运筹学25-27资料
运筹学完整版胡运权

运筹学简述
运筹学的历史
“运作研究(Operational Research)小组”:解决复 杂的战略和战术问题。例如:
1. 如何合理运用雷达有效地对付德军德空袭 2. 对商船如何进行编队护航,使船队遭受德国潜
艇攻击时损失最少; 3. 在各种情况下如何调整反潜深水炸弹的爆炸深
度,才能增加对德国潜艇的杀伤力等。
线性规划问题的数学模型
Page 16
2. 线性规划的数学模型由三个要素构成 决策变量 Decision variables 目标函数 Objective function 约束条件 Constraints
怎样辨别一个模型是线性规划模型?
其特征是: (1)问题的目标函数是多个决策变量的线性函数, 通常是求最大值或最小值; (2)问题的约束条件是一组多个决策变量的线性不 等式或等式。
x3) x3)
x5 2 5
x1 , x2 , x3 , x3, x4 , x5 0
Page 25
线性规划问题的数学模型
Page 26
4. 线性规划问题的解
线性规划问题
n
max Z c j x j (1) j1
s.t
n j1
aij x j
bi
(i 1,2,, m)
每年节约成本600万美元 每年节约成本7000万
优化商业用户的电话销售中心选址
控制成本库存(制定最优再定购点和定购 量确保安全库存) 制定最优铁路时刻表并调整铁路日运营量
优化员工安排,以最低成本服务客户
每年节约成本4.06亿美元,销 售额大幅增加 每年节约成本380万美元
每年节约成本1500万美元, 年收入大幅增加。 每年节约成本1300万美元
绪论
运筹学基础复习要点

《运筹学基础》复习要点一、基本概念与理论1.任意多个凸集的交集还是凸集。
2.任意多个凸集的并集不一定是凸集3.给定1R b ∈及非零向量n R a ∈,称集合}|{b x a R x H Tn=∈=是nR 的一个超平面。
4.由超平面}|{b x a R x H Tn=∈=的两个半平面}|{b x a R x H T n ≥∈=+和}|{1b x a R x H T n ≤∈=都是凸集。
5.设S 是凸集,S x ∈。
若对任何z y S z S y ≠∈∈,,,以及任何10<<λ,都有z y x )1(λλ-+≠,则称x 为S 的顶点。
6.如果一个LP 问题无界,则它的对偶问题必无可行解。
7.设w x ,分别为原始LP 问题、对偶问题的可行解,若b w x c T T =,则原始LP 问题、对偶问题的最优解分别为w x ,。
8.可行解x 是基本可行解的充分必要条件是x 的正分量,所对应的A 中列向量线性无关。
9.写出LP 问题的对偶问题0..min ≥≥⎪⎩⎪⎨⎧x b Ax x c t s T的对偶问题是: 0..min ≥≤⎪⎩⎪⎨⎧w c w A w b t s TT10.设一个标准形式的LP 问题的基为B ,右端向量为b ,则对应的基本解是⎪⎪⎭⎫⎝⎛=-01b B x 。
11.线性规划问题的可行域是凸集。
12.设线性规划问题LP 为0..min ≥=⎪⎩⎪⎨⎧x b Ax t s x c T B 为一个基,对应的典式为0..min 111≥=+⎪⎩⎪⎨⎧-=---x b B Nx B x t s x b B c z N B T TB ζ 其中),0(1T N TB Tc N B c -=-ζ。
13.线性规划问题的规范形式为0..min ≥≥⎪⎩⎪⎨⎧x b Ax x c t s T14. 线性规划问题的标准形式为0..min ≥=⎪⎩⎪⎨⎧x b Ax t s xc T15.线性规划问题的一般形式为⎪⎪⎪⎩⎪⎪⎪⎨⎧+==≥+=≥==n q j x qj x m p i b x a p i b x a t s x c j ji Ti i Ti T ,,1,,2,10,,1,,2,1..min 为自由变量16.对线性规划问题,关于它的解分三种情况:问题无解、问题无界和问题有最优解。
《运筹学》复习资料整理总结

《运筹学》复习资料整理总结1. 建立线性规划模型的步骤。
确定决策变量 确定目标函数 确定约束条件方程2. 线性规划问题的特征。
都有一个追求的目标,这个目标可表示为一组变量的线性函数,按照问题的不同,追求的目标可以为最大,也可以为最小。
问题中有若干个约束条件,用来表示问题中的限制或要求,这些约束条件可以用线性等式或线性不等式表示。
问题中用一组决策变量来表示一种方案。
3. 线性规划问题标准型的特征。
4. 化标准型的方法。
123123123123min z 2+223-8340,0,x x x x x x x x x x x x =+-+=⎧⎪-+-≤⎨⎪≤≥⎩为自由变量123123123123min z 2+223-634,0,x x x x x x x x x x x x =+-+=⎧⎪-+-≥⎨⎪≥⎩为自由变量5. 基本解:令其余的变量取值为0,则得到Ax=b 的一个解y,称此解为线性规划问题的基本解。
6. 基本可行解:若基本解y 满足y ≥0,则称这个解为基本可行解。
7. 可行解:满足约束条件的解x=(x1、x2、……xn )T 称为线性规划问题的可行解。
8. 最优解:函数达到最优的可行解叫做最优解。
9.图解法适合于变量个数为2个的线性规划问题。
10.单纯形法解线性规划问题如何确定初始基本可行解。
(1)约束条件为≤,先加入松弛变量x1、x2……xm后变为等式,取松弛变量为基本变量(2)约束条件为=,先加入人工变量xm+1、xm+2……xm+n,人工变量价值系数为m(3)约束条件为≥,先加入多于变量xn+1、xn+2……xm+n后变为等式,在添加人工变量xn+m+111.单纯形法最优解的检验准则。
(1)若基本可行解x’对应的典式的目标函数中非基变量的系数全部满足cN-cBB-1Pj≤0,则基本可行解x’为原问题的最优解。
(2)若基本可行解x’对应的典式的目标函数中所有非基变量的系数满足cN-cBB-1Pj≤0,且有一非基变量的系数满足Ck-Zk=0,则原问题有无穷多组最优解12.对目标函数为极小(min)型的线性规划问题,用单纯形法解的三种处理方法。
运筹学完整版(OperationsResearch)

本课程的特点和要求
先修课:高等数学,基础概率、线性代数 特点:系统整体优化;多学科的配合;模型方法的应用 运筹学的研究的主要步骤:
真实系统
数据准备
系统分析 问题描述
模型建立 与修改
模型求解 与检验
结果分析与 实施
本课程授课方式与考核
讲授为主,结合习题作业
学科总成绩
平时成绩 (40%)
期末成绩 (60%)
2. 线性规划的数学模型由三个要素构成
决策变量 目标函数 约束条件
Decision variables Objective function Constraints
怎样辨别一个模型是线性规划模型?
其特征是: (1)问题的目标函数是多个决策变量的线性函数, 通常是求最大值或最小值; (2)问题的约束条件是一组多个决策变量的线性不 等式或等式。
线性规划问题的数学模型
4. 建模步骤
(1) 确定决策变量:即需要我们作出决策或选择的量。一般 情况下,题目问什么就设什么为决策变量; (2) 找出所有限定条件:即决策变量受到的所有的约束; (3) 写出目标函数:即问题所要达到的目标,并明确是max 还是 min。
线性规划问题的数学模型
5. 线性规划数学模型的一般形式
3x1 +x2 +x3 +2 x4 ≤180
x1、x2 、x3 、x4 ≥0
线性规划问题的数学模型
例1.5 某航运局现有船只种类、数量以及计划期内各条航 线的货运量、货运成本如下表所示:
航线号
船队 类型
1 1
2
3 2
4
拖轮
1 1 2 1
编队形式 A型 驳船 2 — 2 —
B型 驳船 —
运筹学解题方法技巧归纳pdf

30个运筹学的解题方法与技巧1. 线性规划:解决在一定约束条件下最大化或最小化线性目标函数的问题。
常用方法有单纯形法、对偶理论和分解算法等。
2. 整数规划:处理决策变量取整数值或只能取整点值的线性规划问题。
常用方法有分支定界法、割平面法等。
3. 动态规划:通过将原问题分解为相互重叠的子问题,解决具有重叠子问题和最优子结构性质的问题。
4. 图论方法:用于解决最短路、最小生成树、最小割、最大流等问题,常用算法有Dijkstra 算法、Prim算法、Ford-Fulkerson算法等。
5. 网络优化:解决运输、分配和布局等问题,常用方法有运输问题算法、分配问题算法等。
6. 排队论:研究等待队列的结构和特性,以及服务机构的工作规律。
主要模型有M/M/1、M/M/c等。
7. 存储论:研究如何科学地管理物资库存,以最低的费用保证生产和销售需要。
常用模型有不允许缺货模型、一次性订货模型等。
8. 决策分析:根据已知信息评估不同行动方案的效果,从而选择最优方案。
常用方法有期望值法、决策树法等。
9. 对策论:研究竞争、对抗和冲突问题的数学模型,常用方法有Nash均衡、优势策略和必胜策略等。
10. 随机规划:处理具有随机性的决策问题,常用的求解方法有期望值法、机会约束规划和贝叶斯决策等。
11. 多目标规划:解决具有多个冲突目标的优化问题,常用的求解方法有主要目标法、权衡法和分层序列法等。
12. 非线性规划:处理目标函数或约束条件非线性的优化问题,常用的求解方法有梯度法、牛顿法等。
13. 启发式方法:采用直观和经验的方法求解问题,如遗传算法、模拟退火算法等。
14. 数学仿真:通过建立数学模型并模拟实际情况,评估不同方案的性能和效果。
15. 多属性决策分析:处理具有多个评估属性的决策问题,常用的求解方法有多属性效用理论、层次分析法等。
16. 模拟退火算法:一种启发式优化算法,通过模拟固体退火过程来寻找全局最优解。
17. 遗传算法:模拟生物进化过程的优化算法,通过遗传、交叉和变异等操作寻找最优解。
清华大学运筹学完整版

物流企业需要对运输途中的物资进行暂存和保管,通过合 理的存储规划和管理,可以提高物流效率和客户满意度。
生产管理
在生产过程中,原材料、半成品和产成品的库存管理对于 生产计划的执行至关重要。运用存储论的方法可以帮助企 业制定合理的库存策略,确保生产的顺利进行。
31
07 排队论
2024/1/25
最优解
目标函数在可行域上的最大值或最小值点。
9
单纯形法
初始基可行解
单纯形法从一个基可行解开始迭 代,该解满足所有约束条件并且 目标函数值有限。
迭代过程
通过不断更换基变量和非基变量 ,使得目标函数值不断改善,直 到达到最优解。
终止条件
当所有非基变量的检验数均小于 等于零时,单纯形法终止,当前 基可行解即为最优解。
在金融领域,线性规划可用于优化投 资组合,以最小化风险或最大化收益 。
11
03 整数规划
2024/1/25
12
整数规划问题的数学模型
整数规划问题的定义
整数规划是一类要求部分或全部决策变量为整数的数学规划问题。
整数规划问题的数学模型
通常包括目标函数、约束条件和整数约束三部分。目标函数是决策变量的线性或非线性函数,约束条件限制决策 变量的取值范围,整数约束则要求部分或全部决策变量取整数值。
特点
运筹学具有多学科交叉性,涉及数学、计算机科学、经济学等多个领域。它强调 建立数学模型,运用数学方法进行分析和求解,以得出最优决策方案。
2024/1/25
5
运筹学的应用领域
工业工程
在生产计划、物流管理、质量控制等 方面,运筹学可以帮助企业提高生产 效率、降低成本。
交通运输
在交通规划、路径选择、航班调度等 方面,运筹学可以优化交通网络,提 高运输效率。
运筹学复习资料_普通用卷

运筹学课程一单选题 (共170题,总分值170分 )1. 约束矩阵A中任何一组m个线性无关的列向量构成的子矩阵称为该问题的一个( )(1 分)A. 基B. 最优解C. 基本解D. 基向量2. 线性规划的标准型中P称为( )(1 分)A. 技术向量B. 价值向量C. 资源向量D. 约束矩阵3. 决策问题的构成要素不包含()(1 分)A. 决策者B. 策略C. 收益D. 约束4. 去掉整数约数条件后得到的线性规划称为原整数规划的()(1 分)A. 松弛问题B. 增益问题C. 对偶问题D. 反问题5. X、Y分别是原问题和对偶问题的可行解,且,则X、Y分别是原问题和对偶问题的( ) (1 分)A. 基本可行解B. 最优解C. 基本解D. 不知6. A是m×n矩阵,则共有多少个非基向量( )(1 分)A. m×nB. mC. nD. n-m7. 约束矩阵A中任何一组m个线性无关的列向量构成的子矩阵称为该问题的一个( ) (1 分)A. 基B. 最优解C. 基本解D. 基向量8. 在排队系统的符号表示[A/;/;]:[;/E/F]中,A对应的是()(1 分)A. 顾客到达的时间间隔B. 分布服务时间的分布C. 服务台数D. 顾客源总体数目9. 下面不属于决策类型的是()(1 分)A. 战略决策B. 非常决策C. 静态决策D. 动态决策10. Kruskal算法属于哪种思路的方法()(1 分)A. 破圈B. 避圈C. 智能搜索D. 枚举11. 不属于按问题性质和条件分类的决策类型是()(1 分)A. 确定性决策B. 非确定决策C. 连续性决策D. 风险性决策12. 哪个不是常用的存贮策略有()(1 分)A. T-循环策略B. (s,S)策略C. (s,Q)策略D. (T,s,S)策略13. 线性规划在转化标准型时,转换约束条件时新增非负变量称为( )(1 分)A. 决策变量B. 松弛变量C. 资源变量D. 凸变量14. 线性规划问题的可行域是( ) (1 分)A. 四边形B. 凸集C. 不规则形D. 任意集15. 对于无后效性的多阶段决策过程,系统由阶段k到阶段k+1的状态转移方程是()(1 分)A.B.C.D.16. 1947年谁得到了线性规划的单纯形法( )(1 分)A. ErlangB. HarrisC. ShewhartD. Dantzig17. 图G中既无环又无平行边,则称作()(1 分)A. 有向图B. 简单图C. 初级图: 子图18. 在排队系统的符号表示[A/B/C]:[D/E/F]中,A对应的是()。
运筹学案例集

运筹学案例集常州宝菱重工机械有限公司孔念荣收集整理运筹学的一些典型性应用•合理利用材料问题:如何在保证生产的条件下,下料最少•配料问题:在原料供应量的限制下,如何获取最大收益•投资问题:从投资项目中选取最佳组合,使投资回报最大•产品生产计划:合理利用人力、物力、财力等,使获利最大•劳动力安排:用最少的劳动力来满足工作的需要•运输问题:如何制定最佳调运方案,使总运费最少一、生产计划问题案例1(2-4)、某工厂用A、B、C、D四种原料生产甲、乙两种产品,生产甲和乙所需各种原料的数量以及在一个计划期内各种原料的现有数量见下表所示。
又已知每单位产品甲、乙的售价分别为400元和600元,问应如何安排生产才能获得最大收益?已知生产单位产品所需的设备台时及A、B两种原材料的消耗、资源的限制,如下表:问题:工厂应分别生产多少单位Ⅰ、Ⅱ产品才能使工厂获利最多?案例3(2-25)、某公司面临一个是外包协作还是自行生产的问题。
该公司生产甲、乙、丙三种产品,都需要经过铸造、机加工和装配三个车间。
甲、乙两种产品的铸件可以外包协作,亦可以自行生产,但产品丙必须本厂铸造才能保证质量,数据如下表所示。
问题:公司为了获得最大利润,甲、乙、丙三种产品各生产多少件?甲、乙两种产品的铸造中,由本公司铸造和由外包协作各应多少件?案例4(2-28)、永久机械厂生产Ⅰ、Ⅱ、Ⅲ三种产品,均要经过A、B两道工序加工。
设有两种规格的设备A1、A2能完成A工序;有三种规格的设备B1、B2、B3能完成 B 工序。
Ⅰ可在A、B的任何规格的设备上加工;Ⅱ可在任意规格的A设备上加工,但对B工序,只能在B1设备上加工;Ⅲ只能在A2与B2设备上加工,数据如下表所示。
问题:为使该厂获得最大利润,应如何制定产品加工方案?案例5、某造纸厂用原材料白坯纸生产原稿纸、笔记本和练习本三种产品。
该厂现有工人100人,每月白坯纸供应量为3万公斤。
已知工人的劳动生产率为:每人每月生产原稿纸30捆,或生产日记本30打,或练习本30箱。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
表2-8中,b列数字全为非负,检验数全为非正,故问题的最 优解为
X*=(11/5,2/5,0,0,0)T 若对应两个约束条件的对偶变量分别为y1和y2, 则对偶问题的最优解为
对偶单纯形法的计算步骤如下:
(1) 根据线性规划问题,列出初始单纯形表。 检查b列的数字,若都为非负,检验数都为非正,则已
得到最优解。停止计算。 若检查b列的数字时,至少还有一个负分量,检验数保
持非正,那么进行以下计算。
(2) 确定换出变量
• 按min{(B-1b)i|(B-1b)i<0=(B-1b)l对应的基变量xl为换出变量 (3) 确定换入变量 • 在单纯形表中检查xl所在行的各系数α lj(j=1,2,…,n)。若所有
cj-zj
0
-4 -1
θ
8/5 -
00
x4
x5
10
01
00
x4
x5
1 -1/2
0 -1/2
0 -1
-2
表 2-8
cj→
-2
CB
XB
b
x1
-3 x2 2/5 0
-2 x1 11/5 1
cj-zj
0
-3 -4 0 0
x2
x3
பைடு நூலகம்x4
x5
1 -1/5 -2/5 1/5
0 7/2 -1/5 -2/5
0 -9/5 -8/5 -1/5
第6节 偶单纯形法
• 前节讲到原问题与对偶问题的解之间的对应关系时指出: 在单纯形表中进行迭代时,在b列中得到的是原问题的基 可行解,而在检验数行得到的是对偶问题的基解。
• 通过逐步迭代,当在检验数行得到对偶问题的解也是基可 行解时,根据性质(2)、(3)可知,已得到最优解。即原问 题与对偶问题都是最优解。
• (2) 对应非基变量xm+1,…,xn的检验数是 σ j=cj-zj=cj-CBB-1Pj≤0,j=m+1,…,n
• 每次迭代是将基变量中的负分量xl取出,去替换非 基变量中的xk,经基变换,所有检验数仍保持非 正。从原问题来看,经过每次迭代,原问题由非 可行解往可行解靠近。当原问题得到可行解时, 便得到了最优解。
b1: 8 b2:16 b3:12
9 Q2’(4,2.5)
z*’ = 15.5
Δ z* = z*’- z* = 3/2 = y1*
17 Q2”(4.25,1.875) z*” = 14.125
Δ z* = z*”- z* = 1/8 = y2*
13 Δ z* = 0 = y3*
yi*的值代表对第i种资源的估价-影子价格。
• 这种估价是针对具体工厂的具体产品而存在的一种特殊价格, 称它为“影子价格”。
• 在该厂现有资源和现有生产方案的条件下,设备的每小时租费 为1.5元,1kg原材料A的出让费为除成本外再附加0.125元,1kg 原材料B可按原成本出让,这时该厂的收入与自己组织生产时获 利相等。
• 影子价格随具体情况而异,在完全市场经济的条件下,当某种 资源的市场价低于影子价格时,企业应买进该资源用于扩大生 产;而当某种资源的市场价高于企业影子价格时,则企业的决 策者应把已有资源卖掉。可见影子价格对市场有调节作用。
2 x1 4 1 0 x5 4 0 3 x2 2 0
-z -14 0
0 0 1/4 0 0 -2 1/2 1 1 1/2 -1/8 0 0 -3/2 -1/8 0
y1*=1.5,y2*=0.125,y3*=0。
这说明是其他条件不变的情 况下,若设备增加一台时, 该厂按最优计划安排生产可 多获利1.5元;原材料A增加 1kg,可多获利0.125元;原 材料B增加1kg,对获利无影 响。
第5节 对偶问题的经济解释 ——影子价格
在单纯形法的每步迭代中,目标函数取值z=CBB-1b,和检验数 CN-CBB-1N中都有乘子Y=CBB-1,那么Y的经济意义是什么?
设B是{max z=CX|AX≤b,X≥0}的最优基,
由-Yb= -CB B-1b可知 z*=CBB-1b=Y*b 。
对z求偏导数,得
• 当非基变量都为零时,可以得到XB=B-1b。若在B-1b中至少有 一个负分量,设(B-1b)i<0,并且在单纯形表的检验数行中的 检验数都为非正,即对偶问题保持可行解,它的各分量是
• (1) 对应基变量x1,x2,…,xm的检验数是 σ i=ci-zi=ci-CBB-1Pj=0,i=1,2,…,m
+x5=-4
xj≥0,j=1,2,…,5
初始单纯形表,见表2-6。
cj→
-2 -3 -4
CB
XB
b
x1
x2
x3
0 x4 -3 -1 -2 -1
0 x5 -4 [-2] 1 -3
cj-zj
-2 -3 -4
θ
1 - 4/3
CB
XB
b
x1
x2
x3
0 x4 -1 0 [-5/2] 1/2
-2 x1 2 1 -1/2 3/2
z* b
CB B1
Y*
由上式可知,变量yi*的经济意义是在其他条件不变的情况下, 单位资源变化所引起的目标函的最优值的变化。
[eg.7]max z = 2x1 + 3x2
x1 + 2x2 ≤ 8
4x1
≤ 16
4x2 ≤ 12
x1,x2 ≥ 0
cj
23000
θ
CB XB b x1 x2 x3 x4 x5
• 重复步骤(1)~(4)。
例6 用对偶单纯形法求解
min ω =2x1+3x2+4x3 x1+2x2+x3≥3 2x1-x2+3x3≥4 x1,x2,x3≥0
解 先将此问题化成下列形式,以便得到对偶问题的初始
可行基
max z=-2x1-3x2-4x3
-x1-2x2-x3+x4
=-3
-2x1+x2-3x3
α lj≥0,则无可行解,停止 计算。 若存在α lj<0 (j=1,2,…,n), 计算
mjin
c
j
alj
z
j
alj
0
ck zk alk
按θ 规则所对应的列的非基变量xk为换入变量,这样才能保 持得到的对偶问题解仍为可行解。
(4) 以α lk为主元素,按原单纯形法在表中进行迭代运算, 得到新的计算表。
根据对偶问题的对称性 • 可C代B以达B-这到1P样基j≤0考可,虑行而:解原若,问保这题持样在对也非偶得可问到行题了解的最的解优基是解础基。上可,行通解过,逐即步c迭j• 其优点是原问题的初始解不一定是基可行解,可从非基可
行解开始迭代。
设原问题 max z=CX
AX=b X≥0
• 又设B是一个基。不失一般性,令B=(P1,P2,…,Pm),它对 应的变量为 XB=(x1,x2,…,xm)