领域知识图谱的技术与应用

合集下载

(完整版)领域应用知识图谱的技术和应用

(完整版)领域应用知识图谱的技术和应用

领域应用 | 知识图谱的技术与应用本文转载自公众号:贪心科技。

领域应用 | 知识图谱的技术与应用李文哲开放知识图谱 1周前本文转载自公众号:贪心科技。

作者 | 李文哲,人工智能、知识图谱领域专家导读:从一开始的Google搜索,到现在的聊天机器人、大数据风控、证券投资、智能医疗、自适应教育、推荐系统,无一不跟知识图谱相关。

它在技术领域的热度也在逐年上升。

本文以通俗易懂的方式来讲解知识图谱相关的知识、尤其对从零开始搭建知识图谱过程当中需要经历的步骤以及每个阶段需要考虑的问题都给予了比较详细的解释。

对于读者,我们不要求有任何AI相关的背景知识。

目录:1.概论2.什么是知识图谱3.知识图谱的表示4.知识抽取5.知识图谱的存储6.金融知识图谱的搭建1.定义具体的业务问题2.数据收集 & 预处理3.知识图谱的设计4.把数据存入知识图谱5.上层应用的开发7.知识图谱在其他行业中的应用8.实践上的几点建议9.结语1. 概论随着移动互联网的发展,万物互联成为了可能,这种互联所产生的数据也在爆发式地增长,而且这些数据恰好可以作为分析关系的有效原料。

如果说以往的智能分析专注在每一个个体上,在移动互联网时代则除了个体,这种个体之间的关系也必然成为我们需要深入分析的很重要一部分。

在一项任务中,只要有关系分析的需求,知识图谱就“有可能”派的上用场。

2. 什么是知识图谱?知识图谱是由Google公司在2012年提出来的一个新的概念。

从学术的角度,我们可以对知识图谱给一个这样的定义:“知识图谱本质上是语义网络(Semantic Network)的知识库”。

但这有点抽象,所以换个角度,从实际应用的角度出发其实可以简单地把知识图谱理解成多关系图(Multi-relational Graph)。

那什么叫多关系图呢?学过数据结构的都应该知道什么是图(Graph)。

图是由节点(Vertex)和边(Edge)来构成,但这些图通常只包含一种类型的节点和边。

知识图谱构建与应用技术的发展趋势与创新思路

知识图谱构建与应用技术的发展趋势与创新思路

知识图谱构建与应用技术的发展趋势与创新思路随着人工智能技术的迅猛发展,知识图谱作为知识表示与推理的重要工具,在各个领域中发挥着越来越重要的作用。

知识图谱的构建与应用技术不断创新,为人们在信息获取、语义理解和智能决策等方面提供了新的思路和方法。

本文将从知识图谱构建的新技术、知识图谱应用的新领域以及知识图谱的未来发展趋势与创新思路等方面进行探讨。

一、知识图谱构建的新技术1. 自动化知识抽取技术:传统的知识图谱构建需要大量的人工劳动,而自动化知识抽取技术可以从海量的文本中自动地抽取出结构化的知识,并将其构建成知识图谱。

这种技术通过机器学习和自然语言处理等方法,能够高效地提取实体、关系和属性等信息,为知识图谱的构建提供了更快速、更准确的方式。

2. 开放知识图谱构建方法:传统的知识图谱构建主要依赖于专家知识和人工标注,但是这种方法存在着知识更新慢、领域专业度差的问题。

而开放知识图谱构建方法则通过利用互联网上大量的公开知识,结合自动化知识抽取技术,构建起丰富而准确的知识图谱。

这种方法的优势在于能够快速构建和更新知识图谱,并且可以适应不同领域的知识需求。

3. 迁移学习在知识图谱构建中的应用:迁移学习是一种利用源领域的知识来提升目标领域学习性能的方法。

在知识图谱构建中,迁移学习可以从已有的知识图谱中迁移相关的实体和关系等信息,加速构建新的知识图谱。

这种方法可以大大减少新知识图谱构建的工作量,并且提高构建的效果。

二、知识图谱应用的新领域1. 金融领域的应用:知识图谱在金融领域的应用可以帮助金融机构更好地理解和分析客户需求,降低风险,并提供个性化的服务。

通过建立金融知识图谱,可以将大量的结构化和非结构化数据整合起来,识别出潜在的关联和趋势,为金融业务的决策提供支持。

2. 医疗领域的应用:知识图谱在医疗领域的应用可以提供医疗知识的整合和共享,辅助医生进行疾病诊断和治疗方案制定。

通过将医学文献、临床实验室数据和患者健康记录等信息整合到知识图谱中,可以提供更准确和个性化的医疗建议,提高医疗决策的效果。

知识图谱的关键技术与应用

知识图谱的关键技术与应用

知识图谱的关键技术与应用随着人工智能技术的不断发展,知识图谱逐渐成为人工智能领域中的重要技术之一。

知识图谱不仅可以帮助机器理解语言,还可以通过知识链接和推理等功能实现类人的思维能力。

本文将介绍知识图谱的关键技术和应用。

一、知识图谱的定义知识图谱是一种人工智能技术,是一种用于描述事物之间关系的图形化表示方法。

它是一种基于实体、属性和关系的知识组织结构,可以将各种信息进行结构化、标准化和统一化处理,从而达到知识互通的目的。

二、知识图谱的关键技术1. 知识获取知识图谱的基础是知识获取,该过程涉及到信息抽取、实体识别、关系提取、实体链接等技术。

在知识获取过程中,对于不同的数据源,需要设计不同的算法模型和规则库,并通过自然语言处理、机器学习等技术在大规模语料库中自动化地提取实体和关系,并将其转化为结构化和标准化的知识形式。

2. 知识表示知识表示是指将从不同数据源中获取的知识进行统一标准的表示和存储,以实现知识的互通和可推理。

在知识表示过程中,需要考虑知识表示的粒度、表示形式和知识本体等方面。

当前最常用的知识表示技术包括RDF、OWL、RDFS等。

3. 知识推理知识推理是实现知识智能处理的核心技术之一。

知识推理通过基于本体、规则和语义等方式,进行知识关联、归纳、演绎等推理,并通过推理产生新的知识。

知识推理涉及到推理引擎、推理规则、查询语言等技术。

4. 知识查询知识查询是指在知识图谱中进行复杂的查询操作,以实现知识检索、推理以及问题解答。

知识查询技术包括SPARQL、SQL、RQL等。

三、知识图谱的应用1. 搜索引擎知识图谱可以帮助搜索引擎提供更准确的搜索结果。

例如,谷歌通过使用知识图谱,可以为用户提供更多的相关搜索结果,提高搜索精度。

2. 智能客服知识图谱可以帮助智能客服更准确地理解用户意图和问题,并给出更准确的回答。

例如,使用知识图谱可以建立机器人对话模型,实现智能对话,并提供更加便捷的客户服务。

3. 金融领域知识图谱在金融领域中也有广泛的应用。

知识图谱技术的发展与应用场景

知识图谱技术的发展与应用场景

知识图谱技术的发展与应用场景近年来,随着人工智能技术的快速发展,知识图谱技术也受到越来越多人的关注。

知识图谱技术可以将大量的数据以结构化的方式存储并提供智能化分析,将人类知识与现实世界联系起来,为各种领域的应用提供了强大的支持。

本文将阐述知识图谱技术的发展过程及其应用场景。

一、知识图谱技术的发展知识图谱起源于语义网理论,是一种以图的形式组织和表达人类知识的方式。

它的目标是将各种数据资源以统一和可共享的方式进行组织和表达,建立一种从简单事物到复杂事物的自动推理和逻辑推断。

知识图谱技术的发展经过了三个阶段。

第一阶段是人工构建知识库,通过人工整理和抽取数据,将其存储在知识库中,再根据具体应用场景,将数据进行分类和组织。

这种方法的优点是可控性强、质量可靠,但是成本较高,且数据容易过时。

第二阶段是基于文本挖掘的知识图谱构建,以自然语言处理技术为核心建立知识图谱。

它从海量文本数据中自动生成识别特定领域的关键词和实体,并对实体之间的关系进行自动化判断和分类。

这种方法的优点是可自动化、快速生成,并且可应用于大规模数据的处理和分析。

但是该方法存在着实体、关系提取的准确率不高等问题。

第三阶段是利用深度学习技术进行知识图谱构建,它主要基于图神经网络的理论,能够根据图结构和语义信息自动发现模式,提取实体、关系等知识。

该方法相比前两种方法具有更高的精度、更强的普适性和更强的可解释性。

二、知识图谱技术的应用场景知识图谱技术已经被广泛应用于各个领域,以下列举部分。

1、医疗健康领域在医疗健康领域,知识图谱技术被用于构建医疗知识图谱,将医学领域的知识和实体进行结构化存储和表达,通过自然语言处理技术挖掘医学文献和病历,进一步提取文字、图片等多种信息,推动医疗信息共享和交流。

例如,知识图谱技术在疾病诊断上的应用,可以通过自然语言处理技术在医疗文献中查找症状和疾病的关系,提高疾病的诊断准确率。

此外,知识图谱技术还可以应用于医学图像诊断,将不同的医学图像与结构化的医学知识相结合,进行自动诊断和分析。

知识图谱技术的应用与发展

知识图谱技术的应用与发展

知识图谱技术的应用与发展知识图谱技术是一种人工智能技术,它能够将不同领域的知识进行智能化的整合和表达,构建出一个全面、精准的知识图谱。

随着人工智能技术的发展,知识图谱技术的应用场景不断扩大,越来越多的企业在实际业务中开始应用知识图谱技术,以提高工作效率和精准性。

一、知识图谱技术的应用场景1.内容推荐知识图谱技术能够通过分析用户的兴趣、行为等数据,对用户进行个性化推荐,提高用户对内容的精准匹配度。

以腾讯新闻推荐为例,其背后就运用了知识图谱技术。

腾讯新闻会根据用户的浏览历史、点赞、评论、分享等数据,利用知识图谱技术对不同领域的新闻进行分析和归纳,从而将用户感兴趣的内容推荐给用户。

知识图谱技术还可以应用于电商网站、音乐视频网站等,对用户进行个性化推荐,提高用户体验。

2.智能客服知识图谱技术可以通过对用户问题的分类和归纳,将用户提出的问题和最佳解决方法进行匹配,提供智能化的客服服务。

这种技术不仅能够提高客服效率,还可以提高客户满意度。

以京东客服为例,其背后也运用了知识图谱技术。

当用户在京东平台上遇到问题需要咨询客服时,京东客服会利用知识图谱来对问题进行分类和识别,从而将用户的问题快速匹配到相关的专家。

3.语义搜索知识图谱技术可以有效提高搜索引擎的搜索效率和准确性,通过语义解析和人工智能算法,实现精准的语义搜索。

以百度为例,百度知道中的问题搜索,就利用了知识图谱和语义搜索技术。

当用户输入一个问题时,百度搜索引擎能够自动进行语义分析,从而将相似内容的答案进行匹配,并将搜索结果按照相关度进行排序,提高用户体验。

4.医学诊断知识图谱技术在医学领域也有着广泛的应用。

通过对各种病例的数据进行整理和归纳,知识图谱可以形成具有完整语义结构的医学知识库,帮助医生和患者做出更准确的医学诊断。

以英迈思公司为例,其背后的医学知识图谱系统可以快速识别、组织和解析复杂医学数据,实现从现有文献到实际临床应用的知识转化,提高医学诊断的准确度。

知识图谱技术的发展及应用

知识图谱技术的发展及应用

知识图谱技术的发展及应用知识图谱技术是近年来崭新兴起的一项技术,其基本原理是将人类的知识体系放入一个可视化的、结构化的图谱之中,构建一个可以自我学习、扩展和演化的系统。

知识图谱技术通过融合语义学、自然语言处理、机器学习、数据挖掘、神经网络等多学科的技术,让机器能够理解和使用人类的知识。

知识图谱技术的发展历史知识图谱技术的发展历程可以追溯到上世纪80年代,那时候主要是基于语义网络的知识表达和存储。

但是,语义网络模型存在着与现实世界的复杂性、动态性与不确定性相比,单一形式的网络表示显然过于单薄,难以承载和展现大规模的知识。

直到2000年后,随着Web 2.0模式被提出,人们逐渐开始理解和认识到知识的网络性质以及知识共享和协作的重要性。

基于这一背景,知识图谱技术逐渐形成了“大数据时代”的知识融合平台。

其标志性的案例就是Google使用Knowledge Graph技术让用户可以在搜索结果页面直接获取相关知识。

知识图谱技术的应用领域知识图谱技术的应用广泛,不仅能促进智能化和自动化技术的发展,还能改善人们的生活和工作效率。

以下是几个具有代表性的应用领域:一. 搜索引擎作为知识图谱技术的早期应用者,搜索引擎可以将文章、用户、文章等元素连成一张大图,提高查询的精度及搜索结果的完整性。

这类应用主要分为三种:一是直接调用知识图谱给出意图提示和相关知识,二是将知识图谱作为补充信息,构成丰富的二次检索手段,三是利用知识图谱来实现搜索结果的纳入、排序和推荐。

以百度为例,其相关产品——百度百科、百度知道、百度文库都是实现知识图谱的典型案例。

二. 智能客服对于现在越来越普及的自动客服系统,建立知识图谱也显得更为必要。

基于规则库的传统客服系统很难解决用户复杂多样化的提问,而知识图谱恰好可以为这一问题提供完美解决方案。

知识图谱技术可以通过自然语言处理和语义识别判断用户意图,并快速寻找相关问题进行响应和解答。

现在很多企业都在使用智能客服,例如阿里巴巴的“小蜜”、“美团”等应用都已经逐渐实现了知识图谱的应用。

知识图谱技术的研究与应用

知识图谱技术的研究与应用一、知识图谱技术的概念知识图谱技术是一种人工智能技术,它可以将不同领域的信息进行整合和语义解析,实现“万物皆可链接”的概念。

通过将各类信息以实体、属性、关系进行描述,形成一个大规模的图谱,不仅能帮助人们快速地了解某个领域的知识,而且可以实现知识的智能推理和应用的扩展。

知识图谱技术的出现,正在推动互联网向“智能互联网”转型。

二、知识图谱技术的发展历程知识图谱技术的源头可以追溯到上世纪六七十年代的人工智能领域,但当时受限于计算能力和数据量的限制,知识图谱技术没有得到广泛应用。

直到二十一世纪初,随着互联网和大数据的爆发,知识图谱技术开始得到发展。

2012年,谷歌推出知识图谱(Google Knowledge Graph)功能,开启了知识图谱技术的商业化应用。

2016年,中文经典图书知识图谱首次亮相,标志着中文知识图谱的建立进入商业化时代。

三、知识图谱技术的核心技术知识图谱技术包含多个子技术,其中最核心的技术包括:1.实体抽取:将文本数据中的实体名称(人、地、物等)进行识别和分类。

2.关系抽取:在实体之间识别和分类他们之间的关系,例如“张三是李四的朋友”。

3.知识表示:将实体和关系抽象为结构化的表示形式。

4.知识融合:将不同来源和不同领域中的知识进行融合。

5.知识推理:基于知识图谱中的信息,实现知识的自动推理和推断。

四、知识图谱技术的应用1.智能搜索:利用知识图谱技术,搜索引擎可以提供更准确、个性化和丰富的搜索结果。

2.自然语言处理:知识图谱技术可以将人类言语转化为结构化的表示形式,从而实现智能问答和语义分析。

3.智能客服:基于知识图谱技术,智能客服可以更准确地理解用户提问,提供更快捷、精准的解答和帮助。

4.推荐系统:基于知识图谱技术,推荐系统可以对用户行为和兴趣模式进行分析和识别,提供更加个性化、精准的推荐服务。

5.智能物联网:知识图谱技术可以将物联网中的各类设备、传感器和人类活动进行链接,并实现智能化管理和调度。

知识图谱构建与应用的技术路线研究

知识图谱构建与应用的技术路线研究知识图谱(Knowledge Graph)是一种以图结构表示人类知识的语义模型,可以帮助人们更好地理解和组织各种知识领域中的信息。

它的构建以及在各个领域的应用研究已经引起了广泛的关注和研究。

本文将介绍知识图谱构建与应用的技术路线研究,包括知识图谱构建的方法和工具,以及知识图谱在不同领域中的应用案例。

一、知识图谱构建的方法1. 知识抽取与融合知识抽取是从结构化、半结构化和非结构化数据中提取出关键实体、关系和属性的过程。

常用的方法包括自然语言处理、信息抽取、实体识别和关系抽取等。

融合是将从不同数据源中抽取出的知识进行整合,消除冲突和重复,并统一表示。

常见的融合方法包括同义词消歧、实体链接、关系合并和数据清洗等。

2. 知识表示与建模知识表示是将抽取出的实体、关系和属性表示成计算机可处理的形式。

常用的表示方法包括本体表示、三元组表示和图表示等。

本体表示利用本体语言(如OWL,RDF等)来定义实体、关系和属性的语义;三元组表示使用主谓宾的形式来表示实体、关系和属性之间的关联;图表示则使用节点和边表示实体和关系之间的关系,并利用图算法进行结构化分析。

3. 知识存储与管理知识图谱的存储与管理是在构建阶段将抽取融合后的知识存储到数据库或图数据库中,并提供高效的查询和更新接口。

常用的存储和管理系统包括关系型数据库、NoSQL数据库和图数据库等。

其中,图数据库由于其天然的图结构存储和查询优势,成为知识图谱存储的首选。

4. 知识推理与推理引擎知识推理是基于已有知识进行推理和推断的过程,可以补全和丰富知识图谱中的缺失信息。

推理引擎是进行知识推理的核心组件,常用的推理引擎包括规则引擎、图数据库查询和机器学习等。

推理可以帮助实现知识图谱的自动化和智能化。

二、知识图谱应用的技术路线研究1. 领域知识图谱构建根据不同领域的需求,构建针对特定领域的知识图谱。

例如,在医疗领域中,可以构建医学知识图谱,整合和分析各类医学知识,辅助医疗决策和临床研究。

知识图谱构建技术与应用

知识图谱构建技术与应用随着人工智能的不断发展和普及,各种技术手段都在迅速壮大,其中知识图谱构建技术是非常领先的一种技术手段。

它是一种利用人工智能技术解决知识管理和知识利用的方法,可以帮助人们更高效地获取、处理和利用信息,提高知识的利用价值和深度,让知识使用更加智能化和方便化。

本文将为您介绍知识图谱构建技术以及其在各种应用场景中的具体应用情况。

一、知识图谱构建技术的概念和优势知识图谱构建技术是一种基于知识表示的技术,通过数据挖掘和自然语言处理等技术,将散乱的知识元素加以关联和整合,形成一张具备结构化和语义表示的图谱,以便于更加直观地展示知识的各个层面和关系,让人们更容易地理解、维护、推理和使用知识。

与传统的知识管理系统相比,知识图谱具有以下几个重要的优势:1.结构化:知识图谱通过层级结构展示了知识元素之间的那种关系,把非结构化的信息转化为了结构化的数据,大大提高了信息的可读性和可视化性。

2.语义化:知识图谱主要体现的是具体对象之间及其属性之间的关系,对于同一个实体,可能有多种描述方式,知识图谱可以将这些描述方式统一起来,以便于对于知识的语义推理。

3.可扩展性:知识图谱的结构化和语义化让其易于扩展,新的知识点可以非常容易地加入到已有的图谱之中,保证了知识库的持续更新。

4.智慧化:知识图谱的智能化可以帮助我们更方便、更快、更准确的查询和获取信息。

二、知识图谱的构建流程知识图谱的构建流程比较复杂,主要包含了数据抽取、数据清洗、实体识别、关系抽取和关系推理几个关键步骤:1.数据抽取:一般是从互联网或企业内部系统采集原始数据,如网页、论文、报告、产品文档等;2.数据清洗:将原始数据进行过滤,去掉重复、错误、缺失等问题,以保证后续的处理的质量;3.实体识别:将数据中的各种知识元素通过NLP技术将其识别出来,包括实体、属性和关系;4.关系抽取:在已识别出的实体之间,利用各种关系抽取技术自动抽取出它们之间的联系;5.关系推理:通过推理引擎,对已有的知识进行深层次的推理,同时根据推理结果反向更新知识图谱中的实体和关系,打破原有知识图谱的局限性,扩大知识图谱的规模及呈现更多可能性的信息。

知识图谱技术的应用与前景

知识图谱技术的应用与前景近年来,随着人工智能的发展,知识图谱技术备受关注并逐渐渗透到我们的生活中。

知识图谱是一种将语义知识结构化表达的技术,用于描述实体、关系和属性之间的关系,可以支持机器智能地理解文本和语言,实现高效的信息检索、知识推理与智能问答。

本文将探讨知识图谱技术的应用与前景。

一、知识图谱技术的应用1、智能搜索随着互联网信息量的爆炸性增长,我们需要更加高效的信息检索方式。

知识图谱技术具有语义化表达的特点,可以在很大程度上减少搜索的模糊性,同时还能够通过实体和关系的链接展现搜索结果,并为用户推荐相关信息。

例如,谷歌的知识图谱项目,将搜索关键词进行实体化,提供了许多直接的结果。

比如我们搜索“迈克尔·乔丹”时,谷歌不仅会将搜索结果以表格的形式呈现出来,还会展示出与迈克尔·乔丹相关的实体(如篮球、芝加哥公牛队等)和知识卡片。

2、人机对话随着人工智能和自然语言处理的快速发展,智能问答成为了一个备受关注的领域。

其中,知识图谱技术可以为智能问答系统提供丰富的语义信息。

通过分析用户的提问,系统可以基于知识图谱进行知识的推理和回答,大大提高了问答系统的准确性。

例如,小度智能助手是一款基于知识图谱的智能问答系统,它可以回答用户的各种问题,包括天气、新闻、健康等方面的问题,并且还可以根据用户的口味进行个性化的推荐。

3、图像识别除了语言领域,知识图谱技术也可以应用在图像识别中。

通过将图像中的实体和关系结构化表达,可以为图像检索和图像分析提供更多的语义信息。

例如,FaceNet是一款基于神经网络的人脸识别系统,它通过将人脸表征为高维空间中的向量,并根据向量间的距离计算相似度。

通过结合知识图谱,可以更加准确地识别人脸,并进行人脸验证和人脸搜索。

二、知识图谱技术的前景随着知识图谱技术的日渐成熟,我们可以预见它在未来的应用场景中发挥重要作用。

1、物联网物联网是一个快速发展的领域,它将物理世界连接到互联网上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

领域应用知识图谱的技术与应用本文转载自公众号:贪心科技。

领域应用I知识图谱的技术与应用李文哲开放知识图谱1周前本文转载自公众号:贪心科技。

作者I李文哲,人工智能、知识图谱领域专家导读:从一开始的Google搜索,到现在的聊天机器人、大数据风控、证券投资、智能医疗、自适应教育、推荐系统,无一不跟知识图谱相关。

它在技术领域的热度也在逐年上升。

本文以通俗易懂的方式来讲解知识图谱相关的知识、尤其对从零开始搭建知识图谱过程当中需要经历的步骤以及每个阶段需要考虑的问题都给予了比较详细的解释。

对于读者,我们不要求有任何AI相关的背景知识。

目录:1.概论2.什么是知识图谱3.知识图谱的表示4.知识抽取5.知识图谱的存储6.金融知识图谱的搭建1.定义具体的业务问题2.数据收集&预处理3.知识图谱的设计4.把数据存入知识图谱5.上层应用的开发7.知识图谱在其他行业中的应用8.实践上的几点建议9.结语1.概论随着移动互联网的发展,万物互联成为了可能,这种互联所产生的数据也在爆发式地增长,而且这些数据恰好可以作为分析关系的有效原料。

如果说以往的智能分析专注在每一个个体上,在移动互联网时代则除了个体,这种个体之间的关系也必然成为我们需要深入分析的很重要一部分。

在一项任务中,只要有关系分析的需求,知识图谱就有可能”派的上用场。

2. 什么是知识图谱?知识图谱是由Google 公司在2012年提出来的一个新的概念。

从学术的角度,我们可以 对知识图谱给一个这样的定义: 知识图谱本质上是语义网络(Sema ntic Network )的知识库”但这有点抽象,所以换个角度,从实际应用的角度出发其实可以简单地把知识 图谱理解成多关系图(Multi-relational Graph 那什么叫多关系图呢? 学过数据结构的都应该知道什么是图(Graph )。

图是由节点 (Vertex )和边(Edge )来构成,但这些图通常只包含一种类型的节点和边。

但相反,多关系图一般包含多种类型的节点和多种类型的边 。

比如左下图表示一个经典的图结构, 右边的图则表示多关系图,因为图里包含了多种类型的节点和边。

这些类型由不同的颜 色来标记。

在知识图谱 里,我们通常用 实体(Entity ) ”来表达图里的节点、用 关系(Relation )”来表达图里的 边”实体指的是现实世界中的事物比如人、地名、概念、药物、公司等 ,关系则用来表达不同实体之间的某种联系, 比如人-居住在”北京、张三和李四是 朋友”逻辑回归 是深度学习的先导知识”等等。

现实世界中的很多场景非常适合用知识图谱来表达。

比如一个社交网络图谱里,我们既可以有 人”的实体,也可以包含 公司”实体。

人和人之间的关系可以是 朋友”,也可以是 同 事”关系。

人和公司之间的关系可以是 现任职”或者曾任职”的关系。

类似的,一个风控 知识图谱可以包含 电话”公司”的实体,电话和电话之间的关系可以是 通话”关系,而 且每个公司它也会有固定的电话。

3. 知识图谱的表示知识图谱应用的前提是已经构建好了知识图谱 ,也可以把它认为是一个知识库。

这也是 为什么它可以用来回答一些搜索相关问题的原因,比如在 Google 搜索引擎里输入“ Who is the wife of Bill Gates?,我们直接可以得到答案-“Melinda Gates 。

这是因为我们在系 )。

包含一种类型的节点和边包含多种类型的节点和边 (不同<^状扣師色代憑不岡评奥断节点和边)节点 节点 边边 节点节点 边统层面上已经创建好了一个包含 “ Bill Gates 和” Meli nda Gates 的实体以及他俩之间关系的知识库。

所以,当我们执行搜索的时候,就可以通过关键词提取(” Bill Gates ” , “ Gates ” , “Wif 以及知识库上的匹配可以直接获得最终的答案。

这种搜索方式跟传统的搜索引擎是不一样的,一个传统的搜索引擎它返回的是网页、而不是最终的答案,所以 就多了一层用户自己筛选并过滤信息的过程。

在现实世界中,实体和关系也会拥有各自的属性,比如人可以有 姓名”和年龄”当一个知识图谱拥有属性时,我们可以用属性图(Property Graph )来表示。

下面的图表示一 个简单的属性图。

李明和李飞是父子关系,并且李明拥有一个 138开头的电话旦电话号开通时间是2018年,其中2018年就可以作为关系的属性。

类似的, 带有一些属性值比如年龄为25岁、职位是总经理等。

的表达很贴近现实生活中的场景,也可以很好地描述业务中所包含的逻辑。

知识图谱也可以用RDF 来表示,它是由很多的三元组(Triples )来组成。

上的主要特点是易于发布和分享数据,但不支持实体或关系拥有属性,如果非要加上属性,则在设计上需要做一些修改。

目前来看, RDF 主要还是用于学术的场景,在工业界我们更多的还是采用图数据库(比如用来存储属性图)的方式。

感兴趣的读者可以参考 RDF 的相关文献,在文本里不多做解释。

4. 知识抽取知识图谱的构建是后续应用的基础,而且构建的前提是需要把数据从不同的数据源中抽 取出来。

对于垂直领域的知识图谱来说, 它们的数据源主要来自两种渠道:一种是业务本身的数据,这部分数据通常包含在公司内的数据库表并以结构化的方式存储;另一种 是网络上公开、抓取的数据,这些数据通常是以网页的形式存在所以是非结构化的数据。

Meli nda 号,这个李明本人也 r138KL J这种属性图 除了属性图, RDF 在设计 Has _p hone李, ’ 通时间,:'2018 ''年龄丿:鮎,「肌位':’总经ls_faThcr_of前者一般只需要简单预处理即可以作为后续 AI 系统的输入,但后者一般需要借助于自然语言处理等技术来提取出结构化信息。

比如在上面的搜索例子里,Bill Gates 和Malinda Gate 的关系就可以从非结构化数据中提炼出来,比如维基百科等数据源。

信息抽取的难点在于处理非结构化数据。

在下面的图中,我们给出了一个实例。

左边是 一段非结构化的英文文本,右边是从这些文本中抽取出来的实体和关系。

在构建类似的 图谱过程当中,主要涉及以下几个方面的自然语言处理技术:a.实体命名识别(Name Entity Recognitionb. 关系抽取(Relation Extraction )c. 实体统一(Entity Resolution )d. 指代消解(Coreferenee Resolution )下面针对每一项技术解决的问题做简单的描述,里一一展开,感兴趣的读者可以查阅相关资料, 首先是实体命名识别,就是从文本里提取出实体并对每个实体做分类 /打标签:比如从上 述文本里,我们可以提取出实体-“NYC,并标记实体类型为 “Location ;”我们也可以从中提取出“Virgil ' s BBQ 标记实体类型为“Restarant 。

'这种过程称之为实体命名识别, 这是一项相对比较成熟的技术,有一些现成的工具可以用来做这件事情。

其次,我们可 以通过关系抽取技术,把实体间的关系从文本中提取出来,比如实体 “ hote和’“ Hilt onproperty 之间的关系为 “ir ; ” “hote 和”“Time Square 的关系为 “nea rt” 等。

另外,在实体命名识别和关系抽取过程中,有两个比较棘手的问题:一个是实体统一, 也就是说有些实体写法上不一样,但其实是指向同一个实体。

比如 “NYC 和“New York ”表面上是不同的字符串,但其实指的都是纽约这个城市,需要合并。

实体统一不仅可以 减少实体的种类,也可以降低图谱的稀疏性(Sparsity );另一个问题是指代消解,也是 文本中出现的“it ” , “he”这些词到底指向哪个实体,比如在本文里两个被标记出来的 “都指向“hote 这个实体。

实体统一和指代消解问题相对于前两个问题更具有挑战性。

5. 知识图谱的存储知识图谱主要有两种存储方式:一种是基于RDF 的存储;另一种是基于图数据库的存储。

它们之以至于这些是具体怎么实现的,不在这 或者学习我的课程。

间的区别如下图所示。

RDF 一个重要的设计原则是数据的易发布以及共享,图数据库则把重点放在了高效的图查询和搜索上。

其次,RDF以三元组的方式来存储数据而且不包含属性信息,但图数据库一般以属性图为基本的表示形式,所以实体和关系可以包含属性,这就意味着更容易表达现实的业务场景。

根据最新的统计(2018年上半年),图数据库仍然是增长最快的存储系统。

相反,关系型数据库的增长基本保持在一个稳定的水平。

同时,我们也列出了常用的图数据库系统以及他们最新使用情况的排名。

其中Neo4j系统目前仍是使用率最高的图数据库,它拥有活跃的社区,而且系统本身的查询效率高,但唯一的不足就是不支持准分布式。

相反,OrientDB和JanusGraph (原Titan)支持分布式,但这些系统相对较新,社区不如Neo4j 活跃,这也就意味着使用过程当中不可避免地会遇到一些刺手的问题。

如果选择使用RDF 的存储系统,Jena或许一个比较不错的选择。

6.金融知识图谱的搭建接下来我们看一个实际的具体案例,讲解怎么一步步搭建可落地的金融风控领域的知识图谱系统。

首先需要说明的一点是,有可能不少人认为搭建一个知识图谱系统的重点在于算法和开发。

但事实并不是想象中的那样,其实最重要的核心在于对业务的理解以及对知识图谱本身的设计,这就类似于对于一个业务系统,数据库表的设计尤其关键,而且这种设计绝对离不开对业务的深入理解以及对未来业务场景变化的预估。

当然,在这里我们先不讨论数据的重要性。

一个完整的知识图谱的构建包含以下几个步骤:1.定义具体的业务问题? 2.数据的收集&预处理?3.知识图谱的设计?4.把数据存入知识图谱? 5.上层应用的开发,以及系统的评估。

下面我们就按照这个流程来讲一下每个步骤所需要做的事情以及需要思考的问题。

6.1定义具体的业务问题在P2P网贷环境下,最核心的问题是风控,也就是怎么去评估一个借款人的风险。

在线上的环境下,欺诈风险尤其为严重,而且很多这种风险隐藏在复杂的关系网络之中,而且知识图谱正好是为这类问题所设计的,所以我们有可能”期待它能在欺诈,这个问题上带来一些价值。

在进入下一个话题的讨论之前,要明确的一点是,对于自身的业务问题到底需不需要知识图谱系统的支持。

因为在很多的实际场景,即使对关系的分析有一定的需求,实际上也可以利用传统数据库来完成分析的。

所以为了避免使用知识图谱而选择知识图谱,以及更好的技术选型,以下给出了几点总结,供参考。

相关文档
最新文档