环氧树脂的固化原理

合集下载

环氧树脂的固化.

环氧树脂的固化.

O
CH2
O
O
C
O O—
氧阴离子与酸酐反应生成酯化结构
C
O


R2HN:BF3
O
O +

H + R2N:BF3
O

H + R2N:BF3
O
C
OH

O O
C OH

C BF3: NR2
O
OH

+ ROH
C

C BF3: NR2
C OR
+ R2N:BF3 + H
O
O
生成酯化结构 催化剂直接影响两个竞争反应,即酯化反应与醚化 反应。故有无催化剂,酸酐固化EP的性能有差异,添 加催化剂的性能要好。
课前回顾
1、海因环氧树脂的结构式与主要性能特点? 2、二氧化双环戊二烯基醚环氧树脂的特点? 3、TDE-85环氧树脂的结构式与性能特点? 4、脂肪族环氧树脂的特点及用途? 5. 有机硅环氧树脂的特点? 6、环氧树脂的固化剂可分为哪两类,分别按什么反 应历程进行固化?特点是什么?两类固化剂的代表 有哪些? 7、脂肪族多元胺固化剂的催化剂有哪些?活性顺序 是怎样的? 8、常用的脂肪族多元胺有哪些?多乙烯多胺的结构 通式?它们的活性与挥发性相对大小顺序? 9、脂肪族多元胺类环氧固化剂的主要特点有哪些?
催化剂(或促进剂):质子给予体 促进顺序:酸≥酚≥水>醇(催化效应近似正 比于酸度)
CH2 CH O HX R + CH2 CH HX O R
如被酸促进(先形成氢键)
R" R" NH R' HX + CH2 CH O R R'

环氧树脂固化原理

环氧树脂固化原理

环氧树脂固化原理
环氧树脂固化原理是指将环氧树脂与固化剂进行反应,形成一种坚硬、耐热、耐化学腐蚀等性能优良的三维网络结构。

环氧树脂的固化是一个聚合反应过程,其机理可以分为两个主要步骤:环氧基团的开环和固化剂与开环产物的反应。

首先,环氧基团的开环是环氧树脂固化的关键步骤。

环氧树脂分子中含有活性的环氧基团(C-O-C),在固化剂的作用下,
环氧基团会发生开环反应,使树脂分子链中的环氧基团打开,并形成一种缺氧的活性端基。

这个开环反应的过程可以通过热激活或者添加催化剂来促进。

接下来,环氧树脂的开环产物与固化剂发生反应,形成强固的三维网络结构。

常用的固化剂有多种,如胺类、酸类、酸酐类等。

这些固化剂中的官能团与环氧开环产物中的活性端基进行反应,形成共价键,将树脂分子彼此连接起来。

这个反应过程称为缩聚反应,通过缩聚反应,环氧树脂分子之间形成交联结构,使树脂呈现出固态的特性。

总的来说,环氧树脂固化原理可以归纳为环氧基团的开环和开环产物与固化剂的反应两个步骤。

通过这两个步骤的相互作用,环氧树脂能够形成坚固的结构,具有良好的物理、化学性能,被广泛应用于各个领域中。

聚酰胺酰亚胺固化环氧树脂与的固化原理

聚酰胺酰亚胺固化环氧树脂与的固化原理

聚酰胺酰亚胺固化环氧树脂与的固化原理
聚酰胺酰亚胺固化环氧树脂是一种常用的固化体系,其固化原理是通过聚酰胺酰亚胺与环氧树脂中的胺基反应形成交联结构。

在该固化过程中,聚酰胺酰亚胺起到了催化剂的作用,而环氧树脂中的胺基则是固化剂。

固化过程中的第一步是聚酰胺酰亚胺与环氧树脂中的环氧基发生开环反应,生成活性的氢氧基和羧酸基官能团。

这些官能团能够进一步反应,形成酯键和缩酮键等交联结构。

这些交联结构的形成使得树脂体系在固化过程中逐渐变得硬化,最终形成具有强度和耐热性能的固体。

聚酰胺酰亚胺固化环氧树脂的固化过程是一个复杂的化学反应过程。

在固化过程中,温度和固化时间是两个重要的影响因素。

一般来说,随着温度的升高和固化时间的延长,固化反应的速度会加快,反应程度也会增加。

但是,过高的温度和过长的固化时间可能会导致树脂体系的老化和变性,降低固化后的性能。

聚酰胺酰亚胺固化环氧树脂具有许多优点,如优异的机械性能、耐热性能和化学稳定性。

它在航空航天、电子、汽车等领域有着广泛的应用。

然而,固化过程中的控制和合理的选择固化条件对于获得高品质的固化产物至关重要。

聚酰胺酰亚胺固化环氧树脂与的固化原理是通过聚酰胺酰亚胺和环
氧树脂中的胺基之间的反应形成交联结构。

这种固化体系具有许多优点,但固化过程中的温度和固化时间需要合理控制,以确保固化产物具有良好的性能。

环氧树脂固化反应的原理

环氧树脂固化反应的原理

环氧树脂固化反应得原理环氧树脂固化反应得原理,目前尚不完善,根据所用固化剂得不同,一般认为它通过四种途径得反应而成为热固性产物。

(1)环氧基之间开环连接; (2)环氧基与带有活性氢官能团得固化剂反应而交联; (3)环氧基与固化剂中芳香得或脂肪得羟基得反应而交联; (4)环氧基或羟基与固化剂所带基团发生反应而交联。

不同种类得固化剂,在硬化过程中其作用也不同、有得固化剂在硬化过程中,不参加到本分子中去,仅起催化作用,如无机物。

具有单反应基团得胺、醇、酚等,这种固化剂,叫催化剂、多数固化剂,在硬化过程中参与大分子之间得反应,构成硬化树脂得一部分,如含多反应基团得多元胺、多元醇、多元酸酐等化合物。

1、胺类固化剂胺类固化剂—般使用比较普遍,其硬化速度快,而且黏度也低,使用方便,但产品耐热性不高,介电性能差,并且固化剂本身得毒性较大,易升华、胺类固化剂包括;脂肪族胺类、芳香族胺类与胺得衍生物等。

胺本身可以瞧作就是氮得烷基取代物,氨分子(NH3)中三个氢可逐步地被烷基取代,生成三种不同得胺。

即:伯胺(RNH2)、仲胺(R2NH))与叔胺(R3N)、由于胺得种类不同,其硬化作用也不同: (1)伯胺与仲胺得作用含有活泼氢原子得伯胺及仲胺与环氧树脂中得环氧基作用、使环氧基开环生成羟基,生成得羟基再与环氧基起醚化反应,最后生成网状或体型聚合物。

(2)叔胺得作用与伯胺、仲胺不同,它只进行催化开环,环氧树脂得环氧基被叔胺开环变成阴离子,这个阴离子又能打开一个新得环氧基环,继续反应下去,最后生成网状或体型结构得大分子。

2、酸酐类固化剂酸酐就是由羧酸(分子结构中含有羧基—COOH)与脱水剂一起加热时,两个羧基除去一个水分子而生成得化合物。

酸酐类固化剂硬化反应速度较缓慢,硬化过程中放热少,使用寿命长,毒性较小,硬化后树脂得性能(如力学强度、耐磨性、耐热性及电性能等)均较好、但由于硬化后含有酯键,容易受碱得侵蚀并且有吸水性,另外除少数在室温下就是液体外。

(整理)环氧树脂的固化机理及其常用固化剂

(整理)环氧树脂的固化机理及其常用固化剂

3.8 环氧树脂通过逐步聚合反应的固化环氧树脂的固化剂,大致分为两类:(1)反应型固化剂可与EP分子进行加成,并通过逐步聚合反应的历程使它交联成体型网状结构。

特征:一般都含有活泼氢原子,在反应过程中伴有氢原子的转移。

如多元伯胺、多元羧酸、多元硫醇和多元酚等。

(2)催化型固化剂可引发树脂中的环氧基按阳离子或阴离子聚合的历程进行固化反应。

如叔胺、咪唑、三氟化硼络合物等。

3.8.1 脂肪族多元胺1、反应机理催化剂(或促进剂):质子给予体促进顺序:酸≥酚≥水>醇(催化效应近似正比于酸度)如被酸促进(先形成氢键)形成三分子过渡状态(慢)2、常用固化剂四乙烯五胺多乙烯多胺试比较它们的活性、粘度、挥发性与固化物韧性的相对大小?脂肪胺类固化剂的特点(1)活性高,可室温固化。

(2)反应剧烈放热,适用期短;(3)一般需后固化。

室温固化7d左右,再经2h/80~100℃后固化,性能更好;(4)固化物的热变形温度较低,一般为80~90 ℃;(5)固化物脆性较大;(6)挥发性和毒性较大。

课前回顾1、海因环氧树脂的结构式与主要性能特点?2、二氧化双环戊二烯基醚环氧树脂的特点?3、TDE-85环氧树脂的结构式与性能特点?4、脂肪族环氧树脂的特点及用途?5. 有机硅环氧树脂的特点?6、环氧树脂的固化剂可分为哪两类,分别按什么反应历程进行固化?特点是什么?两类固化剂的代表有哪些?7、脂肪族多元胺固化剂的催化剂有哪些?活性顺序是怎样的?8、常用的脂肪族多元胺有哪些?多乙烯多胺的结构通式?它们的活性与挥发性相对大小顺序?9、脂肪族多元胺类环氧固化剂的主要特点有哪些?3、化学计量胺的用量(phr)= 胺当量×环氧值胺当量= 胺的相对分子量÷胺中活泼氢的个数phr意义:每100份树脂所需固化剂的质量份数。

例题:分别用二乙烯三胺和四乙烯五胺固化E-44环氧树脂,试计算固化剂的用量(phr值)。

若E-44用10%的丙酮或者669(环氧值为0.75)稀释后(质量比为100:10),又如何计算? 胺当量(DETA)=103/5=20.6胺当量(TEPA)=189/7=27(1)未稀释,环氧值=0.44Phr(DETA)=0.44×20.6=9.1Phr(TEPA)=0.44×27=11.9(2)用丙酮稀释,环氧值=0.44×100/110=0.4Phr(DETA)=0.4×20.6=8.2Phr(TEPA)=0.4×27=10.8用669稀释,环氧值=0.44×100/110+0.75×10/110=0.468Phr(DETA)=0.468×20.6=9.6Phr(TEPA)=0.468×27=12.63.8.2 芳香族多元胺’二胺基二苯基甲烷(DDM)二胺基二苯砜(DDS)芳族多元胺固化剂的特点优点:固化物耐热性、耐化学性、机械强度均比脂肪族多元胺好。

环氧树脂固化剂 原理

环氧树脂固化剂 原理

环氧树脂固化剂原理一、交联反应环氧树脂的固化过程是一种典型的交联反应,通过这种反应,环氧树脂由线型结构转变为网状结构。

固化过程中,环氧树脂中的环氧基与固化剂中的活泼氢发生反应,生成羟基。

这些羟基进一步相互反应,形成三维网状结构。

这种网状结构使得环氧树脂变得坚硬和耐热,从而实现了从液态到固态的转变。

二、固化剂种类环氧树脂的固化剂种类繁多,根据其性质和应用需求有多种分类方式。

根据固化机理,可以分为胺类、酸酐类、聚合物类等。

胺类固化剂如脂肪胺、芳香胺等,反应速度快,但耐热性较差;酸酐类固化剂如邻苯二甲酸酐、顺丁烯二酸酐等,耐热性好,但反应速度较慢;聚合物类固化剂如聚酰胺、酚醛树脂等,具有良好的综合性能。

三、温度与时间环氧树脂的固化过程受温度影响较大。

在室温下,固化反应速度较慢,需要较长时间才能完全固化。

提高温度可以加快固化反应速度,缩短固化时间。

但温度过高可能导致固化过度,产生裂纹或变形。

因此,选择合适的温度和时间是实现环氧树脂良好固化的关键。

四、催化剂在环氧树脂的固化过程中,催化剂起到了加速反应的作用。

催化剂的种类和用量对固化速度和固化产物的性能都有重要影响。

常见的催化剂有酸、碱、过渡金属化合物等。

选择合适的催化剂可以提高固化速度,改善固化产物的性能。

五、填料与改性为了改善环氧树脂的力学性能、电性能和热性能等,常常需要添加填料进行改性。

填料的选择和用量应根据具体的应用需求而定。

常用的填料有硅微粉、玻璃纤维、碳纤维等。

填料的加入可以降低成本、提高耐磨性、增强刚性等。

同时,填料还可以通过表面改性来改善与环氧树脂的相容性,进一步提高复合材料的性能。

环氧树脂的固化机理及其常用固化剂

环氧树脂的固化机理及其常用固化剂
固化剂的品种对固化物的力学性能、耐热性、耐水性、耐腐蚀性等都有很大 影响。
2、反应型固化剂
可与EP分子进行加成,通过逐步聚合反应 交联成体型网状结构; 一般含有活泼氢,反应中伴随氢原子转移, 如多元伯胺、多元羧酸、多元硫
醇和多元酚。
3、催化型固化剂
环氧基按阳离子或阴离子聚合机理进行固 化,如叔胺、咪唑、三氟化硼络合物。
23、环氧树脂固化的三个阶段
液体-操作时间:树脂/固化剂混合物仍然是液体适合应用。 凝胶-进入固化:混合物开始进入固化相(也称作熟化阶段), 这时它开始凝胶
或“突变”成软凝胶物。此时只是局部固 化,新使用的环氧树脂仍然能与它 化学链接,因此该未处 理的表面仍然可以进行粘接或反应。 固体-最终固化:环氧混合物变成固体阶段,这时能砂磨 及整型。在室温下 维持若干天使它继续固化。
8、芳香族多元胺
间苯二胺
4,4-二氨基二苯基甲烷(DDM)
间苯二甲胺
4,4-二氨基二苯砜(DDS)
9、芳香族多胺特点
固化物耐热性好,耐化学性机械强度均优于脂肪族多元胺 活性低,大多加热固化 氮原子因苯环导致电子云密度降低,碱性减弱,以及苯环位阻效应 多为固体,熔点高,工艺性差 液化,低共熔点混合,多元胺与单缩水甘油醚加成
13、硫脲-多元胺缩合
硫脲与脂肪族多元胺加热至100℃缩合放出 氨气 能在极低温下(0℃以下)固化EP
14、聚酰胺化
9,11-亚油酸与9,12-亚油酸二聚反应 然后2分子与DETA(二乙烯三胺)进行酰胺化反应挥发性毒性很小 与EP相容性良好,化学计量要求不严 固化物有很好的增韧效果 放热效应低,适用期长,固化物耐热性较低,HDT为60℃左右
环氧树脂的固化机理 及其常用固化剂
1、什么是固化剂

环氧树脂固化去除气泡的原理

环氧树脂固化去除气泡的原理

环氧树脂固化去除气泡的原理
环氧树脂固化去除气泡的原理主要有以下几个方面:
1. 减少气体溶解度:固化过程中,环氧树脂会在低温下逐渐升温,逐渐固化。

随着温度的升高,气体在固化过程中逐渐释放出来,减少了气体的溶解度,从而减少了气泡的产生。

2. 加压排气:固化过程中,可以通过施加一定的外部压力,将固化树脂中的气泡迫使释放出来。

这种方法又称为加压排气,可以显著减少固化过程中气泡的产生。

3. 振动排气:在固化过程中,可以通过振动的方式来加速气泡的释放。

振动可以促使气泡向上浮动,从而排除气泡。

这种方法适用于较大的尺寸和较厚的环氧树脂固化体。

4. 使用消泡剂:消泡剂是一种能够降低液体表面张力、减少气泡形成的物质。

在环氧树脂固化过程中添加适量的消泡剂,可以有效降低气泡的产生。

综上所述,环氧树脂固化去除气泡的原理是通过减少气体溶解度、加压排气、振动排气和使用消泡剂等方法来防止气泡的生成和扩散,从而达到去除气泡的目的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

环氧树脂的固化原理
环氧树脂硬化反应的原理,目前尚不完善,根据所用硬化剂的不同,一般认为它通过四种途径的反应而成为热固性产物.
(1)环氧基之间开环连接;
(2)环氧基与带有活性氢官能团的硬化剂反应而交联;
(3)环氧基与硬化剂中芳香的或脂肪的羟基的反应而交联;
(4)环氧基或羟基与硬化剂所带基团发生反应而交联.
不同种类的硬化剂,在硬化过程中其作用也不同.有的硬化剂在硬化过程中,不参加到本分子中去,仅起催化作用,如无机物.具有单反应基团的胺、醇、酚等,这种硬化剂,叫催化剂.多数硬化剂,在硬化过程中参与大分子之间的反应,构成硬化树脂的一部分,如含多反应基团的多元胺、多元醇、多元酸酐等化合物.
1、胺类硬化剂
胺类硬化剂—般使用比较普遍,其硬化速度快,而且黏度也低,使用方便,但产品耐热性不高,介电性能差,并且硬化剂本身的毒性较大,易升华.胺类硬化剂包括;脂肪族胺类、芳香族胺类和胺的衍生物等.胺本身可以看作是氮的烷基取代物,氨分子(NH3)中三个氢可逐步地被烷基取代,生成三种不同的胺.即:伯胺(RNH2)、仲胺(R2NH))和叔胺(R3N).
由于胺的种类不同,其硬化作用也不同:
(1)伯胺和仲胺的作用
含有活泼氢原子的伯胺及仲胺与环氧树脂中的环氧基作用.使环氧基开环生成羟基,生成的羟基再与环氧基起醚化反应,最后生成网状或体型聚合物.
(2)叔胺的作用与伯胺、仲胺不同,它只进行催化开环,环氧树脂的环氧基被叔胺开环变成阴离子,这个阴离子又能打开一个新的环氧基环,继续反应下去,最后生成网状或体型结构的大分子.
2、酸酐类硬化剂
酸酐是由羧酸(分子结构中含有羧基—COOH)与脱水剂一起加热时,两个羧基除去一个水分子而生成的化合物.
酸酐类硬化剂硬化反应速度较缓慢,硬化过程中放热少,使用寿命长,毒性较小,硬化后树脂的性能(如力学强度、耐磨性、耐热性及电性能等)均较好.但由于硬化后含有酯键,容易受碱的侵蚀并且有吸水性,另外除少数在室温下是液体外.绝大多数是易升华的固体,而且一般要加热固化.
酸酐和环氧树脂的硬化机理,至今尚未完全阐明,比较公认的说法如下:
酸酐先与环氧树脂中的羟基起反应而生成单酯,第二步由单酯中的羟基和环氧树脂的环氧基起开环反应而生成双酯,第三步再由其中的羟基对环氧基起开环作用,生成醚基,所以可得到既含醚键,又含有酯基的不溶不熔的体型结构.
除了上述反应之外,第一步生成的单酸中的羧基也可能与环氧树脂分子上的羟基起酯化反应,生成双酯.但这不是主要的反应.
3、树脂类硬化剂
含有硬化基团的一NH一,一CH2OH,一SH,一COOH,一OH等的线型合成树脂低聚物,也可作为环氧树脂的硬化剂.如低分子聚酰胺.酚醛树脂,苯胺甲醛树脂,三聚氰胺甲醛树脂,糠醛树脂,硫树脂,聚酯等.它们分别能对环氧树脂硬化物的耐热性,耐化学性,抗冲击性,介电性,耐水性起到改善作用.常用的是低分子聚酰胺和酚醛树脂.
(1)低分子聚酰胺不同于尼龙型的聚酰胺.它是亚油酸二聚体或是桐油酸二聚体与脂肪族多元胺,如乙二胺、二乙烯三胺反应生成的一种琥珀色粘稠状树脂.由于原材料的性质,反应组分的配比和反应条件不同,低分子聚酰胺的性质差别很大.它们的分子量在500~9000之间,有熔
点很高,胺值很低的固态树脂,也有胺值为300的液态树脂.其中胺值是低分子聚酰胺活性的描述,胺值高的活性大,与环氧树脂反应速度快,但可使用期短,胺值低的活性小,与环氧树脂反应速度慢,但可使用期长,表1列举了几种低分子聚酰胺的牌号及性能.
表1 低分子聚酰胺牌号及性能举例
牌号
200
300
400
650
651
原料
亚油酸二聚体
与三乙烯四胺
亚油酸二聚体
与三乙烯四胺
桐油酸二聚体
与二乙烯三胺


色泽
棕红色
黏流体
棕红色
黏流体
棕色
黏流体
棕色
黏流体
浅黄色
液体
密度g/cm3
0.96~0.98
0.96~0.98
0.970~0.990
0.7~0.99
胺值
215±15
305±15
200±20
200±20
300
黏度(40℃)
mPa·s
20000~80000
600~2000
15000~50000


低分子聚酰胺分子中有各种极性基团,如仲胺基.伯胺基以及酰胺基,硬化后的环氧树脂对各种金属、木材、玻璃和塑料有良好的粘附力.聚酰胺分子中有较长的脂肪碳链,起到内部增塑作用,因此硬化后的环氧树脂有一定的韧性.低分子聚酰胺与环氧树脂的配合比例一般从40/60到60/40.在此范围内,可获得较好的胶接强度,热稳定性和耐化学试剂作用.一般聚酰胺用量多,体系柔性及抗冲击性能好;环氧树脂比例高,高温下粘结强度比较高,耐化学试剂作用好.
低分子聚酰胺作硬化剂特点是:无毒或低毒,挥发性小,易与环氧树脂混合,反应缓慢,一般多用作常温固化剂.
(2)酚醛树脂
酚醛树脂与环氧树脂的相互作用比较复杂, 热固性酚醛树脂中的羟甲基与环氧树脂中的羟基及环氧基起反应及酚醛树脂中的酚羟基与环氧基起开环醚化反应所以酚醛树脂能把环氧树脂从线型变成体型,环氧树脂也能把酚醛树脂从线型变成体型,彼此相辅相成,最后形成相互交联的不溶不熔的体型大分子.
4、咪唑类固化剂
咪唑类化合物是一种新型固化剂,可在较低温度下固化而得到耐热性优良的固化物,并且具有优异的力学性能.
咪唑类化合物的反应活性根据其结构不同而有所不同.一般碱性愈强,固化温度愈低,在结构上受l位取代基影响较大.
咪唑(1midaxole)是具有两个氮原子的五元环,一个氮原子构成仲胺,一个氮原子构成叔胺.所以咪唑类固化剂既有叔胺的催化作用,又有仲胺的作用.如2-乙基-4-甲基咪唑.。

相关文档
最新文档