第二章 逻辑代数基础

合集下载

第2章 逻辑代数基础

第2章 逻辑代数基础
0-1率A· 1=1
A B
冗余律: AB A C BC AB A C
证明: AB A C BC
AB A C ( A A) BC
AB A C ABC A BC
互补率A+A=1 分配率 A(B+C)=AB+AC 0-1率A+1=1
AB(1 C) A C(1 B)
1、并项法
利用公式A+A=1,将两项合并为一项,并消去一个变量。 运用分配律 变并 相 和 包 量成 同 反 含 Y1 ABC A BC BC ( A A ) BC BC 的一 时 变 同 若 因项 , 量 一 两 BC BC B(C C ) B 子, 则 , 个 个 。并 这 而 因 乘 运用分配律 消两其子积 去项他的项 Y2 ABC AB AC ABC A( B C ) 互可因原中 ABC ABC A( BC BC) A 为以子变分 反合都量别 运用摩根定律
(2)反演规则:对于任何一个逻辑表达式Y,如果将表达式 中的所有“·”换成“+”,“+”换成“·”,“0”换成“1”, “1”换成“0”,原变量换成反变量,反变量换成原变量,那么 所得到的表达式就是函数Y的反函数Y(或称补函数)。这个规 则称为反演规则。例如:
Y AB CD E
Y A B C D E
A A B A 吸收率: A ( A B) A
A ( A B) A B A A B A B
证明: A A B ( A A)(A B)
分配率 A+BC=(A+B)(A+C)
1 ( A B)

互补率A+A=1

数字逻辑———第二章逻辑代数基础

数字逻辑———第二章逻辑代数基础

A BC A BC
A BC A BC
ABC ABC
ABC ABC
最小项(续)
对任意最小项,只有一组变量取值使它的值 为1,其他取值使该最小项为0 为方便起见,将最小项表示为mi n=3的8个最小项为:
m0 ABC m ABC m ABC m ABC 1 2 3 m ABC m ABC m ABC m ABC 4 5 6 7
第二章
逻辑代数基础
2.1 逻辑代数的基本概念 2.2逻辑代数的公理、定理及规则 2.3 逻辑函数表达式的形式与转换 2.4逻辑函数的化简 (重点)
2.1 逻辑代数的基本概念
逻辑代数:二进制运算的基础。 应用代数方法研究逻辑问题。由英国数学家布 尔(Boole)和德.摩根于1847年提出,又叫布尔代数, 开关代数。 逻辑值:0或1。 逻辑变量:用字母表示,取值为逻辑值。 逻辑代数的基本运算:与、或、非 (1) “与”运算,逻辑乘 (2) “或”运算,逻辑加 (3) “非”运算,取反
∑m(0,1,2,3,4,5,6,7)=1
最小项(续)



任何逻辑函数均可表示为唯一的一组最小项之 和的形式,称为标准的与或表达式 某一最小项不是包含在F的原函数中,就是包 含在F的反函数中 例:F AB BC ABC
AB(C C ) ( A A) BC ABC ABC ABC ABC ABC m3 m2 m7 m4 m(2,3,4,7)
A、B是输入,F是输出
1+0=1
A +U B
1+1=1
A 0 1 0 1
B 0 0 1 1
F 0 1 1 1
F
逻辑代数的基本运算(续)

第二章逻辑代数基础具有无关项的逻...

第二章逻辑代数基础具有无关项的逻...
当A<L<B点时,MS单独驱动; 当C<L<B点时,ML单独驱动; L<C点时, MS ML同时驱动; L>A点时, MS ML均不工作;
F=(A,B,C)
测点之上“0” 测点之下“1” 电机工作“1” 电机不工作“0”
任何一件具体的因果关系都可以用一
个逻辑函数来描述
怎么样描述?
2.5.2 逻辑函数的表示方法
举例 证明 A BC (A B)(A C)
解:等式左边的对偶式: A (B C)
等式右边的对偶式: A B AC
显然左右两边的对偶式相等,从而证得原 等式成立。 基本公式表中左右两边相对应的公式都是对偶式。
2.5 逻辑函数及其表示方法 2.5.1 逻辑函数的基本概念
普通代数中的函数: y f (x1, x2 , x3 ) x1x2 x3 其中, x1, x2 , x3 为自变量, y 为因变量,变量的取
3. 与或非运算
复合逻辑运算
以四个变量为例,逻辑表达式为:
逻辑符号:
Y=AB+CD
(国标)
(欧美)
4. 异或运算
复合逻辑运算
当A、B不同时,输出Y为1;当A、B 相同时,输出Y为0。
真值表
A
B
Y
逻辑表达式:
Y=A B=AB+AB
逻辑符号:
0
0
0
0
1
1
1
0
1
1
1
0
(国标) (欧美)
异或门的功能可以概括为:两输入变量相异时输出1。
开关状态:用1表示闭合,用0表示断开; 指示灯状态:用1表示灯亮,用0表示灯灭。
或状态逻辑表
开关A 开关B 指示灯Y 断开 断开 灭 断开 闭合 亮 闭合 断开 亮 闭合 闭合 亮

2逻辑代数基础

2逻辑代数基础

(15)
五、德 摩根定理(反演律):表中8,18 (De Morgan) 证明: 1 AB A B 真值表法、 穷举法 2 A B AB
推广到多变量:
ABC A B C
A B C ABC
说明:两个(或两个以上)变量的与非(或非) 运算等于两个(或两个以上)变量的非或(非 与)运算。
(3)
§2.2
逻辑代数中的三种基本运算
基本逻辑运算:与 ( and )、或 (or ) 、 非 ( not )。 一、“与”逻辑 与逻辑:决定事件发生的各条件中,所有条件都 具备,事件才会发生(成立)。 规定:
A
E
B
C Y
开关合为逻辑“1” 开关断为逻辑“0”
灯亮为逻辑“1”
灯灭为逻辑“0”
(4)
A(BC) A(BC) A B C
注:代入定理还可以扩展其他基本定律 的应用范围!
(23)
2.4.2 反演定理
内容:将函数式F中所有的 + + (反函数) 新表达式: F
变量与常数均取反 显然: F F 规则: 1.遵循先括号 再乘法 后加法的运算顺序。 2.不是一个变量上的反号不动。 用处:实现互补运算(求反运算)。

(29)
2.5.2 逻辑函数的表示方法
真值表:将逻辑函数输入变量取值的不同组合 与所对应的输出变量值用列表的方式 一一对应列出的表格。
四 种 表 示 方 法 n个输入变量
2 种组合。
n
逻辑函数式 (逻辑表示式, 逻辑代数式)
Y AB AB
逻辑图: 波形图
A 1 & ≥1 B 1 &
Y
(30)
Y A B AB AB Y A B AB AB Y A B A B

第2章逻辑代数基础

第2章逻辑代数基础

同时,函数F的值为“0”。
便于获得逻辑电路图
逻辑表达式的简写:
1.“非”运算符下可不加括号,如

等。
2.“与”运算符一般可省略,如A·B可写成AB。
3.在一个表达式中,如果既有“与”运算又有“或”运 算,则按先“与”后“或”的规则进行运算,可省去括号,如 (A·B)+(C·D)可写为AB+CD。
注意:(A+B)·(C+D)不能省略括号,即不能写成A+B·C+D!
A
FA
1
FA
F
(a)我国常用传统符号
(b)国际流行符号 非门的逻辑符号
(c)国家标准符号
2.1.3 逻辑代数的复合运算
“与”、“或”、“非”三种基本逻辑运算按不同的方 式组合,还可以构成“与非”、“或非”、“与或非”、 “同或”、“异或”等逻辑运算,构成复合逻辑运算。对应 的复合门电路有与非门、或非门、与或非门、异或门和同或 门电路。
能实现基本逻辑运算的电路称为门电路,用基本的门电 路可以构成复杂的逻辑电路,完成任何逻辑运算功能,这些 逻辑电路是构成计算机及其他数字系统的重要基础。
实现“与”运算关系的逻辑电路称为“与”门。
A
A
A
&
B
F B
F B
F
(a)我国常用传统符号
(b)国际流行符号 与门的逻辑符号
(c)国家标准符号
2.1.2 逻辑代数的基本运算
2.逻辑值0和1是用来表征矛盾的双方和判断事件真伪 的形式符号,无大小、正负之分。
2.1.1 逻辑代数的定义
逻辑代数L是一个封闭的代数系统,它由一个逻辑变量集 K,常量0和1以及“或”、“与”、“非”三种基本运算所 构成,记为L={K,+,·,-,0,1}。该系统应满足下列公理。

第二章 逻辑代数基础

第二章 逻辑代数基础
________
A B A B
______
A (B C) A (B C) A B C
__________ _____
A ( B C ) A B C A B C
________
3.反演定理
对于任意一个逻辑式 Y ,若将其中所有的“•”换成 “+”, “+”换成“•”,0换成1,1换成0,原变量 __ 换成反变量,反变量换成原变量,则得到的结果就是 Y
2、非逻辑真值表 A 0 1 Y
3 、非逻辑函数式
Y=A 或: Y A
1
0
4、 非逻辑符号
A
1
Y
或: 5 、 非逻辑运算 0=1 1=0
四、 几种最常见的复合逻辑运算
1 、 与非 Y=A B A B & Y
A 0 0 1 1
B 0 1 0 1
Y 1 1 1 0
3 、 同或 Y= AB+A B =A⊙B A B Y
(还原律)
证明: A B A B A ( B B ) A 1 A
4.
A ( A B) A
(吸收律)
证明: A ( A B) A A A B A A B A (1 B) A 1 A
5. A B A C B C A B A C
c. 非非律: ( A) A
A+A=A
d. 吸收律:A + A B = A
A (A+B) = A
A AB A B
e. 摩根定律: ( AB) A B
A .B A B 反演律(摩根定律): A B A B

第2章逻辑代数基础

第2章逻辑代数基础

A A 0

FA
A 1 F 01
A A
10
A+A 1
2.2.2复合逻辑运算 由上面三种基本逻辑关系组合而成的复合逻辑关系有:
与非、或非、与或非、异或、同或等,如表1所示。
1、 与非逻辑
与非逻辑是与逻辑运算和非逻辑运算的组合。它是将 输入变量先进行与运算,然后再进行非运算。
能够实现与非逻辑运算的电路称为与非门。
A接通、B断开,灯不亮。
A、B都接通,灯亮。
Y=AB 两个开关必须同时接通,灯才亮。逻辑表
达式为:
假设:
开关闭合为 1 开关断开为 0
灯亮为 1 灯不亮为 0
AB
~ 220V 有0为F 0 全1为1
用四个式子表示:
0 ·0 = 0 0 ·1 = 0 1 ·0 = 0 1 ·1 = 1
与逻辑的表示方法:(四种)
逻辑代数是按一定的逻辑关系进行运算的代数,是分 析和设计数字电路的数学工具。在逻辑代数,只有0和1 两种逻辑值,有与、或、非三种基本逻辑运算,还有与或、 与非、与或非、异或几种导出逻辑运算。
逻辑是指事物的因果关系,或者说条件和结果的关系, 这些因果关系可以用逻辑运算来表示,也就是用逻辑代数 来描述。
A
1
F
F
逻辑符号: 把实现非逻辑运算的单元电路叫做非门。
逻辑运算 逻辑表达式 逻辑符号 真值表 基本运算规则
AB F
A A A

F AB
A B
&
F
000 010
A1 A
100
A0 0
111
A B F A+A A

F AB
A B
≥1
F

第2章 逻辑代数基础(完整版)

第2章 逻辑代数基础(完整版)

2
A BC ( A B)( A C )
方法二:真值表法
[解]
方法一:公式法
右式 ( A B)( A C ) A A A C A B B C
A AC AB BC A(1 C B) BC
A BC 左式
A (B C) A B A C 分配律: C ( A B) ( A C ) A B 缓一缓 ( A B)' A'B' ( A B)' A' B' 反演律(摩根定理):
( A B C )' A' B'C ' ( A B C )' A'B'C ' ( A B C )' A' B'C ' ( A B C )' A'B'C '
互补律: A A' 1
A 1 1 A 0 0
A A' 0
等幂律: A A A
A A A
双重否定律: ( A' )' A
20
CopyRight @安阳师范学院物电学院_2013
2
3)基本运算规则
A B B A 交换律: A B B A ( A B) C A ( B C ) 结合律: ( A B) C A ( B C )
A E 电路图 B Y
开关 A 开关 B 断开 断开 闭合 闭合 断开 闭合 断开 闭合 功能表
灯Y 灭 灭 灭 亮
5
L=ABCopyRight @安阳师范学院物电学院_2013
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A B = Y A B Y
0 0 1 1 0 1 0 1 1 0 0 1
图 2.2.11 同或门逻辑符号
2.3 逻辑代数的基本公式和常用公式
2.3.1 基本公式 表2.3.1为逻辑代数的基本公式,也叫布尔恒等式
返回A
返回B
说明:由表中可以看出
1.关于变量与常数关系的定理
A· 0=0 A· 1=A
这种与逻辑可以写成下面的表 达式:
表 2.2.1 与逻辑真值表 输入 A 0 0 1 1 B 0 1 0 1 输出 Y 0 0 0 1
Y A B
称为与逻辑式,这种运算称为与
运算
也可以用图2.2.2表示与 逻辑,称为逻辑门或逻 辑符号,实现与逻辑运 算的门电路称为与门。
A B

A Y B
Y
图 2.2 与门逻辑符号
A( B C ) AB AC
因果互换关系:
A B C
AC B
B C A
A
A1 A2 An 1 An
变量 常量的关系: 推论:当 n个变量做异或运算时,若有偶 ' ' A A 1 A 1” A时,则函数为“ 0 A 1 0” A;若奇 A 0 数个变量取“ 数个变量取“1”时,则函数为 1. 0 变量为1的个数为偶数
其逻辑式为
A B Y
图2 . 2 . 3 或逻辑电路
表 2.2.2 或逻辑真值表 输入 A 0 0 1 1 B 0 1 0 1 输出 Y 0 1 1 1
Y A B
上式说明:当逻辑变量A、B有 一个为1时,逻辑函数输出Y就 为1。只有A、B全为0,Y才为0。
其逻辑门符号如图 A 2.2.4所示,实现或逻辑 B 运算的门电路称为或门。
A B Y
图2 . 2 . 1 与逻辑电路
A B 设开关闭合用“1”表示, 断开用“0”表示 ;灯亮用 Y “1”表示,灯灭用“0”表示 (逻辑赋值),则可得到表 2.2.1所示的输入输出的逻辑 图2 . 2 . 1 与逻辑电路 关系,称为真值表
从表中可知,其逻辑规律服 从“有0出0,全1才出1”
用与前面相同的逻辑赋 值同样也可得到其真值表如 表2.2.3所示 非逻辑运算也叫逻辑非或 非运算、反相运算,即输出变 量是输入变量的相反状态。其 逻辑式为
R A Y
图2 . 2 . 5 非逻辑电路
表2.2.3 非逻辑真值表
A 0 1
Y 1 0
Y A
注:上式也可写成 Y A 或Y ~ A等
第二章 逻辑代数基础
内容提要
本章介绍分析数字逻辑功能的数学方法。首 先介绍逻辑代数的基本运算、常用公式和基本定 理,然后介绍逻辑代数及其表示方法、逻辑函数 的化简。重点掌握卡诺图化简逻辑函数,为后续 课程打下基础。
本章的内容 2.1 概述
2.2 逻辑代数中的三种基本运算
2.3 逻辑代数的基本公式和常用公式
逻辑代数是布尔代数在数字电路中二值逻辑的 应用,它首先是由英国数学家乔治.布尔(George Boole)提出的,用在逻辑运算上。后来用在数字电 路中,就被称为开关代数或逻辑代数,它是逻辑函 数的基础。
注意:
1. 逻辑代数和普通数学代数的运算相似,如有交换 律、结合律、分配律,而且逻辑代数中也用字母表 示变量,叫逻辑变量。 2. 逻辑代数和普通数学代数有本质区别,普通数学 代数中的变量取值可以是正数、负数、有理数和无 理数,是进行十进制(0~9)数值运算。而逻辑代 数中变量的取值只有两个:“0”和“1”。并且“0” 和“1”没有数值意义,它只是表示事物的两种逻辑 状态。
A B =1 Y A B Y
A 0 0 1 1 B 0 1 0 1 Y 0 1 1 0
图2.2.10 异或门逻辑符号
异或运算的性质
1. 交换律:
A B B A
2. 结合律: A ( B C ) ( A B) C 3.分配律: A( B C ) AB AC 4.
1
A Y B
Y
图 2.2.4 或门逻辑符号
若有n个逻辑变量做或运算,其逻辑式可表示为
Y A1 A2 An
3. 非逻辑运算
条件具备时,事件不发生;条件不具备时,事 件发生,这种因果关系叫做逻辑非,也称逻辑求反
如图2.2.5所示电路,一个开关 控制一盏灯就是非逻辑事例, 当开关A闭合时灯就会不亮。
A+0 =A A+1 =1
2. 交换律、结合律、分配律 a. 交换律: AB= BA A + B=B + A b. 结合律:A(BC) =( AB)C
A +( B +C)= (A+B) + C
c. 分配律:A( B + C) = AB + AC
A + BC = (A + B)(A + C)
链接A
3.逻辑函数独有的基本定理

A Y B
Y
图2.2.7 与非门逻辑符号
Y ( A B)
其真值表如表2.2.5所示
或非逻辑规律服从有“1”出
表 2.2.5 或非逻辑真值表 输入 A 0 0 1 1 B 0 1 0 1 输出 Y 1 0 0 0
“0”全“0”出“1”
或非运算用或非门电路来实现, 如图2.2.8所示
A B
其逻辑门符号如图2.2.6所 示,实现非逻辑运算的门 电路称为非门
A
1
Y A
Y
图 2.2.6 非门逻辑符号
以上为最基本的三种逻辑运算,除此之外,还 有下面的由基本逻辑运算组合出来的逻辑运算
4. 与非(NAND)逻辑运算
与非运算是先与运算后非运算 的组合。以二变量为例,布尔 代数表达式为:
表 2.2.4 与非逻辑真值表 输入 A 0 0 1 1 B 0 1 0 1 输出 Y 1 1 1 0
7. 异或运算 其布尔表达式(逻辑函数式)为
Y A B AB AB
符号“⊕”表示异或运算,即两个输入逻辑变量取 值不同时Y=1,即不同为“1”相同为“0”,异或运 算用异或门电路来实现 表 2.2.6 异或逻辑真值表 其真值表如表2.2.6所示 输入 输出 其门电路的逻辑符号如图2.2.10 所示
种对立逻辑状态的逻辑关系,称为二值逻辑。
当二进制数码“0”和“1”表示二值逻辑,并按 某种因果关系进行运算时,称为逻辑运算,最基本 的三种逻辑运算为“与”、“或”、“非”,它与 算术运算的本质区别是“0”和“1”没有数量的意义。 故在逻辑运算中1+1=1(或运算)
2.1.2 数字电路的特点及描述工具 数字电路是一种开关电路,输入、输出量是高、 低电平,可以用二值变量(取值只能为0,l)来表 示。输入量和输出量之间的关系是一种逻辑上的因 果关系。仿效普通函数的概念,数字电路可以用逻 辑函数的的数学工具来描述。
2.4 逻辑代数的基本定理
2.5 逻辑函数及其表示方法 2.6 逻辑函数的化简方法 2.7 具有无关项的逻辑函数及其化简
2.1 概述
2.1.1 二值逻辑和逻辑运算
在数字电路中,1位二进制数码“0”和“1”不仅 可以表示数量的大小,也可以表示事物的两种不同 的逻辑状态,如电平的高低、开关的闭合和断开、 电机的起动和停止、电灯的亮和灭等。这种只有两

1
变量为1的个数为奇数
同或的运算性质
交换率
A⊙B B⊙A
A⊙( B⊙C ) ( A⊙B)⊙C
结合律:
分配律:
A( B⊙C ) AB⊙AC
推论:当n个变量做同或运算时,若有偶 因果互换关系: 数个变量取“0”时,则函数为“1”;若奇 A⊙ B C A⊙ B B⊙ 数个变量取“ 0”C 时,则函数为 0. C A 变量 常量的关系:
5.AB+A C+BC = AB+A C :在三个乘积项相加 时,如果前两项中的一个因子互为反,那么剩余的 因子组成的另一项则是多余的,可以删掉; 公式AB +A C+BCD = AB+A C 的原理和上述相同 6. A(A B) =A B :如果某项和包含这一项的乘 积项取反相乘时,则这一项可以删掉; 7. A (A B) =A :当某个项取反和包含这一项 的乘积项取反相乘时,则只保留这个取反项
1
A Y B
Y
图 2.2.8 或门逻辑符号
6.与或非运算 与或非运算是“先与后或再非”三种运算的组合。 以四变量为例,逻辑表达式为:
Y ( AB CD)
A 上式说明:当输入变量A、B B 同时为1或C、D同时为1时, Y C 输出Y才等于0。与或非运算 D 是先或运算后非运算的组合。 A & 在工程应用中,与或非运算 B 1 Y C 由与或非门电路来实现,其 D 真值表见书P22表2.2.6所示, 图 2.2.9 与或非门逻辑符号 逻辑符号如图2.2.9所示
A⊙A 1
A⊙A 0
'
A⊙1 A
A⊙0 A
'
A1⊙A2⊙⊙An 1⊙An

1 0
变量为 0的个数为偶数 变量为 0的个数为奇数
同或异或关系 奇数个变量----相等
A B C A⊙B⊙C
偶数个变量----互补
A B A⊙B
'
'
A B C D A⊙B⊙C⊙D
a. 互补律: A A 0
A A 1
b. 重叠律:A · A=A
c. 非非律: ( A) A
A+A=A
d. 吸收律:A + A B = A
A (A+B) = A
A AB A B
e. 摩根定律: ( AB) A B
( A B) A B
A A 1 A 1 A
A A 0 A0 A
相关文档
最新文档