环氧树脂的固化原理教学提纲
e51环氧树脂的固化

e51环氧树脂的固化摘要:一、环氧树脂固化的概念与原理1.环氧树脂简介2.固化剂的作用3.固化反应的基本原理二、e51 环氧树脂的特性与应用1.e51 环氧树脂的性能特点2.主要应用领域三、e51 环氧树脂固化方法1.热固化2.冷固化3.紫外光固化四、固化过程中的影响因素1.固化剂的选择2.固化温度和时间3.混合比例五、e51 环氧树脂固化效果的检测与评估1.固化程度的判断2.固化质量的评估3.固化效果的检测方法正文:e51 环氧树脂是一种广泛应用于各个领域的环氧树脂产品,其固化过程对于最终产品的性能和质量具有重要影响。
本文将详细介绍e51 环氧树脂的固化原理、特性与应用,固化方法以及固化过程中的影响因素和效果的检测与评估。
环氧树脂固化是指在环氧树脂中加入固化剂,通过化学反应使环氧树脂由液态转变为固态的过程。
固化剂通常是一种胺类或酸酐类物质,它们与环氧树脂发生反应,形成三维交联结构,从而使环氧树脂固化。
e51 环氧树脂具有优异的物理和化学性能,如高强度、高韧性、耐磨、耐腐蚀等。
因此,在许多领域都有广泛应用,如涂料、胶粘剂、复合材料等。
e51 环氧树脂的固化方法有热固化、冷固化和紫外光固化。
热固化是通过提高温度来加速固化反应,冷固化是在室温下进行固化,紫外光固化则是通过紫外线照射使环氧树脂固化。
不同的固化方法对固化效果和固化速度有一定影响。
在固化过程中,固化剂的选择、固化温度和时间、混合比例等因素都会影响固化效果。
选择合适的固化剂和适当的固化条件,可以确保e51 环氧树脂的固化程度和固化质量。
对于固化效果的检测与评估,可以通过观察固化程度、评估固化质量,以及使用专业的检测方法进行。
例如,可以通过测定固化物的硬度、强度、韧性等指标来评估固化效果。
环氧树脂的固化.

O
CH2
O
O
C
O O—
氧阴离子与酸酐反应生成酯化结构
C
O
+
—
R2HN:BF3
O
O +
+
H + R2N:BF3
O
—
H + R2N:BF3
O
C
OH
—
O O
C OH
—
C BF3: NR2
O
OH
—
+ ROH
C
+
C BF3: NR2
C OR
+ R2N:BF3 + H
O
O
生成酯化结构 催化剂直接影响两个竞争反应,即酯化反应与醚化 反应。故有无催化剂,酸酐固化EP的性能有差异,添 加催化剂的性能要好。
课前回顾
1、海因环氧树脂的结构式与主要性能特点? 2、二氧化双环戊二烯基醚环氧树脂的特点? 3、TDE-85环氧树脂的结构式与性能特点? 4、脂肪族环氧树脂的特点及用途? 5. 有机硅环氧树脂的特点? 6、环氧树脂的固化剂可分为哪两类,分别按什么反 应历程进行固化?特点是什么?两类固化剂的代表 有哪些? 7、脂肪族多元胺固化剂的催化剂有哪些?活性顺序 是怎样的? 8、常用的脂肪族多元胺有哪些?多乙烯多胺的结构 通式?它们的活性与挥发性相对大小顺序? 9、脂肪族多元胺类环氧固化剂的主要特点有哪些?
催化剂(或促进剂):质子给予体 促进顺序:酸≥酚≥水>醇(催化效应近似正 比于酸度)
CH2 CH O HX R + CH2 CH HX O R
如被酸促进(先形成氢键)
R" R" NH R' HX + CH2 CH O R R'
环氧树脂固化原理

环氧树脂固化原理
环氧树脂固化原理是指将环氧树脂与固化剂进行反应,形成一种坚硬、耐热、耐化学腐蚀等性能优良的三维网络结构。
环氧树脂的固化是一个聚合反应过程,其机理可以分为两个主要步骤:环氧基团的开环和固化剂与开环产物的反应。
首先,环氧基团的开环是环氧树脂固化的关键步骤。
环氧树脂分子中含有活性的环氧基团(C-O-C),在固化剂的作用下,
环氧基团会发生开环反应,使树脂分子链中的环氧基团打开,并形成一种缺氧的活性端基。
这个开环反应的过程可以通过热激活或者添加催化剂来促进。
接下来,环氧树脂的开环产物与固化剂发生反应,形成强固的三维网络结构。
常用的固化剂有多种,如胺类、酸类、酸酐类等。
这些固化剂中的官能团与环氧开环产物中的活性端基进行反应,形成共价键,将树脂分子彼此连接起来。
这个反应过程称为缩聚反应,通过缩聚反应,环氧树脂分子之间形成交联结构,使树脂呈现出固态的特性。
总的来说,环氧树脂固化原理可以归纳为环氧基团的开环和开环产物与固化剂的反应两个步骤。
通过这两个步骤的相互作用,环氧树脂能够形成坚固的结构,具有良好的物理、化学性能,被广泛应用于各个领域中。
(完整版)环氧树脂固化机理

环氧树脂与酸酥类固化剂在有无催化剂的条件下的固化机理1.酸酊固化环氧树脂体系比胺固化的体系具有更加优异的机械物理性能及高温稳定性能。
所以近年来它的应用十分广泛,但需要较高的固化温度和较长固化时间。
酸酊和环氧树脂的反应机理与其有无促进剂存在而有所不同,具体的情况如下: (1)无促进剂存在时首先由环氧树脂的羟基与酸酊反应生成含酯链的陵酸:Q β-C.√vvw'R <+H/:—CH --------------------------- to .C^O —CHz --CH ------------ √w√v、。
/1CH当然,仲羟基也可与另一个酸醉反应,重更以上步骤,最终引起环氧树脂的固化。
(2)促进剂存在时在有路易斯碱(如叔胺)作为促进剂时,首先是叔胺进攻酸醉生成竣酸盐阴离子:C√wwCH2*~~CH -----0—CHj —CH^—>vvwI OH生成的仲羟基再与另一个环氧基反应:然后按酸和环氧树脂的环氧基开环加成反应生成仲羟基:C-o-RCf、0+R 3N -一C/ O然后峻酸盐阴离子与环氧基反应生成氧阴离子:C-N +R 3 R ∖+HiC —CH --------- 'λλzw -------------)C-O-\/ 0『+C-NRjR∖C —0—CH 2—CH ——√ww、综上所述,不管是无促进剂的加成聚合反应还是有促进剂的阴离子聚合反应,酸酊固化机理可以概括为:开环一酯化一酸化不断反复进行,直到环氧树脂交联固化。
/C —NR 3 -C-O-C一N +R 3C ——0——CH2—CH ——/ww氧阴离子与另一个酸醉反应生成瘦酸盐阴离子:。
环氧树脂固化反应的原理

环氧树脂固化反应得原理环氧树脂固化反应得原理,目前尚不完善,根据所用固化剂得不同,一般认为它通过四种途径得反应而成为热固性产物。
(1)环氧基之间开环连接; (2)环氧基与带有活性氢官能团得固化剂反应而交联; (3)环氧基与固化剂中芳香得或脂肪得羟基得反应而交联; (4)环氧基或羟基与固化剂所带基团发生反应而交联。
不同种类得固化剂,在硬化过程中其作用也不同、有得固化剂在硬化过程中,不参加到本分子中去,仅起催化作用,如无机物。
具有单反应基团得胺、醇、酚等,这种固化剂,叫催化剂、多数固化剂,在硬化过程中参与大分子之间得反应,构成硬化树脂得一部分,如含多反应基团得多元胺、多元醇、多元酸酐等化合物。
1、胺类固化剂胺类固化剂—般使用比较普遍,其硬化速度快,而且黏度也低,使用方便,但产品耐热性不高,介电性能差,并且固化剂本身得毒性较大,易升华、胺类固化剂包括;脂肪族胺类、芳香族胺类与胺得衍生物等。
胺本身可以瞧作就是氮得烷基取代物,氨分子(NH3)中三个氢可逐步地被烷基取代,生成三种不同得胺。
即:伯胺(RNH2)、仲胺(R2NH))与叔胺(R3N)、由于胺得种类不同,其硬化作用也不同: (1)伯胺与仲胺得作用含有活泼氢原子得伯胺及仲胺与环氧树脂中得环氧基作用、使环氧基开环生成羟基,生成得羟基再与环氧基起醚化反应,最后生成网状或体型聚合物。
(2)叔胺得作用与伯胺、仲胺不同,它只进行催化开环,环氧树脂得环氧基被叔胺开环变成阴离子,这个阴离子又能打开一个新得环氧基环,继续反应下去,最后生成网状或体型结构得大分子。
2、酸酐类固化剂酸酐就是由羧酸(分子结构中含有羧基—COOH)与脱水剂一起加热时,两个羧基除去一个水分子而生成得化合物。
酸酐类固化剂硬化反应速度较缓慢,硬化过程中放热少,使用寿命长,毒性较小,硬化后树脂得性能(如力学强度、耐磨性、耐热性及电性能等)均较好、但由于硬化后含有酯键,容易受碱得侵蚀并且有吸水性,另外除少数在室温下就是液体外。
环氧树脂固化剂 原理

环氧树脂固化剂原理一、交联反应环氧树脂的固化过程是一种典型的交联反应,通过这种反应,环氧树脂由线型结构转变为网状结构。
固化过程中,环氧树脂中的环氧基与固化剂中的活泼氢发生反应,生成羟基。
这些羟基进一步相互反应,形成三维网状结构。
这种网状结构使得环氧树脂变得坚硬和耐热,从而实现了从液态到固态的转变。
二、固化剂种类环氧树脂的固化剂种类繁多,根据其性质和应用需求有多种分类方式。
根据固化机理,可以分为胺类、酸酐类、聚合物类等。
胺类固化剂如脂肪胺、芳香胺等,反应速度快,但耐热性较差;酸酐类固化剂如邻苯二甲酸酐、顺丁烯二酸酐等,耐热性好,但反应速度较慢;聚合物类固化剂如聚酰胺、酚醛树脂等,具有良好的综合性能。
三、温度与时间环氧树脂的固化过程受温度影响较大。
在室温下,固化反应速度较慢,需要较长时间才能完全固化。
提高温度可以加快固化反应速度,缩短固化时间。
但温度过高可能导致固化过度,产生裂纹或变形。
因此,选择合适的温度和时间是实现环氧树脂良好固化的关键。
四、催化剂在环氧树脂的固化过程中,催化剂起到了加速反应的作用。
催化剂的种类和用量对固化速度和固化产物的性能都有重要影响。
常见的催化剂有酸、碱、过渡金属化合物等。
选择合适的催化剂可以提高固化速度,改善固化产物的性能。
五、填料与改性为了改善环氧树脂的力学性能、电性能和热性能等,常常需要添加填料进行改性。
填料的选择和用量应根据具体的应用需求而定。
常用的填料有硅微粉、玻璃纤维、碳纤维等。
填料的加入可以降低成本、提高耐磨性、增强刚性等。
同时,填料还可以通过表面改性来改善与环氧树脂的相容性,进一步提高复合材料的性能。
环氧树脂的固化

实验五 环氧树脂的固化化工系 毕啸天 2010011811一、实验目的1.了解高分子化学反应的基本原理及特点2.了解环氧树脂的制备及固化反应的原理、特点二、实验原理热固性树脂是一类重要的树脂材料,环氧树脂(epoxy resins )就是其中的一大品种。
含有环氧基团的低聚物,与固化剂反应形成三维网状的固化物,是这类树脂的总称,其中以双酚A 型环氧树脂产量最大,用途最广。
它是由环氧氯丙烷与双酚A 在氢氧化钠作用下聚合而成。
根据不同的原料配比,不同反应条件,可以制备不同软化点、不同分子量的环氧树脂。
其通式如下:CH 2CHCH 2OC CH 3CH 3OCH 2CHCH 2OHn C CH 3CH 3OCH 2CHCH 2O环氧树脂通常用下面几个参数表征: 1.树脂粘度2.环氧当量或环氧值3.平均分子量和分子量分布4.熔点或软化点环氧值是表征环氧树脂质量的重要指标。
它表示每100g 环氧树脂中含环氧基的摩尔数。
我国环氧树脂部颁牌号中的两位数字是该牌号树脂的平均环氧值×100,所以部颁牌号可以很简明的表示出该环氧树脂的主要特征。
环氧树脂的结构中末端的活泼的环氧基和侧羟基赋予树脂反应活性,双酚A 骨架提供强韧性和耐热性;亚甲基链赋予树脂柔韧性;羟基和醚键的高度极性,使环氧树脂分子与相邻界面产生了较强的分子间作用力。
双酚A 型环氧树脂综合性能好,因而用途广泛,商业上称作“万能胶”。
环氧树脂在未固化前呈热塑性的线性结构,通过与固化剂发生化学反应,形成网状结构的大分子,才具有使用价值。
环氧树脂固化物的性能除了取决于自身的结构特性以外,还取决于固化剂的种类。
此外固化物性能还受固化反应程度的影响。
采用的固化条件不同,交联密度也会不同,所得固化物的性能也各异。
环氧树脂的固化剂种类很多,不同的固化剂,其交联反应也不同。
未固化的环氧树脂是粘性液体或脆性固体,没有实用价值,只有与固化剂进行固化生成交联网络结构才能实现最终用途。
环氧树脂的固化机理及其常用固化剂

2、反应型固化剂
可与EP分子进行加成,通过逐步聚合反应 交联成体型网状结构; 一般含有活泼氢,反应中伴随氢原子转移, 如多元伯胺、多元羧酸、多元硫
醇和多元酚。
3、催化型固化剂
环氧基按阳离子或阴离子聚合机理进行固 化,如叔胺、咪唑、三氟化硼络合物。
23、环氧树脂固化的三个阶段
液体-操作时间:树脂/固化剂混合物仍然是液体适合应用。 凝胶-进入固化:混合物开始进入固化相(也称作熟化阶段), 这时它开始凝胶
或“突变”成软凝胶物。此时只是局部固 化,新使用的环氧树脂仍然能与它 化学链接,因此该未处 理的表面仍然可以进行粘接或反应。 固体-最终固化:环氧混合物变成固体阶段,这时能砂磨 及整型。在室温下 维持若干天使它继续固化。
8、芳香族多元胺
间苯二胺
4,4-二氨基二苯基甲烷(DDM)
间苯二甲胺
4,4-二氨基二苯砜(DDS)
9、芳香族多胺特点
固化物耐热性好,耐化学性机械强度均优于脂肪族多元胺 活性低,大多加热固化 氮原子因苯环导致电子云密度降低,碱性减弱,以及苯环位阻效应 多为固体,熔点高,工艺性差 液化,低共熔点混合,多元胺与单缩水甘油醚加成
13、硫脲-多元胺缩合
硫脲与脂肪族多元胺加热至100℃缩合放出 氨气 能在极低温下(0℃以下)固化EP
14、聚酰胺化
9,11-亚油酸与9,12-亚油酸二聚反应 然后2分子与DETA(二乙烯三胺)进行酰胺化反应挥发性毒性很小 与EP相容性良好,化学计量要求不严 固化物有很好的增韧效果 放热效应低,适用期长,固化物耐热性较低,HDT为60℃左右
环氧树脂的固化机理 及其常用固化剂
1、什么是固化剂
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
环氧树脂的固化原理
环氧树脂的固化原理
环氧树脂硬化反应的原理,目前尚不完善,根据所用硬化剂的不同,一般认为它通过四种途径的反应而成为热固性产物.
(1)环氧基之间开环连接;
(2)环氧基与带有活性氢官能团的硬化剂反应而交联;
(3)环氧基与硬化剂中芳香的或脂肪的羟基的反应而交联;
(4)环氧基或羟基与硬化剂所带基团发生反应而交联.
不同种类的硬化剂,在硬化过程中其作用也不同.有的硬化剂在硬化过程中,不参加到本分子中去,仅起催化作用,如无机物.具有单反应基团的胺、醇、酚等,这种硬化剂,叫催化剂.多数硬化剂,在硬化过程中参与大分子之间的反应,构成硬化树脂的一部分,如含多反应基团的多元胺、多元醇、多元酸酐等化合物.
1、胺类硬化剂
胺类硬化剂—般使用比较普遍,其硬化速度快,而且黏度也低,使用方便,但产品耐热性不高,介电性能差,并且硬化剂本身的毒性较大,易升华.胺类硬化剂包括;脂肪族胺类、芳香族胺类和胺的衍生物等.胺本身可以看作是氮的烷基取代物,氨分子(NH3)中三个氢可逐步地被烷基取代,生成三种不同的胺.即:伯胺(RNH2)、仲胺(R2NH))和叔胺(R3N).
由于胺的种类不同,其硬化作用也不同:
(1)伯胺和仲胺的作用
含有活泼氢原子的伯胺及仲胺与环氧树脂中的环氧基作用.使环氧基开环生成羟基,生成的羟基再与环氧基起醚化反应,最后生成网状或体型聚合物.
(2)叔胺的作用与伯胺、仲胺不同,它只进行催化开环,环氧树脂的环氧基被叔胺开环变成阴离子,这个阴离子又能打开一个新的环氧基环,继续反应下去,最后生成网状或体型结构的大分子.
2、酸酐类硬化剂
酸酐是由羧酸(分子结构中含有羧基—COOH)与脱水剂一起加热时,两个羧基除去一个水分子而生成的化合物.
酸酐类硬化剂硬化反应速度较缓慢,硬化过程中放热少,使用寿命长,毒性较小,硬化后树脂的性能(如力学强度、耐磨性、耐热性及电性能等)均较好.但由于硬化后含有酯键,容易受碱的侵蚀并且有吸水性,另外除少数在室温下是液体外.绝大多数是易升华的固体,而且一般要加热固化.
酸酐和环氧树脂的硬化机理,至今尚未完全阐明,比较公认的说法如下:
酸酐先与环氧树脂中的羟基起反应而生成单酯,第二步由单酯中的羟基和环氧树脂的环氧基起开环反应而生成双酯,第三步再由其中的羟基对环氧基起开环作用,生成醚基,所以可得到既含醚键,又含有酯基的不溶不熔的体型结构.
除了上述反应之外,第一步生成的单酸中的羧基也可能与环氧树脂分子上的羟基起酯化反应,生成双酯.但这不是主要的反应.
3、树脂类硬化剂
含有硬化基团的一NH一,一CH2OH,一SH,一COOH,一OH等的线型合成树脂低聚物,也可作为环氧树脂的硬化剂.如低分子聚酰胺.酚醛树脂,苯胺甲醛树脂,三聚氰胺甲醛树脂,糠醛树脂,硫树脂,聚酯等.它们分别能对环氧树脂硬化物的耐热性,耐化学性,抗冲击性,介电性,耐水性起到改善作用.常用的是低分子聚酰胺和酚醛树脂.
(1)低分子聚酰胺不同于尼龙型的聚酰胺.它是亚油酸二聚体或是桐油酸二聚体与脂肪族多元胺,如乙二胺、二乙烯三胺反应生成的一种琥珀色粘稠状树脂.由于原材料的性质,反应组分的配比和反应条件不同,低分子聚酰胺的性质差别很大.它们的分子量在500~9000之间,
有熔点很高,胺值很低的固态树脂,也有胺值为300的液态树脂.其中胺值是低分子聚酰胺活性的描述,胺值高的活性大,与环氧树脂反应速度快,但可使用期短,胺值低的活性小,与环氧树脂反应速度慢,但可使用期长,表1列举了几种低分子聚酰胺的牌号及性能.
表1 低分子聚酰胺牌号及性能举例
牌号
200
300
400
650
651
原料
亚油酸二聚体
与三乙烯四胺
亚油酸二聚体
与三乙烯四胺
桐油酸二聚体
与二乙烯三胺
—
—
色泽
棕红色
黏流体
棕红色
黏流体
棕色
黏流体
棕色
黏流体
浅黄色
液体
密度g/cm3
0.96~0.98
0.96~0.98
0.970~0.990
0.7~0.99
胺值
215±15
305±15
200±20
200±20
300
黏度(40℃)
mPa·s
20000~80000
600~2000
15000~50000
—
—
低分子聚酰胺分子中有各种极性基团,如仲胺基.伯胺基以及酰胺基,硬化后的环氧树脂对各种金属、木材、玻璃和塑料有良好的粘附力.聚酰胺分子中有较长的脂肪碳链,起到内部增塑作用,因此硬化后的环氧树脂有一定的韧性.低分子聚酰胺与环氧树脂的配合比例一般从40/60到60/40.在此范围内,可获得较好的胶接强度,热稳定性和耐化学试剂作用.一般聚酰胺用量多,体系柔性及抗冲击性能好;环氧树脂比例高,高温下粘结强度比较高,耐化学试剂作用好.
低分子聚酰胺作硬化剂特点是:无毒或低毒,挥发性小,易与环氧树脂混合,反应缓慢,一般多用作常温固化剂.
(2)酚醛树脂
酚醛树脂与环氧树脂的相互作用比较复杂, 热固性酚醛树脂中的羟甲基与环氧树脂中的羟基及环氧基起反应及酚醛树脂中的酚羟基与环氧基起开环醚化反应所以酚醛树脂能把环氧树脂从线型变成体型,环氧树脂也能把酚醛树脂从线型变成体型,彼此相辅相成,最后形成相互交联的不溶不熔的体型大分子.
4、咪唑类固化剂
咪唑类化合物是一种新型固化剂,可在较低温度下固化而得到耐热性优良的固化物,并且具有优异的力学性能.
咪唑类化合物的反应活性根据其结构不同而有所不同.一般碱性愈强,固化温度愈低,在结构上受l位取代基影响较大.
咪唑(1midaxole)是具有两个氮原子的五元环,一个氮原子构成仲胺,一个氮原子构成叔胺.所以咪唑类固化剂既有叔胺的催化作用,又有仲胺的作用.如2-乙基-4-甲基咪唑.。