重复性和再现性不确定度

合集下载

量具测量值重复性与再现性的评定[讲解]

量具测量值重复性与再现性的评定[讲解]

量具测量值重复性与再现性的评定一、相关概念1、重复性:传统上把重复性看作“评价人内变异性”。

重复性是指由一个评价人,用同一种测量仪器,多次测量同一零件的同一特性时获得的测量变差。

它是设备本身固有的变差和性能,通常指设备变差,尽管这样容易使人误解。

但事实上,重复性是在确定的测量条件下连续试验得到的普通原因(随机变差)变差。

当测量环境固定和已定义时,即确定了-固定的零件、仪器、标准、方法、操作者、环境和假设条件时,对于重复性最佳的术语是系统内部变差。

除了设备内部变差以外,重复性也包括在特定测量误差模型下任何情况下的内部变差。

2、再现性:传统上把再现性看作“评价人之间”的变异。

再现性通常定义为由不同的评价人,采用相同的测量仪器,测量同一零件的同一特性时测量平均值的变差。

手动仪器受操作者技术影响常常是实际情况,然而,在测量过程(即自动操作系统)中操作者就不是主要的变差源了。

由于这个原因,为此,再现性被看作是测量系统之间或测量条件之间的平均变差。

二、数据来源本案例数据节选自深圳市佳宝隆科技有限公司《重复性与再现性分析报告》,为避免重复,笔者采取了其中的前两次测定,结果如下:操作者测量序号 1 2 3 4 5 6 7 8 9 10A 1 31.99 31.98 31.98 31.99 31.99 31.98 31.99 31.98 31.99 31.992 32.00 31.99 31.99 32.00 31.98 31.99 32.00 31.99 31.99 32.00B 1 32.00 31.99 31.99 31.99 31.99 31.98 31.99 31.98 31.99 31.992 31.99 31.99 31.99 32.00 31.99 31.99 32.00 31.99 31.99 32.00C 1 31.99 31.99 31.99 31.99 31.99 31.98 31.99 31.98 31.99 31.992 32.00 31.99 31.99 32.00 31.98 31.99 32.00 31.99 31.99 32.00在该实验中,n=10,k=3,m=2。

测量系统重复性和再现性分析作业指导书

测量系统重复性和再现性分析作业指导书

测量系统重复性和再现性分析作业指导书1.目的:为了配备并使用与要求的测量能力相一致的测量仪器,通过适当的统计技术,对测量系统的五个特性进行分析,使测量结果的不确定度已知,为准确评定产品提高质量保证。

2.适用范围:适用于本公司适用的所有测量仪器的重复性和再现性的测量分析。

3.职责:3.1品质部负责确定过程所需要的测量仪器,并定期校准和检定,对使用的测量系统分析,对存在的异常情况及时采取纠正预防措施。

4.术语:4.1偏倚偏倚是测量结果的观测平均值与基准值(标准值)的差值。

4.2稳定性(飘移)。

稳定性事测量系统在某持续时间内侧量同一基准或零件的单一特性时获得的测量值总变差。

4.3线性线性是在量具预期的工作量程内,偏倚的变差。

4.4重复性重复性是由一个评价人,采用一种测量仪器,多次测量同一零件的同一特性获得的测量值的变差。

4.5再现性再现性是由不同的评价人,采用相同的测量仪器,测量同一零件的同一特性的测量平均值的变差。

5.测量系统分析作业准备:5.1确定测量过程需要使用的测量仪器以及测量系统分析的范围。

a)控制计划有要求的工序所使用测量仪器:b)有SPC控制要求的过程,特别是有关键/特殊特性的产品及过程:c)新产品、新过程:d)新增的测量仪器:e)已经作过测量系统分析,重新修理后:5.2公司按GB/T10012标准要求,建立公司计量管理体系,确保建立的测量系统的可靠性。

5.3品质部对测量仪器按规定的权限进行校准和调整,除使测量仪器的偏倚、稳定性、线性等符合规定要求之外,还应确认以下条件:a)确定量具检验的零件质量特性为技术型数据还是计量性数据。

针对批量生产(一般≥300件)的零件,其统计特性为计量型数据的采用R&R分析,针对计数型数据采用小样法分析。

b)确定测量系统中的变差只是由变差的普通原因引起的,而不是特殊原因引起的(可采取SPC技术)。

5.4操作步骤和方法5.4.1确定产品的特殊特性和关键特性和质量特性值和对应的测量仪器。

如何提高测量结果的可重复性和再现性

如何提高测量结果的可重复性和再现性

如何提高测量结果的可重复性和再现性在科学研究、工程实践以及日常生活的各种测量活动中,获得准确、可靠且具有一致性的测量结果至关重要。

测量结果的可重复性和再现性是评估测量质量的关键指标。

可重复性指的是在相同条件下,由同一测量者对同一被测量进行多次测量所得结果的一致性;再现性则是指在不同条件下(如不同测量者、不同测量设备、不同测量时间等)对同一被测量进行测量所得结果的一致性。

提高测量结果的可重复性和再现性对于保证数据质量、做出正确的决策以及推动技术进步都具有重要意义。

下面我们将探讨一些有效的方法来提高测量结果的可重复性和再现性。

一、测量设备的校准和维护测量设备的准确性和稳定性是获得可靠测量结果的基础。

定期对测量设备进行校准,使其与已知的标准值进行比对和调整,能够确保设备在测量过程中提供准确的读数。

校准应按照规定的周期和标准程序进行,并且要使用可追溯至国家标准的校准标准。

同时,对测量设备进行良好的维护也是必不可少的。

保持设备的清洁、干燥,防止受到撞击和过度磨损,定期检查设备的零部件是否正常工作,及时更换老化或损坏的部件,都有助于延长设备的使用寿命和保持其测量性能。

二、测量环境的控制测量环境的变化可能会对测量结果产生显著影响。

例如,温度、湿度、气压、电磁场等环境因素都可能导致测量误差。

因此,要尽可能地控制测量环境,使其保持稳定和一致。

在进行精密测量时,可以使用恒温恒湿箱、电磁屏蔽室等设备来创造稳定的测量环境。

对于一些对环境因素较为敏感的测量,还需要在测量过程中实时监测环境参数,并对测量结果进行相应的修正。

三、测量方法的标准化采用标准化的测量方法是提高测量结果可重复性和再现性的重要手段。

标准化的测量方法通常经过了广泛的验证和实践,能够有效地减少测量过程中的不确定性和误差。

在制定测量方法时,应详细描述测量的步骤、操作要点、数据处理方法等,确保不同的测量者在遵循该方法时能够得到一致的结果。

同时,测量方法应根据技术的发展和实际应用的需求不断进行更新和完善。

重复性和再现性

重复性和再现性

量具重复性‎与再现性分‎析:GR&R 是用来检定‎检测产品的‎人员是否具‎备识别产品‎特性的能力‎,正常的产品‎是否会误判‎,不正常的产‎品是否会漏‎判,也就是检定‎“检测系统是‎否正常”的一个工具‎。

GR&R是研究重‎复性和再现‎性的,是计量型分‎析。

1.简称:重复性(EV)(equip‎m ent varia‎n ce)设备偏差、(再现性AV‎)(appri‎s er varia‎n ce)人員偏差、产品偏差(PV)(produ‎c ts varia‎n ce),2.重复性(Repea‎t abil‎i ty):重复性是用‎本方法在正‎常和正确操‎作情况下,由同一操作‎人员,在同一实验‎室内,使用同一仪‎器,并在短期内‎,对相同试样‎所作多个单‎次测试结果‎,在95%概率水平两‎个独立测试‎结果的最大‎差值。

在中国仪器‎中当测量条‎件是在以下‎4个状况下‎实验时,相同的待测‎量的测量结‎果有一致性‎的称为重复‎性,4个条件如‎下:a、相同的测量‎环境b、相同的测量‎仪器及在相‎同的条件下‎使用c、相同的位置‎d、在短时间内‎的重复3.再现性(Repro‎d ucib‎i lity‎)是指两个不‎同的实验室‎对同一物料‎进行测定两‎个分析结果‎接近的程度‎.再现性的值‎总是大于或‎等于重复性‎,因为再现性‎的测量结果‎把重复性引‎起的偏差考‎虑进去了。

在很多实际‎工作中,最重要的再‎现性指由不‎同操作者、采用相同的‎方法、仪器,在相同的环‎境条件下,检测同一被‎测物的重复‎检测结果之‎间的一致性‎,即检测条件‎的改变只限‎于操作者的‎改变。

也就是说别‎人用你说的‎方法和仪器‎也能做出同‎样的结果来‎,这就是试验‎的再现性。

当然,这样的试验‎就叫做再现‎性实验。

4.测量结果的‎重复性:是指“在相同测量‎条件下,对同一被测‎量进行连续‎多次测量所‎得结果之间‎的一致性”。

上述定义中‎的“一致性”是定量的,可以用重复‎性条件下对‎同一量进行‎多次测量所‎得结果的分‎散性来表示‎。

重复性与再现性

重复性与再现性

重复性(r)与再现性(R)2009-8-28 9:33:25精密度:在确定条件下,将测试方法实施多次,求出所得结果之间的一致程度。

精密度的大小常用偏差表示。

精密度的高低还常用重复性(Repeatability)和再现性(Reproducibility)表示。

1)重复性(r)定性定义:用相同的方法,同一试验材料,在相同的条件下获得的一系列结果之间的一致程度。

相同的条件是指同一操作者,同一设备,同一实验室和短暂的时间间隔。

定量定义:一个数值,在上述条件下得到的两次实验结果之差的绝对值以某个指定的概率低于这个数值。

除非另有说明,一般指定的概率为0.95。

{重复性是用本方法在正常和正确操作情况下,由同一操作人员,在同一实验室内,使用同一仪器,并在短期内,对相同试样所作两个单次测试结果,在95%概率水平两个独立测试结果的最大差值。

}2)再现性(R)定性定义:用相同的方法,同一试验材料,在不同的条件下获得的单个结果之间的一致程度。

不同的条件指不同操作者、不同实验室、不同或相同的时间。

定量定义:一个数值,用相同的方法,同一试验材料,在上述的不同条件下得到的两次试验结果之间的绝对值以某个指定的概率低于这个数值。

除非另外指出,一般指定的概率为0.95。

{再现性是用本方法在正常和正确操作情况下,由两名操作人员,在不同实验室内,对相同试样各作单次测试结果,在95%概率水平两个独立测试结果的最大差值}三个表示精密度的概念,在国外的文献中常见:1. 平行性(replicability):同一实验室,分析人员、分析方法均相同,对同一样品进行的多个平行样品之间的相对标准偏差;2. 重复性(repeatability):同一实验室,分析人员用相同的分析法在短时间内对同一样品重复测定结果之间的相对标准偏差;3. 再现性(reproducibility):不同实验室的不同分析人员用相同分析对同一被测对象测定结果之间的相对标准偏差。

纯干货:【MSA】重复性(Repeatability)和再现性(Reproducibility)

纯干货:【MSA】重复性(Repeatability)和再现性(Reproducibility)

纯干货:【MSA】重复性(Repeatability)和再现性(Reproducibility)我们质量人通常所说的测量系统分析【MSA】分为计数型和计量型。

计量型又包含:重复性&再现性、线性和偏倚。

前几日介绍了偏倚:纯干货:【MSA】偏倚及确定偏倚的方法,有质量朋友在后台留言请求介绍一下重复性&再现性,今天满足他们。

重复性(Repeatability)传统上将重复性称为“评价者内部”的变差。

重复性是用一个评价人使用相同的测量仪器对同一零件上的同一特性,进行多次测量所得到的测量变差;它是设备本身的固有变差或能力。

重复性通常被称为设备变(equipmentvariation,EV),但这是一种误解,事实上,重复性是在指定的测量条件下连续测量的普通原因(随机误差)的变差。

重复性定义的最佳描述为:当测量条件已被确定和定义——以确定的零件、仪器、标准、方法、操作者、环境和假设之下,系统内部的变差。

除了设备内部的变差之外,重复性还包括在误差模型中的任何条件下的内部变差。

造成重复性的可能原因包括:●零件内部(抽样样本):形状、位置、表面光度、锥度、样本的一致性●仪器内部:维修、磨损、设备或夹具的失效、品质或保养不好●标准内部:品质、等级、磨损●方法内部:作业准备、技巧、归零、固定、夹持、点密度的变差。

●评价者内部:技巧、位置、缺乏经验、操作技能或培训、意识、疲劳●环境内部:对温度、湿度、振动、清洁的小幅度波动●错误的假设——稳定,适当的操作●缺乏稳健的仪器设计或方法,一致性不好●量具误用●失真(量具或零件)、缺乏坚固性●应用——零件数量、位置、观测误差(易读性、视差)重复性可以理解为生产过程中的生产线的稳定性。

衡量测量系统是否靠谱。

再现性(Reproducibility)传统上将再现性称为“评价者之间”的变差。

通常将再现性定义为用不同评价人使用相同的测量仪器对同一产品上的同一特性,进行测量所得的平均值的变差。

重复性和再现性

重复性和再现性

量具重复性与再现性分析:GR&R 是用来检定检测产品的人员是否具备识别产品特性的能力,正常的产品是否会误判,不正常的产品是否会漏判,也就是检定“检测系统是否正常”的一个工具。

GR&R是研究重复性和再现性的,是计量型分析。

1.简称:重复性(EV)(equipment variance)设备偏差、(再现性AV)(appriser variance)人員偏差、产品偏差(PV)(products variance),2.重复性(Repeatability):重复性是用本方法在正常和正确操作情况下,由同一操作人员,在同一实验室内,使用同一仪器,并在短期内,对相同试样所作多个单次测试结果,在95%概率水平两个独立测试结果的最大差值。

在中国仪器中当测量条件是在以下4个状况下实验时,相同的待测量的测量结果有一致性的称为重复性,4个条件如下:a、相同的测量环境b、相同的测量仪器及在相同的条件下使用c、相同的位置d、在短时间内的重复3.再现性(Reproducibility)是指两个不同的实验室对同一物料进行测定两个分析结果接近的程度.再现性的值总是大于或等于重复性,因为再现性的测量结果把重复性引起的偏差考虑进去了。

在很多实际工作中,最重要的再现性指由不同操作者、采用相同的方法、仪器,在相同的环境条件下,检测同一被测物的重复检测结果之间的一致性,即检测条件的改变只限于操作者的改变。

也就是说别人用你说的方法和仪器也能做出同样的结果来,这就是试验的再现性。

当然,这样的试验就叫做再现性实验。

4.测量结果的重复性:是指“在相同测量条件下,对同一被测量进行连续多次测量所得结果之间的一致性”。

上述定义中的“一致性”是定量的,可以用重复性条件下对同一量进行多次测量所得结果的分散性来表示。

而表示测量结果分散性的量,最为常用的是实验标准。

重复性条件。

质言之,就是在尽量相同的条件下,包括程序、人员、仪器、环境等,以及尽量短的时间间隔内完成重复测量任务。

化学分析中测量不确定度的评定方法概述

化学分析中测量不确定度的评定方法概述

化学分析中测量不确定度的评定方法概述化学分析是检验检疫工作中使用频率最高的实验方法之一。

对化学分析中测量不确定度的评定已进行过广泛的论述。

这里,用较为系统的观点对化学分析中测量不确定度评定的一般方法进行讨论,以便为实际工作提供参考。

在总的范围内,化学分析是相对于物理测量等其他测量方法而言的。

而在测量的化学方法中,化学分析是相对于仪器分析而言的,这里所涉及的化学分析是指后一种情况。

它包括了很多经典的分析方法,如重量法、容量法。

同时,为了扩展化学分析方法的分析范围和提高分析水平,可能还包括了某些复杂的样品处理过程等方面。

在不确定度的评定中,化学分析中许多通用的要素的处理方法可以是一致的,本文大体归纳了这些要素,并将它们作为测量不确定度的分量分别考察,探讨各分量不确定度的评定方法及这些分量之间的相互关系。

1.化学分析中的通用分量及其不确定度的评定方法1.1 化学分析中的测量方法和被测量重量法和容量法是化学分析中的两类基本方法,根据被测量的不同,会采用不同的分析原理或条件,如容量法中有滴定分析、气体容量分析等方法。

但是,化学分析方法具有共同的特点,其被测量都是样品中某特定元素的含量或纯度。

对于含量分析来说,其最终目的是得到该元素的含量值,一般采用直接测量和计算的结果;而纯度是将相关或规定的元素含量扣除后的结果。

无论最终结果使用那种单位或形式表示,都可以表示为式1的形式:()n 21X ,X ,X f Y =, (1)其中,X i 为对被测量Y 有影响的输入量。

这些输入量可以是直接测量得到的,也可以是从其他测量结果导入的。

1.2 化学分析中涉及的通用分量及其与被测量的关系大多数情况下,化学分析方法中采用手工方法,对化学分析结果的不确定度产生影响的因素很多,大体可以分为质量、体积、样品因素和非样品因素等。

质量因素和样品因素存在于所有化学分析中,而容量分析中必然涉及体积因素。

由于测量原理的不完善及测量过程的不同,在化学分析中还可能存在非样品因素。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

量具重复性与再现性分析:GR&R 是用来检定检测产品的人员是否具备识别产品特性的能力,正常的产品是否会误判,不正常的产品是否会漏判,也就是检定“检测系统是否正常”的一个工具。

GR&R是研究重复性和再现性的,是计量型分析。

1.简称:重复性(EV)(equipment variance)设备偏差、(再现性AV)(appriser variance)人員偏差、产品偏差(PV)(products variance),2.重复性(Repeatability):重复性是用本方法在正常和正确操作情况下,由同一操作人员,在同一实验室内,使用同一仪器,并在短期内,对相同试样所作多个单次测试结果,在95%概率水平两个独立测试结果的最大差值。

在中国仪器中当测量条件是在以下4个状况下实验时,相同的待测量的测量结果有一致性的称为重复性,4个条件如下:a、相同的测量环境b、相同的测量仪器及在相同的条件下使用c、相同的位置d、在短时间内的重复3.再现性(Reproducibility)是指两个不同的实验室对同一物料进行测定两个分析结果接近的程度.再现性的值总是大于或等于重复性,因为再现性的测量结果把重复性引起的偏差考虑进去了。

在很多实际工作中,最重要的再现性指由不同操作者、采用相同的方法、仪器,在相同的环境条件下,检测同一被测物的重复检测结果之间的一致性,即检测条件的改变只限于操作者的改变。

也就是说别人用你说的方法和仪器也能做出同样的结果来,这就是试验的再现性。

当然,这样的试验就叫做再现性实验。

4.测量结果的重复性:是指“在相同测量条件下,对同一被测量进行连续多次测量所得结果之间的一致性”。

上述定义中的“一致性”是定量的,可以用重复性条件下对同一量进行多次测量所得结果的分散性来表示。

而表示测量结果分散性的量,最为常用的是实验标准。

重复性条件。

质言之,就是在尽量相同的条件下,包括程序、人员、仪器、环境等,以及尽量短的时间间隔内完成重复测量任务。

这里的“短时间”可理解为:保证前四个条件相同或保持不变的时间段,它主要取决于人员的素质、仪器的性能以及对各种影响量的监控。

从数理统计和数据处理的角度来看,在这段时间内测量应处于统计控制状态,即符合统计规律的随机状态。

通俗地说,它是测量处于正常状态的时间间隔。

重复观测中的变动性,正是由于各种影响量不能完全保持恒定而引起的。

重复性标准差有时也称为组内标准差。

5.活动介绍:1)每个作业员检测二次,每次检验产品50PCS,50PCS中混有不合格品也有合格品,检验员需在同一次内发现该次的不良品,不良品数不定。

不良项目在日常不良中可以发现的,为常见的不良现象。

2)评价员会先前对合格的产品混入不良品,且此不良品会作好相应标识,作业员在检查过程中在正常检验的情况下需发现该不良,且不良项目与评价员为一致。

示为达标,合格员。

若未能发现相应的不良品,或发现的不良项目不能对应,或误判。

需将检验员重新作合适相应的培训。

3)此项测试为个人评价,作业员需独立完成,外部人员不得参与。

6.量具重复性和再现性(GRR)的可接受准则是:a) 低于10%的误差—测量系统可以被接受;b) 10%至30%的误差—根据应用的重要性、量具成本、维修的费用等确定是否是可接受的;c) 大于30%的误差—测量系统需要改进;d) 过程能力被测量系统区分开的分级数(ndc)应该大于或等于5(取整数).不确定度测量不确定度:是目前对于误差分析中的最新理解和阐述,以前用测量误差来表述,但两者具有完全不同的含义.现在更准确地定义为测量不确定度.是指测量获得的结果的不确定的程度.不确定度的计算:不确定度的值即为各项值距离平均值的最大距离。

例:有一列数。

A1,A2, ... , An, 他们的平均值为A,则不确定度为:max{ |A - Ai|, i = 1, 2, ..., n}不确定度的定义:表征合理地赋予被测量之值的分散性,与测量结果相联系的参数不确定度不确定度的含义是指由于测量误差的存在,对被测量值的不能肯定的程度。

反过来,也表明该结果的可信赖程度。

它是测量结果质量的指标。

不确定度愈小,所述结果与被测量的真值愈接近,质量越高,水平越高,其使用价值越高;不确定度越大,测量结果的质量越低,水平越低,其使用价值也越低。

在报告物理量测量的结果时,必须给出相应的不确定度,一方面便于使用它的人评定其可靠性,另一方面也增强了测量结果之间的可比性。

统计学家与测量学家一直在寻找合适的术语正确表达测量结果的可靠性。

譬如以前常用的偶然误差,由于“偶然”二字表达不确切,已被随机误差所代替,近年来,人们感到“误差”二字的词义较为模糊,如讲“误差是±1%”,使人感到含义不清晰。

但是若讲“不确定度是±1%”则含义是明确的。

因而用随机不确定度和系统不确定度分别取代了随机误差和系统误差。

测量不确定度与测量误差是完全不同的概念,它不是误差,也不等于误差。

1.测量不确定度和标准不确定度表征合理的赋予被测量之值的分散性,与测量结果相联系的参数,称为测量不确定度。

这是JJF 1001—1998《通用计量术语及定义》中,对其作出的最新定义。

测量不确定度是独立而又密切与测量结果相联系的、表明测量结果分散性的一个参数。

在测量的完整的表示中,应该包括测量不确定度。

测量不确定度用标准偏差表示时称为标准不确定度,如用说明了置信水准的区间的半宽度的表示方法则成为扩展不确定度。

2.不确定度的A类、B类评定及合成由于测量结果的不确定度往往由多种原因引起的,对每个不确定度来源评定的标准偏差,称为标准不确定度分量,用符号表示。

(1)不确定度的A类评定用对观测列进行统计分析的方法来评定标准不确定度,称为不确定度A类评定;所得到的相应标准不确定度称为A类不确定度分量,用符号表示。

它是用实验标准偏差来表征。

(2)不确定度的B类评定用不同于对观测列进行统计分析的方法来评定标准不确定度,称为不确定度B类评定;所得到的相应标准不确定度称为B类不确定度分量,用符号表示。

它是用实验或其他信息来估计,含有主观鉴别的成分。

对于某一项不确定度分量究竟用A类方法评定,还是用B 类方法评定,应有测量人员根据具体情况选择。

B类评定方法应用相当广泛。

(3)合成标准不确定度当测量结果是由若干个其他量的值求得时,按其他各量的方差和协方差算得的标准不确定度,称为合成标准不确定度。

它是测量结果标准偏差的估计值,用符号表示。

方差是标准偏差的平方,协方差是相关性导致的方差。

计入协方差会扩大合成标准不确定度。

合成标准不确定度仍然是标准偏差,它表征了测量结果的分散性。

所用的合成方法,常称为不确定传播率,而传播系数又被称为灵敏系数,用表示。

合成标准不确定度的自由度称为有效自由度,用表示,它表明所评定的的可靠程度。

3.扩展不确定度和包含因子(1)扩展不确定度扩展不确定度是确定测量结果区间的量,合理赋予被测量之值分布的大部分可望含于此区间。

它有时也被称为范围不确定度。

扩展不确定度是由合成标准不确定度的倍数表示的测量不确定度。

通常用符号U表示:合成不确定度与的乘积,称为总不确定度(符号为U)。

这里值一般为2,有时为3。

取决于被测量的重要性、效益和风险。

扩展不确定度是测量结果的取值区间的半宽度,可期望该区间包含了被测量之值分布的大部分。

而测量结果的取值区间在被测量值概率分布中所包含的百分数,被称为该区间的置信概率、置信水准或置信水平,用表示。

这时扩展不确定度用符号表示,它给出了区间能包含被测量的可能值的大部分(比如95%或99%)。

测量不确定度的分类,简单表示为:A类标准不确定度标准不确定度B类标准不确定度测量不确定度合成标准不确定度(k=2,3)扩展不确定度(p为置信概率)(2)包含因子包含因子是为求得扩展不确定度,对合成标准不确定度所乘之数字因子,有时也称为覆盖因子。

包含因子的取值决定了扩展不确定度的置信水平。

当=2时,p=95%;当=3时,p=99%。

相对不确定度,是指总不确定度除以标准值的百分率。

4.滴定分析标准溶液的不确定度在GB/T 602—2002 D附录B,明确了滴定分析标准溶液的不确定度的计算方法。

即:不标准滴定溶液的标定方法大体上有四种方式:(1)用工作基准试剂标定标准滴定溶液的浓度;(2)用标准滴定溶液标定标准滴定溶液的浓度;(3)将工作基准试剂溶解、定容、量取后标定标准滴定溶液的浓度;(4)用工作基准试剂直接制备的标准滴定溶液。

第一种方式包括:氢氧化钠、盐酸、硫酸、硫代硫酸钠、碘、高锰酸钾、硫酸铈、乙二胺四乙酸二钠[c(EDTA)=0.1 mol/L、0.05 mol/L]、高氯酸、硫氰酸钠、硝酸银、亚硝酸钠、氯化锌、氯化镁、氢氧化钾—乙醇共15种标准滴定溶液。

计算标准滴定溶液的浓度值c(mol/L),表示为式(3—13):(3—13)式中:——工作基准试剂的质量的准确数值,g ;——工作基准试剂的质量分数的数值,% ;——被标定溶液的体积的数值,mL ;——空白实验被标定溶液的体积的数值,mL ;——工作基准试剂的摩尔质量的数值,g/mol 。

第二种方式包括:碳酸钠、重铬酸钾、溴、溴酸钾、碘酸钾、草酸、硫酸亚铁铵、硝酸铅、氯化纳共9种标准滴定溶液。

计算标准滴定溶液的浓度值(mol/L) 表示为(3—14):(3—14)式中:——标准滴定溶液的体积的数值,mL ;——空白实验标准滴定溶液的体积的数值,mL ;——标准滴定溶液的浓度的准确数值,mol/L ;——被标定标准滴定溶液的体积的数值,mL 。

第三种方式包括:乙二胺四乙酸二钠标准滴定溶液[c(EDTA)=0.02mol/L],计算标准滴定溶液的浓度值(mol/L) 表示为(3—15):(3—15)式中:——工作基准试剂的质量的准确数值,g ;——工作基准试剂的质量分数的数值,% ;——被标定溶液的体积的数值,mL ;——空白实验被标定溶液的体积的数值,mL ;——工作基准试剂溶液的体积的数值,mL ;——量取工作基准试剂溶液的体积的数值,mL ;——工作基准试剂的摩尔质量的数值,g/mol 。

第四种方式包括:重铬酸钾、碘酸钾、氯化纳共3种标准滴定溶液。

计算标准滴定溶液的浓度值(mol/L) 表示为(3—16):(3—16)式中:——工作基准试剂的质量的准确数值,g ;——工作基准试剂的质量分数的数值,% ;——标准滴定溶液的体积的数值,mL ;——工作基准试剂的摩尔质量的数值,g/mol 。

(1)标准滴定溶液浓度平均值的扩展不确定度的计算:(3—17)式中:——包含因子(一般情况下,=2);——标准滴定溶液浓度平均值的合成标准不确定度,mol/L 。

式(3—17)中:(3—18)式中:——标准滴定溶液浓度平均值的A类标准不确定分量,mol/L ;——标准滴定溶液浓度平均值的B类合成标准不确定分量,mol/L 。

相关文档
最新文档