA)在一定程度上可以很好地表征平面曲率。

因此,提取过程中可以SOA代替平面曲率。

2.主要用到以下理论知识:1)坡向变率:是指在提取坡向基础上,提取坡向的变化率,亦即坡向之坡度(Slope of Aspect,SOA)。

它可以很好地反应等高线弯曲程度;2)反地形DEM数据:求取原始DEM数据层的最大高程值,记为H,通过公式(H-DEM),得到与原来地形相反的DEM数据层,即反地形DEM数据;3)地面坡向变率SOA:地面坡向变率在所提取的地表坡向矩阵的基础上沿袭坡度的求算原理,提取地表局部微小围坡向的最大变化情况。

但是SOA在提取过程中在北面坡将会有误差产生,所以要将北坡坡向的坡向变率误差进行纠正,其公式为:SOA=(( [SOA1]+[ SOA2] )-Abs( [SOA1]-[ SOA2] ))/2其中:SOA1为原始DEM数据层坡向变率,SOA2为反地形DEM数据层坡向变率。

4)焦点统计5)ArcScan自动矢量化流程图、实验步骤:1.相对路径2.加载数据3.提取原始dem的坡向(利用dem数据--空间分析--表面分析--坡度工具,命名为Aspect)4.提取原始DEM数据的坡向变率(利用3中生成的Aspect图层--空间分析--表面分析--坡度工具,命名为SOA1)5.提取反地形DEM数据(栅格计算器--输入公式H-DEM)1)找出DEM最大高程值(右键属性---找出数据源中最大值为1153.8)2)栅格计算器提取反地形DEM数据(输入公式1153.8 - "dem",命名为INdem)6.提取反地形DEM数据的坡向值7.计算反地形DEM数据的坡向变率8.计算进行误差纠正的地面坡向变率(栅格计算器--输入公式(("SOA1" + "SOA2") - Abs("SOA1" - "SOA2")) / 2)9.邻域分析(原始dem--邻域分析--焦点统计focal statistics(统计原始dem的平均值)---设置统计类型为平均值mean,邻域类型为矩形(也可为圆形),邻域大小为3*3(我发现邻域越大越模糊)(11*11),则可得到一个邻域为3*3(11*11)的矩形的平均数据层,命名为mean10.计算正负地形分布区域(空间分析--地图代数--栅格计算器---输入公式为"dem" - "mean",命名为Dvalue(差值))11.利用栅格计算器提取山脊线(公式为"SOA" > 70 & "Dvalue" > 0这是错的!!要加括号!!("SOA" > 70) &( "Dvalue" > 0))和山谷线(("SOA" > 70) & ("Dvalue" < 0))12.利用ArcScan自动矢量化得到山脊线山谷线的矢量图层1)在ArcCatalog中新建(方法有两种:右击文件夹--new--shapefile!或者是右击geodatabase--new--feature class(新建要素类))山脊线图层(名称为shanjiline,类型为线)方法1:new--shapefile方法2:new--feature class(但是这种方法下的线图层,在自动矢量化山脊线后无法读到这个图层,所有还是选择方法1---这是因为栅格图层和矢量图层不能放在同一个geodatabase里面么???????)2)打开开始编辑3)勾选扩展工具中的自动矢量化工具ArcScan4)在菜单栏空白处右击勾选ArcScan,打开ArcScan工具条--单击自动矢量化下的生成要素打开生成要素对话框即可生成自动矢量化后的矢量山脊线5)用同样的方法生成矢量山谷线13.制作立体图。

山谷线、山脊线提取

山谷线、山脊线提取

山谷线、山脊线提取自动提取山脊线和山谷线arcmap 自动提取山脊线和山谷线的方法1 平面曲率与坡形组合法基于规则格网DEM是最主要的自动提取山脊线和山谷线的方法,从算法设计原理上来分,大致可以分为以下五种:1) 基于图像处理技术的原理;2) 基于地形表面几何形态分析的原理;3) 基于地形表面流水物理模拟分析原理;4) 基于地形表面几何形态分析和流水物理模拟分析相结合的原理;5) 平面曲率与坡形组合法。

平面曲率与坡形组合法提取的山脊、山谷的宽度可由选取平面曲率的大小来调节,方法简便,效果好。

该方法基本处理过程为:首先利用DEM数据提取地面的平面曲率及地面的正负地形,取正地形上平面曲率的大值即为山脊,负地形上平面曲率的大值为山谷。

实际应用中,由于平面曲率的提取比较繁琐,而坡向变率(SOA)在一定程度上可以很好地表征平面曲率。

因此,下面的提取过程以SOA代替平面曲率。

具体提取过程为:1)激活DEM 数据,在Spatial Analysis 下使用surface 菜单下的Derive Aspect 命令,提取DEM 坡向层面,记为A;2)激活A 层面,在Spatial Analysis 下使用surface 菜单下的Derive Slope 命令,提取A 层面的坡度信息,记为SOA1;3)求取原始DEM 数据层的最大高程值,记为H;通过Spatial Analysis 下的栅格计算器Calculator,公式为(H-DEM),得到与原来地形相反的DEM 数据层,即反地形DEM 数据;4)基于反地形DEM 数据求算坡向值;5)利用SOA 方法求算反地形的坡向变率,记为SOA2;6)在Spatial Analysis 下使用栅格计算器Calculator,公式为SOA =(([SOA1]+[SOA2])-Abs ([SOA1]-[SOA2]))/ 2,即可求出没有误差的DEM 的坡向变率SOA;7)激活原始DEM 数据,在Spatial Analysis 下使用栅格邻域计算工具Neighborhood Statistics;设置Statistic type 为平均值,邻域的类型为矩形(也可以为圆),邻域的大小为275×275 MAP,则可得到一个邻域为275×275 MAP的矩形的平均值层面,记为B;8)在Spatial Analysis 下使用栅格计算器Calculator,公式为C =[DEM]-[B],即可求出正负地形分布区域,9)在Spatial Analysis下使用栅格计算器Calculator,公式为D =[C] >0 & SOA > 70,即可求出山脊线;10)同理,在栅格计算器Calculator 中,修改公式为D =[C] < 0 & SOA > 70,即可求出山谷线地形特征信息提取(山谷线、山脊线)方法1:SOA法SOA法原理:山谷线和山脊线实质是平面曲率发生突变的地方,所以用SOA来近似平面曲率,提取其中变法大的就是山谷线和山脊线,其中山谷线对应的是负地形中SOA较大的值,山脊线对应的是正地形中SOA较大的值。

水文分析和地形分析、提取山谷和鞍部点

水文分析和地形分析、提取山谷和鞍部点

Arcgis地形分析DEM提取坡度(1)新建地图文档,加载【ArcGIS地形分析--TIN及DEM的生成,TIN的显示】经验教程中得到的DEM数据:huainan(2)在【ArcToolbox】中,执行命令[3D Analyst工具]——[栅格表面]——[坡度],参照下图所示,指定各参数:执行后,得到坡度栅格Slope_tingri1:坡度栅格中,栅格单元的值在[0 -60] 度间变化右键点击图层[Slope_TinGrid],执行[属性命令],设置图层[符号系统],重新调整坡度分级。

将类别调整为5,点[分类]按钮,用手动分级法,将中断值调整为:10,20,30,40,60。

DEM提取山顶点1.添加dem数据,制作15m和75m等高线。

2.制作阴影阴影图像【空间分析】----【表面分析】----【地表阴影】,生成地表阴影图像hillsha。

3.提取栅格数据的有效区域。

【空间分析】----【地图制图】----【栅格计算器】。

“要提取的文件名”=“huainan54”>=0,(注意:红色等号是1个=,而不是栅格计算器中的2个==)。

“back”=“huainan54”>=0,生成back文件。

5.按照等高线75m等高线15m,back,hillsha叠放。

1.提取dem数据中的最大值。

【空间分析工具】----【邻域分析】----【块统计】,生成maxpoint文件参数设置如下:Maxpoint7.提取山顶点。

【空间分析】----【地图制图】----【栅格计算器】。

输入命令:sd=([axpoint]-[淮南54])==0,生成sd文件。

8.山顶点栅格文件二值化。

【空间分析工具】----【重分类】----【重分类】。

生成re-sd9.生成山顶点栅格数据转换为shapefile。

【转换工具】----【栅格转换】----【栅格数据转点】,生成山顶点矢量文件。

ArcGIS利用水文分析方法提取山脊、山谷线提取方法大致可以分为以下五种:1) 基于图像处理技术的原理;2) 基于地形表面几何形态分析的原理;3) 基于地形表面流水物理模拟分析原理;4) 基于地形表面几何形态分析和流水物理模拟分析相结合的原理;5) 平面曲率与坡形组合法。

实习15 山脊线、山谷线和鞍部点的提取

实习15  山脊线、山谷线和鞍部点的提取

实习目的
熟练掌握基于DEM利用ArcGIS进行提取相关 地形特征的方法与原理; 深入认识山脊线、山谷线和鞍部点3个基本地形 特征;
实习工具
山脊线和山谷线提取
方法1 基于地形表面几何形态 近似为SOA>70与正地形 spatial analyst -Surface Analysis /3D analyst-Raster Surface[只有 相关地形因子提取,无栅格运算]
方法2 DEM水文分析
鞍部点态
SOA>70与正地形 SOA=(([SOA1]+[SOA2])-abs([SOA1]-[SOA2]))/2 C=[DEM]-[DEMmean] 山脊线 C>0 & SOA>70 山谷线 C<0 & SOA>70 鞍部点 Shanji×Shangu×(C>0),并转为矢量 × × 并转为矢量
实习15
山脊线、山谷线 和鞍部点的提取的提取
Data(下载完在 下载完在ArcCatalog中查看是否能打开 中查看是否能打开) 下载完在 中查看是否能打开 一、山脊线、山谷线提取 Ex9.5.2 Ex11.6.1 二、鞍部点的提取 Ex11.6.2 实习报告要求【公用其中的一个数据(数据说明)完成】 1 运用model表达整体的思路; 2 说明相关参数的意义; 3 并分析山脊线、山谷线、鞍部点的地形特点及其与等高线弯 曲方向的关系。
实习意义与实习方法
实习意义与实习方法
作为地形特征线的山脊线、山谷线对地形地貌具 有一定的控制作用。它们与山顶点、谷底点以及鞍 部点等一起构成了地形起伏变化的骨架结构。同时 由于山脊线具有分水性、山谷线具有合水性特征, 使它们在地形分析中具有特殊的意义。

山脊线、山谷线、鞍部点的提取

山脊线、山谷线、鞍部点的提取

实例与练习练习1. 利用水文分析方法提取山脊、山谷线1.背景:山脊线、山谷线是地形特征线,它们对地形、地貌具有一定的控制作用。

它们与山顶点、谷底点以及鞍部点等一起构成了地形及其起伏变化的骨架结构。

因此在数字地形分析中,山脊线和山谷线以及地形特征点等的提取和分析是很有必要的。

2.目的:理解基于DEM结合水文分析的方法提取出研究区域的山脊线和山谷线的原理;掌握水流方向、汇流累积量的提取方法以及它们的提取原理;能将水文分析的方法和其它的空间分析方法相结合以解决应用问题。

3.要求:(1)利用水文分析思想和工具提取研究区域的山脊线;(2)利用水文分析思想和工具提取研究区域的山谷线。

4.数据:一幅25m分辨率的黄土地貌DEM数据,数据的区域大概有140 km2。

数据存放于…/ChP11/Ex1中,请将其拷贝到E:/ChP11/Ex1。

结果数据保存在…/ChP11/Ex1/Result 中。

5.算法思想:对于水文物理过程研究而言,由于山脊、山谷分别表示分水性与汇水性,山脊线和山谷线的提取实质上也是分水线与汇水线的提取。

因此,对于山脊线和山谷线就可以利用水文分析的方法进行提取。

基于DEM的这种地形表面流水物理模拟分析的原理是:对于山脊线而言,由于它同时也是分水线,那么对于分水线上的那些栅格,由于分水线的性质是水流的起源点,通过地表径流模拟计算之后这些栅格的水流方向都应该只具有流出方向而不存在流入方向,也就是其栅格的汇流累积量为零。

通过对零值的汇流累积值的栅格的提取,就可以得到分水线,也就得到了山脊线;对于山谷线而言,由于其具有汇水的性质,那么对于山谷线的提取,可以利用反地形的特点,即是利用一个较大的数值减去原始的DEM数据,而得到了与原始地形完全相反的地形数据,也就是原始的DEM中的山脊变成负地形的山谷,而原始DEM中的山谷在负地形中就变成了山脊,那么,山谷线的提取就可以在负地形中利用提取山脊线的方法进行提取。

利用水文分析提取山脊线山谷线

利用水文分析提取山脊线山谷线
( 7 ) 打 开 Spaitiai Analyst Tool--surface--contour 和 Spaitiai Analyst Tool--surface--hillshade,分别生成原始 DEM 的等值线 ctour 和晕渲图 hillshade.
(8)在 neiborfacc0 数据上单击右键,点击 properties,进行重新分级,将数据分为 两级,以等值线 ctour 和晕渲图 hillshade 为辅助不断调整分级临界点,属性值越接近 于 1 的栅格越有可能是山脊线的位置,最终确定分界阈值为 0.5541。
-3-
3)山谷线的提取 ( 1 ) 利 用 Map Algebra--Raster calculator 工 具 获 取 反 地 形 , 计 算 公 式 为 fandem=Abs(dem-2000)得到与原始地形完全相反的反地形数据 fandem.不需要进行洼地 填充,其余步骤与山脊线的提取步骤相同。 (2)水流方向的计算:选择 Spaitiai Analyst Tool——hydrology——Flow direction, 输入表面栅格数据 fandem;命名输出栅格数据 flowdirfan。 ( 3 ) 汇 流 累 积 量 的 计 算 : 选 择 Spaitiai Analyst Tool — — hydrology — — Flow accumulation,选择 flowdirfan 作为输入的水流方向数据;输出命名为 flowaccfan (4)汇流累积量为零值的提取:在 ArcToolBox 中选择 Map Algebra--Raster calculator, 提取汇流累积量为零值,计算公式为 faccfan0=(flowacclfan==0) (5) 对 facc0 做 光 滑 处 理 : 在 ArcToolBox 中 选 择 Spaitiai Analyst Tool--Neiborhood--focal stastics,利用邻域分析方法以 3×3 的窗口计算平均值,计 算结果命名为 nbfacc0fan. (6)在 neiborfacc0 数据上单击右键,点击 properties,进行重新分级,将数据分为两级, 以等值线 ctour1 和晕渲图 hillshade2 为辅助不断调整分级临界点,属性值越接近于 1 的栅格越有可能是山谷线的位置,最终确定分界阈值为 0.65677。

arcgis 山体范围提取

arcgis 山体范围提取

arcgis 山体范围提取【原创实用版】目录1.引言2.ArcGIS 简介3.山体范围提取方法4.山体范围提取的实际应用5.总结正文【引言】在地理信息系统 (GIS) 中,山体范围提取是一项非常重要的任务。

山体是地球表面上的一种基本地貌类型,对于地理信息系统中的空间分析、地形分析、水文分析等领域都有着重要的作用。

ArcGIS 是一款非常流行的 GIS 软件,可以用来进行山体范围提取等任务。

本文将对 ArcGIS 山体范围提取进行介绍,并对其实际应用进行探讨。

【ArcGIS 简介】ArcGIS 是由美国 Esri 公司开发的一款地理信息系统软件,具有强大的空间数据处理和分析能力,被广泛应用于地理信息系统、遥感、环境科学、城市规划等领域。

ArcGIS 包括桌面、服务器和移动端等多个平台,用户可以根据自己的需要选择不同的版本和模块。

其中,ArcGIS Desktop 是一款桌面端的软件,包括了 ArcMap、ArcCatalog、ArcToolbox 等工具,可以进行地理数据的编辑、管理、分析和可视化等操作。

【山体范围提取方法】在 ArcGIS 中,山体范围提取一般使用 DEM(数字高程模型) 数据作为输入数据。

DEM 数据是一种描述地表高程信息的数字数据,可以用来描述地形、山体等地貌类型。

下面是一种常用的山体范围提取方法:1.填充 DEM 数据,将 DEM 数据转换为填充栅格数据。

2.计算填充栅格数据的坡度和坡向。

3.根据坡度和坡向的阈值,将填充栅格数据进行分类,提取出山体范围。

4.将山体范围转换为矢量数据,以便进行后续的空间分析和可视化。

【山体范围提取的实际应用】山体范围提取在实际应用中有着广泛的应用,下面是一些例子:1.地形分析:山体范围提取可以为地形分析提供基础数据,例如计算地形坡度、坡向、地形起伏等。

2.水文分析:山体范围提取可以为水文分析提供基础数据,例如提取河流流域、水系网络等。

3.灾害评估:山体范围提取可以为灾害评估提供基础数据,例如山体滑坡、泥石流等灾害的评估。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十一章水文分析练习1:利用水文分析方法提取山脊、山谷线一、背景山脊线、山谷线是地形特征线,它们对地形、地貌具有一定的控制作用。

它们与山顶点、谷底点以及鞍部点等一起构成了地形及其起伏变化的骨架结构。

因此在数字地形分析中,山脊线和山谷线以及地形特征点等的提取和分析是很有必要的。

二、目的理解基于DEM结合水文分析的方法提取出研究区域的山脊线和山谷线的原理;掌握水流方向、汇流累积量的提取方法以及它们的提取原理;能将水文分析的方法和其它的空间分析方法相结合以解决应用问题。

三、要求1、利用水文分析思想和工具提取研究区域的山脊线;2、利用水文分析思想和工具提取研究区域的山谷线。

四、数据一幅25m分辨率的黄土地貌DEM数据,数据的区域大概有140 km2。

数据存于…/ChP11/Ex1中,请将其拷贝到E:/ChP11/Ex1。

结果数据保存在…/ChP11/Ex1/Result中。

五、算法思想对于水文物理过程研究而言,由于山脊、山谷分别表示分水性与汇水性,山脊线和山谷线的提取实质上也是分水线与汇水线的提取。

因此,对于山脊线和山谷线就可以利用水文分析的方法进行提取。

基于DEM的这种地形表面流水物理模拟分析的原理是:对于山脊线而言,由于它同时也是分水线,那么对于分水线上的那些栅格,由于分水线的性质是水流的起源点,通过地表径流模拟计算之后这些栅格的水流方向都应该只具有流出方向而不存在流入方向,也就是其栅格的汇流累积量为零。

通过对零值的汇流累积值的栅格的提取,就可以得到分水线,也就得到了山脊线;对于山谷线而言,由于其具有汇水的性质,那么对于山谷线的提取,可以利用反地形的特点,即是利用一个较大的数值减去原始的DEM数据,而得到了与原始地形完全相反的地形数据,也就是原始的DEM中的山脊变成负地形的山谷,而原始DEM中的山谷在负地形中就变成了山脊,那么,山谷线的提取就可以在负地形中利用提取山脊线的方法进行提取。

六、操作步骤1、正负地形的提取(1) 启动ArcToolbox,展开Analysis Tools工具箱,打开hydrology工具集。

在图层管理器中加载研究区域的原始DEM数据。

(2) 加载Spatial Analyst模块,点击Spatial Analyst模块的下拉箭头,点击neighborhood statistics菜单工具,利用邻域分析的方法以11×11的窗口计算平均值,如图1。

分析结果命名为meandem,如图2所示。

图1 用邻域分析的方法以11×11的窗口计算平均值图2 DEM数据的平均值(3) 点击spatial analyst中的raster calculator菜单工具,对原始DEM数据与邻域分析之后的数据meandem做减法运算,并将运算结果重分为两级,分级界线为0,那么大于0的区域在原始DEM上就是正地形区域,小于0的区域在原始DEM上就是负地形区域。

(图3)图3 Raster Calculator菜单工具图4 正负地形区域(4) 对上一步得到的二值化数据进行两次重分类,如图5。

一次将正地形区域属性值赋值为1,负地形区域属性赋值为0,命名为zhengdixing;另一次将正地形区域属性值赋值为0,负地形区域属性赋值为1,命名为fudixing。

分别如图6、图7所示。

图5 重分类图6 正地形区域(图中深色区域)图7 正地形区域(图中深色区域)2、山脊线的提取:(1) 在ArcMap中加载研究区域的原始DEM数据。

(2) 洼地填充:双击hydrology工具集中的fill工具,进行原始DEM的洼地点填充。

在Input surface raster文本框中选择原始DEM数据dem,将输出数据命名为filldem,因为选择的是将所有洼地全部填充,所有在填充容限Z limit为默认值。

(图8、9)图8 洼地点填充图9 洼地点填充的结果(3) 基于无洼地的水流方向的计算:双击hydrology工具集中的flow direction工具,在Input surface raster文本框中选择填充过的无洼地DEM数据filldem,将输出的水流方向数据命名为flowdirfill,如图10、11。

图10 基于无洼地的水流方向的计算图11 水流方向的计算结果(4) 汇流累积量的计算:双击hydrology工具集中的flow accumulation工具。

选择flowdirfill作为输入的水流方向数据;输出数据命名为flowacc1。

图12 汇流累积量的计算图13 汇流累积量的计算结果(5) 汇流累积量零值的提取:加载Spatial Analyst模块,点击Spatial Analyst模块的下拉箭头,然后单击raster calculator菜单,打开栅格计算对话框,在文本框中填写汇流累积量零值的提取公式:facc0 = (flowacc = 0),然后点击evaluate进行计算。

计算结果为所有的汇流累积量为0的栅格。

图14 汇流累积量零值的提取图15 汇流累积量零值的提取结果(6) 在ArcMap中打开facc0,发现所提取出的栅格很乱,有很多的地方并不是山脊线的位置,因此应对这个数据进行处理。

处理过程可以利用邻域分析的方法,对提取出的汇流累积量等于零值的数据进行3×3邻域分析进行光滑处理,处理后的数据如图16所示。

图16 对提取出的数据进行3×3邻域分析进行光滑处理(7) 单击spatial analyst模块中的surfer analyst中的countline和hillshade菜单命令,分别生成原始DEM的等值线图ctour(图17)和晕渲图hillshade(图18)。

图17 生成原始DEM的等值线图ctour图18 生成原始DEM的晕渲图hillshade(8) 打开neiborfacc0数据属性信息,进行重新分类,将分类级别设置为两类,不断调整分界数据大小,并以由DEM生成的等值线图和晕渲图为辅助判断数据。

在neiborfacc0中,属性值越接近于1的栅格越有可能是山脊线,这里确定的分界阈值为0.5541,如图19、20。

(9) 将进行过二值化的neiborfacc0进行重分类为reneibor,将属性值接近1的那一类的属性值赋值为1,其余的赋值为0。

图19 neiborfacc0数据进行重新分类图20 重分类的结果(10)将重分类过后的neiborfacc0数据与正地形数据zhengdixing利用spatial analyst 菜单下的raster calculator进行相乘运算,这样就消除了那些存在在负地形区域中的错误的山脊线,结果如图22所示。

图21 Raster Calculator中进行相乘运算图22 相乘运算的结果(11)然后将计算结果进行重分类,所有属性不为1的栅格属性值赋为NO DATA。

就得到了山脊线,如图23所示。

图23 将计算结果重分类,得到山脊线3、山谷线的提取(1) 在ArcMap中加载原始DEM数据。

(2) 加载Spatial Analyst模块,点击Spatial Analyst模块的下拉箭头,点击options raster calculator菜单工具,打开栅格计算对话框;在文本框中填写反地形的计算公式:fandem =Abs (dem-2000),点击evaluate进行计算。

计算结果与原始DEM地形完全相反的反地形数据,如图24所示。

图24 反地形数据(3) 反地形计算完毕之后,山谷线的提取就和山脊线的提取步骤一样的,直到最终利用重分类的方法将重新分级的邻域分析后的结果二值化为止。

在这里,是不需要对反地形DEM 进行洼地填充的。

计算过程中的数据名称分别为:水流方向数据为flowdirfan(图25),汇流累积数据为flowacc2(图26),零值汇流累积量提取数据为flowacc0fan(图27),对flowacc0fan进行均值3×3邻域分析后的结果数据为nbfacc0fan(图28),并将其分级改为两级,分级阈值为0.65677,结果如图29所示,初次得到山谷线如图30。

图25 水流方向数据图26 汇流累积数据图27 零值汇流累积量提取数据图28 行均值3×3邻域分析后的结果数据图29 重分类将结果分为两级图30 初次得到的山谷线(4) 将重分类过后的数据与负地形数据fudixing利用spatial analyst菜单下的raster calculator进行相乘运算,这样就消除了那些存在在负地形区域中的错误的山脊线,如图31。

然后将计算结果进行重分类,所有属性不为1的栅格属性值赋为NO DATA,如图32。

就得到了新的山谷线,比初次的山谷线更为细化,如图33、34所示。

图31 存在在负地形区域中错误的山脊线(绿色部分)图32 重分类将错误的山脊线消除图33 初次得到的山谷线(左)与消除错误后的山谷线(右)对比图34 计算出的研究区域的山谷线(图中深色区域,背景为该区域的晕渲图)七、遇到问题及解决方法1、遇到问题:在ArcMap中打开facc0,发现所提取出的栅格很乱,有很多的地方并不是山脊线的位置,因此应对这个数据进行处理。

如何处理?解决方法:将重分类过后的数据与负地形数据fudixing利用spatial analyst菜单下的raster calculator进行相乘运算,这样就消除了那些存在在负地形区域中的错误的山脊线。

然后将计算结果进行重分类,所有属性不为1的栅格属性值赋为NO DATA,如图32。

就得到了新的山谷线,比初次的山谷线更为细化。

2、遇到问题:打开neiborfacc0数据的属性信息,进行重新分类,将分类级别设置为两类,不断的调整分界数据大小,并以由DEM生成的等值线图和晕渲图为辅助判断数据。

怎么做?解决方法:在neiborfacc0中,属性值越接近于1的栅格越有可能是山脊线的位置,打开Classification对话框,不断的调整分界数据大小(如左图中的红圈部分),直到生成的数据清晰度达到最高,这里最终确定的分界阈值为0.5541。

相关文档
最新文档