06第六章+相关与回归分析
第六章 相关分析与回归分析

b<0,y 有随 x 的增加而减少的趋势
●●●回归直线一定通过由观测值的平均值(x,y )所组成的点:
∵ yˆ a bx
a y bx
∴ yˆ y bx bx y b(x x)
当 xx 时, yˆ y,即回归直线通过点(x,y )
●直线回归方程配置的实例
实例:对表 6-1 的北碚大红番茄果实横径与果重进行回归分析
| r |愈接近于 1,相关愈密切 | r |愈接近于 0,相关愈不密切 0<r<1 时,为正相关 -1<r<0 时,为负相关 ●相关系数计算的实例: 实例:表 6-1 为番茄果实横径与果实重的观测值,求其相关性。
表 6-1 北碚大红番茄果实横径与果实重
果实横径(cm)
果重(g)
x
y
10.0
140
其中: r
n
[ x2 ( x)2 ][ y 2 ( y)2 ]
n
n
x、y——为两个变数的成对观测值 n——为观测值的对数(样本容量)
●●相关系数的性质:
●●●r 的符号取决于 x、y 离均差的乘积和(lxy 或 SP);符号的
性质表示两个变数之间的相关性质,即
r>0,表示正相关
r<0,表示负相关
∑y2=133071.0
n=10
a=-23.834
b=16.425
r=0.9931
结论:北碚大红番茄果实横径与果实重量的回归方程为:
yˆ 23.834 16.425 x
●回归关系的显著性测定——有 3 种方法。 ●●直线回归方程的方差分析
●●●y 的总变异的分解
SS y lyy ( y y)2 [( y yˆ) ( yˆ y)]2 ( y yˆ)2 ( yˆ y)2 2 ( y yˆ)(yˆ y) ( y yˆ)2 ( yˆ y)2 其中: 2 ( y yˆ )( yˆ y) =0
第六章相关及回归分析方式

第六章 相关与回归分析方式第一部份 习题一、单项选择题1.单位产品本钱与其产量的相关;单位产品本钱与单位产品原材料消耗量的相关 ( )。
A.前者是正相关,后者是负相关 B.前者是负相关,后者是正相关2.样本相关系数r 的取值范围( )。
∞<r <+∞≤r ≤1 C. -l <r <1 D. 0≤r ≤101y x ββ=+上,那么x 与y 之间的相关系数( )。
A.r =0B.r =1C.r =-1D.|r|=14.相关分析与回归分析,在是不是需要确信自变量和因变量的问题上( )。
A.前者无需确信,后者需要确信 B.前者需要确信,后者无需确信5.直线相关系数的绝对值接近1时,说明两变量相关关系的紧密程度是( )。
6.年劳动生产率x(千元)和工人工资y(元)之间的回归方程为y=10+70x ,这意味着年劳动生产率每提高1千元时,工人工资平均( )。
7.下面的几个式子中,错误的选项是( )。
8.以下关系中,属于正相关关系的有( )。
9.直线相关分析与直线回归分析的联系表现为( )。
10.进行相关分析,要求相关的两个变量( )。
A.都是随机的B.都不是随机的11.相关关系的要紧特点是( )。
B.某一现象的标志与另外的标志之间存在着必然的关系,但它们不是确信的关系12.相关分析是研究( )。
13.现象之间彼此依存关系的程度越低,那么相关系数( )。
01y x ββ=+中,假设10β<,那么x 与y 之间的相关系数( )。
A. r=0B. r=1C. 0<r <1D. —l <r <0 15.当相关系数r=0时,说明( )。
A.现象之间完全无关B.相关程度较小16.已知x 与y 两变量间存在线性相关关系,且210,8,7,100xy xy n σσσ===-=,那么x 与y 之间存在着( )。
17.计算估量标准误差的依据是( )。
A.因变量的数列B.因变量的总变差18.两个变量间的相关关系称为( )。
第6章 相关与回归分析习题解答

第六章 相关与回归分析思考与练习一、判断题1.产品的单位成本随着产量增加而下降,这种现象属于函数关系。
答:错。
应是相关关系。
单位成本与产量间不存在确定的数值对应关系。
2.相关系数为0表明两个变量之间不存在任何关系。
答:.错。
相关系数为零,只表明两个变量之间不存在线性关系,并不意味着两者间不存在其他类型的关系。
3.单纯依靠相关与回归分析,无法判断事物之间存在的因果关系。
答:对,因果关系的判断还有赖于实质性科学的理论分析。
4.圆的直径越大,其周长也越大,两者之间的关系属于正相关关系。
答:错。
两者是精确的函数关系。
5.总体回归函数中的回归系数是常数,样本回归函数中的回归系数的估计量是随机变量。
答:对。
6.当抽取的样本不同时,对同一总体回归模型估计的结果也有所不同。
答:对。
因为,估计量属于随机变量,抽取的样本不同,具体的观察值也不同,尽管使用的公式相同,估计的结果仍然不一样。
二、选择题1.变量之间的关系按相关程度分可分为:b 、c 、da.正相关;b. 不相关;c. 完全相关;d.不完全相关; 2.复相关系数的取值区间为:aa. 10≤≤R ;b.11≤≤-R ;c.1≤≤∞-R ;d.∞≤≤-R 1 3.修正自由度的决定系数a 、b 、da.22R R ≤; b.有时小于0 ; c. 102≤≤R ;d.比2R 更适合作为衡量回归方程拟合程度的指标 4.回归预测误差的大小与下列因素有关:a 、b 、c 、da 样本容量;b 自变量预测值与自变量样本平均数的离差c 自变量预测误差;d 随机误差项的方差三、问答题1.请举一实例说明什么是单相关和偏相关?以及它们之间的差别。
答:例如夏季冷饮店冰激凌与汽水的消费量,简单地就两者之间的相关关系进行考察,就是一种单相关,考察的结果很可能存在正相关关系,即冰激凌消费越多,汽水消费也越多。
然而,如果我们仔细观察,可以发现一般来说,消费者会在两者中选择一种消费,也就是两者之间事实上应该是负相关。
第六章相关与回归分析

• 总体相关系数ρ——根据总体数据计算的,
• 样本相关系数 r ——根据样本数据计算的。
6 - 12
统
计
相关关系的计算பைடு நூலகம்式
学
rSxy
(xx)y (y)
SxSy
(xx)2 (yy)2
或化简为
r
nx yxy
nx2x2 ny2y2
6 - 13
统
计
相关系数取值及其意义
相关图——也称为散点图。一对数据对应坐标图 上一个点,将成对的观察数据表现为坐标图 的散点而形成的图。
编制相关表、图的意义——有助于分析者判断 相关的有无、方向、形态、密切程度。
6 - 10
统
计
相关关系的图示
学
完全正线性相关
正线性相关
完全负线性相关
负线性相关
非线性相关
不相关
2. 一元线性(总体)回归方程的形式如下:
3.
E( y ) = α + b x
▪ 方程的图示是一条直线,因此也称为直线回归方程
▪ α 是回归直线在 y 轴上的截距,是当 x=0 时 y 的期 望值,是回归直线是起始值;
▪ b 是直线的斜率,表示当 x 每变动一个单位时,y
的平均变动值。
6 - 22
统
6 - 11
统
计 学
(二)相关系数和判定系数
1. 都是对变量之间关系密切程度的度量; 2. 判定系数=相关系数的平方; 3. 不同类型的相关,相关系数的计算方法也不同.
对两个变量之间线性相关程度的度量称为简单相 关系数(也称直线相关系数),常简称相关系数.
此外还有复相关系数、非线性相关系数、偏相关系 数
第6章相关分析与回归分析

(二)散点图(相关图)
用直角坐标系的横轴代表变量x ,纵轴代表变量y ,将两
个变量间相对应的变量值用坐标点的形式描绘出来,用 以表明相关点分布状况的图形。
70
根据上 65
例资料 60
绘制的
55
相关图
50
Y
2020/7/24
45 200
400
600
800
X
1000
1200
x与y关系散点图的主要类型
函数关系往往通过相关关系表现出来。把影响因变量变 动的因素全部纳入方程,这时的相关关系就有可能转化 为函数关系。 相关关系经常可以用一定的函数形式去近似地描述。
2020/7/24
(二)相关关系与因果关系
因果关系∈相关关系; 现象之间是因果关系同时是相关关系,但是相关关系不 一定是因果关系。 统计只能说明现象间有无数量上的关系,不能说明谁因 谁果。 例:有数据显示世界各国平均每人拥有电视机数x及居民 预期寿命y之间有很强的正相关,可否认为电视机很多的 国家,居民预期寿命比较长?
▪ 收入水平(y)与受教育程度(x)之间的关系
2020/7/24
相关关系的特点:yx(1)变量间关系不能用函数关系 精确表达;
(2)一个变量的取值不能由另一 个变量唯一确定;
(3)当变量 x 取某个值时,变量 y 的取值可能有几个;
(4)各观测点分布在直线附近。
2020/7/24
函数关系与相关关系的联系
线性形式,即当一个变量变动一个单位时,另一 个变量也按一个大致固定的增(减)量变动,就 称为线性相关。
非线性相关:当变量间的关系不按固定比例变
化时,就称之为非线性相关。
2020/7/24
4. 按研究变量的多少 单相关:两个变量之间的相关,称为单相关。 复相关:一个变量与两个或两个以上其他变量
相关分析与回归分析

这是一种不检验F和Tolerance,一次将全部自变量无条件地
纳入回归方程。
二强行剔除Remove一次性剔除
指定某些变量不能进入方程。这种方法通常同别的方法联合
使用,而不能首先或单独使用,因为第一次使用或单独使用
将意味着没有哪个变量进入方程。
三逐步进入Stepwise
▪ 回归分析是研究客观事物变量间的关系,它是建立在对客
观事物进行大量试验和观察的基础上,通过建立数模型寻
找不确定现象中所存在的统计规律的方法。回归分析所研
究的主要问题就是研究因变量y和自变量x之间数量变化规
律,如何利用变量X,Y的观察值样本,对回归函数进行
统计推断,包括对它进行估计及检验与它有关的假设等。
差
▪ “Plots”
该对话框用于设置要绘制的图形的参数。
“X”和“Y”框用于选择X轴和Y轴相应的变量。
左上框中各项的意义分别为:
• “DEPENDNT”因变量。
• “ZPRED”标准化预测值。
• “ZRESID”标准化残差。
• “DRESID”删除残差。
• “ADJPRED”调节预测值。
• “SRESID”声氏化残差。
利用的是非参数检验的方法。
定序变量又称为有序ordinal变量顺序变
量,它取值的大小能够表示观测对象的某种顺
序关系等级方位或大小等,也是基于“质”因
素的变量。例如,“最高历”变量的取值是:
一—小及以下二—初中三—高中中专技校四—
大专科五—大本科六—研究声以上。由小到大
的取值能够代表历由低到高。
Spearman等级相关系数为
– 四. Multinomial Logistic 多元逻辑分析。
06第六章 相关与回归分析

3 r — 只是对线性相关关系的 度量 。
2014-3-30
第六章 相关与回归分析
17
2.2 相关系数的特征及判别标准
2. 相关关系密切程度的划分 — 无直线相关; 1 r 0 . 3 2 0 . 3 r 0 . 5 — 低度相关; 3 0 . 5 r 0 . 8 — 显著相关 — 高度相关 4 r 0 . 8
2
y y
0.1017 0.00937 0.0827 0.0677 -0.0143 0.0207 -0.0373 -0.0913 -0.0763 -0.1453
y y x x y y
2
0.01034289 0.00877969 0.00651249 0.00458329 0.00020449 0.00042849 0.00139129 0.00833567 0.00582169 0.02111209
ˆ yi
x n ,y n
残差平方和
Q x1 ,y1
0
2014-3-30
y
i
ˆ yi
2
2 ˆ ˆ yi yˆ y !!! β0 β2 xi i i — 1最小的直线
x
第六章 相关与回归分析
29
3.2 一元线性回归模型的参数估计
最小二(平方)乘法:
别 自、因变量—随机变量 因变量是随机变量
2014-3-30
第六章 相关与回归分析
12
1.5 相关分析与回归分析的关系
注意:
1. 进行相关和回归分析时要坚持定性分
析和定量分析相结合的原则,在定性 分析的基础上开展定量分析。
2. 只有当变量间存在高度相关时,才进
第六章相关与回归分析

80 可支配收
60
入
18 25 45 60 62 75 88 92 99 98
40
20
0
0
20
40
60
80
可支配收入
2019/8/7
10
如图四个散点图中,适合用线性回归模型拟合其中两个变量 的是( )
A.①② B.①③ C.②③ D.③④
任务二 进行相关分析
2.1 相关关系的测定 2.2 相关系数 2.3 相关系数的特点
2.1 相关关系的测定 P189
1. 单相关系数的定义 X 、Y 的协方差
总体 相关系数:
CovX ,Y VarX VarY
样本
r
X
的标准n1差
x x Yy的 标y 准差
相关系数:
1
n
xx
2
1 n
y y
2
2019/8/7
13
2.2 相关系数 P222
120
100
80
60
300
400
500
600
700
800
2019/8/7
人均 收入
900
5
1.2 相关关系的种类 P188
分类标志
类别
相关程度 完全相关 不完全相关 不相关
相关方向 正相关 负相关
相关形式 线性相关 非线性相关
变量多少 单相关 复相关 偏相关
2019/8/7
6
1.3 相关分析和回归分析 P189 相关分析 — 用一个指标来表明现象间相
互依存关系的密切程度。
相关系数 r
r
较大 — 现象间依存关系强
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关关系:
确定 x
联系
y
一定范围
一定分布
2020/10/12
第六章 相关与回归分析
3
1.1 函数关系与相关关系
收入
xi
消费 消400费与500收入60的0 关7系 00 800
80
85
95 100
95
现85收集90了有100关消110费 115
y和 i 收109入 05 的119资 05 料1112( 50 共113200计
8
880
0.490
4 530
0.649
9
910
0.505
5 650
0.567 10 1050
0.436
2020/10/12
第六章 相关与回归分析
19
2.2 相关系数x 的 64特7元征,及y 判0.5别813标 58准.13%
x
280 320 390 530 650 670 790 880 910 1050
— 高度相关
2020/10/12
第六章 相关与回归分析
18
2.2 相关系数的特征及判别标准
【例】根据下列数据,计算变量 x 、y 的
相关系数。
序 人均收入 恩格尔系数 序 人均收入 恩格尔系数
号
x
y
号
x
y
1 280
0.683
6
670
0.602
2 320
0.675
7
790
0.544
3 370
0.662
2020/10/12
第六章 相关与回归分析
9
1.4 回归与回归分析 回归分析—在相关分析的基础上,
根据变量间的相关关系的形态,寻求 一个数学模型(数学表达式),来近 似的表达变量间的平均变化关系。
2020/10/12
第六章 相关与回归分析
10
1.4 回归与回归分析 回归分析的分类: 按照变量多少 —简单回归和复回归。 按照相关形态 —线性回归和非线性回归。
13
第六章 相关与回归分析
第二节 简单线性相关分析
2.1 相关系数的计算公式 2.2 相关系数的特征及判别标准 2.3 相关系数的检验
2.1 相关系数的计算公式
相关系r数与计ρ 算公式: X 、Y 的协方差
相总关样 系体数本:相关 系V数Caor是 vXX一,Va个 YrY统
计量。可以证明,样本相
第六章
相关与回归分析
第一节 基本概念 第二节 简单线性相关分析 第三节 一元线性回归分析
第六章 相关与回归分析
第一节 基 本 概 念
1.1 函数关系与相关关系 1.2 相关关系的种类内容 1.3 相关分析及其 1.4 回归与回归分析 1.5 相关分析与回归分析关系
1.1 函数关系与相关关系 函数关系:
3 r — 只是对线性相关关系的度量 。
2020/10/12
第六章 相关与回归分析
17
2.2 相关系数的特征及判别标准
2. 相关关系密切程度的划分
1 r 0 . 3
— 无直线相关;
2 0 . 3 r 0 . 5 — 低度相关;
3 0 . 5 r 0 . 8 — 显著相关
4 r 0 . 8
2020/10/12
第六章 相关与回归分析
11
1.5 相关分析与回归分析的关系
相关分析与回归分析联系
相关关系
回归分析
判定相关关系及密切程 建立数学模型—平均变
联度
化关系
系 回归分析的前提和基础 相关分析的深入和继续
区 变量间的关系是对等
自、因变量划分不同, 回归方程也不同
别 自、因变量—随机变量 因变量是随机变量
方向和密切程度的统计分析方法 。
基本内容:
1. 直观判断变量间是否存在相关关系及其 形态—统计图(散点图)。
2. 定量确定变量—相关系数(线性)。
2020/10/12
第六章 相关与回归分析
8
1.4 回归与回归分析 回归—在数量分析方法中“回归”
泛指变量间的一般数量关系,在相关 分析中,将反映现象间相关关系的直 线或者曲线称为回归直线或回归曲线, 将回归直线或回归曲线的方程称为回 归方程。
160
140
120
100
80
人均
60
收入
300
400
500
600
700
800
பைடு நூலகம்
900
2020/10/12
第六章 相关与回归分析
5
1.2 相关关系的种类
分类标志
类别
相关程度 完全相关 不完全相关不相关
相关方向 正相关 负相关
相关形式 线性相关 非线性相关
变量多少 单相关 复相关 偏相关
2020/10/12
125 140
35户1110家 55 庭1113) 55 并1132将 55 它115300们
155 165
分组12列 0 表14如 0 下15: 0 170 185
y i 100 110 120 130 140
2020/10/12
第六章 相关与回归分析
4
1.1 函数关系与相关关系
人均消费
200
180
第六章 相关与回归分析
6
1.3 相关分析和回归分析 相关分析 —研究具有相关关系变量的变
动方向和密切程度的统计分析方法 。
相关系数 r
r
较大 — 现象间依存关系强
较小 — 现象间依存关系弱
2020/10/12
第六章 相关与回归分析
7
1.3 相关分析及其内容
相关分析 —研究具有相关关系变量的变动
样关本系数Xr的r 标是准总差n1体相x关 Yx系 的y标数准yρ差
相关的系一 数:致估计n1 量 。x x
2
1 n
y y
2
2020/10/12
第六章 相关与回归分析
15
2.1 相关系数的计算公式
r
1 n
x
x
y
y
1
n
x x
2
1 n
y y
2
x x y y
L xy
6470
y
0.683 0.675 0.662 0.649 0.567 0.602 0.544 0.490 0.505 0.436
x x
2
y y 2
Lxx Lyy
nx yxy
n x2 x 2 n y2 y 2
2020/10/12
第六章 相关与回归分析
16
2.2 相关系数的特征及判别标准
1 1 r 1— 取值范围 ;
2 r 0 — x、y 之间存在正相关关系;
r 0 — x、y 之间存在负相关关系; r 1— x、y 完全(正、负)相关; r 0 — x、y 间不存在线性相关关系。
2020/10/12
第六章 相关与回归分析
12
1.5 相关分析与回归分析的关系
注意:
1. 进行相关和回归分析时要坚持定性分 析和定量分析相结合的原则,在定性 分析的基础上开展定量分析。
2. 只有当变量间存在高度相关时,才进 行回归分析寻求其相关的具体形式。
2020/10/12
第六章 相关与回归分析