第六章回归分析
第六章 相关分析与回归分析

b<0,y 有随 x 的增加而减少的趋势
●●●回归直线一定通过由观测值的平均值(x,y )所组成的点:
∵ yˆ a bx
a y bx
∴ yˆ y bx bx y b(x x)
当 xx 时, yˆ y,即回归直线通过点(x,y )
●直线回归方程配置的实例
实例:对表 6-1 的北碚大红番茄果实横径与果重进行回归分析
| r |愈接近于 1,相关愈密切 | r |愈接近于 0,相关愈不密切 0<r<1 时,为正相关 -1<r<0 时,为负相关 ●相关系数计算的实例: 实例:表 6-1 为番茄果实横径与果实重的观测值,求其相关性。
表 6-1 北碚大红番茄果实横径与果实重
果实横径(cm)
果重(g)
x
y
10.0
140
其中: r
n
[ x2 ( x)2 ][ y 2 ( y)2 ]
n
n
x、y——为两个变数的成对观测值 n——为观测值的对数(样本容量)
●●相关系数的性质:
●●●r 的符号取决于 x、y 离均差的乘积和(lxy 或 SP);符号的
性质表示两个变数之间的相关性质,即
r>0,表示正相关
r<0,表示负相关
∑y2=133071.0
n=10
a=-23.834
b=16.425
r=0.9931
结论:北碚大红番茄果实横径与果实重量的回归方程为:
yˆ 23.834 16.425 x
●回归关系的显著性测定——有 3 种方法。 ●●直线回归方程的方差分析
●●●y 的总变异的分解
SS y lyy ( y y)2 [( y yˆ) ( yˆ y)]2 ( y yˆ)2 ( yˆ y)2 2 ( y yˆ)(yˆ y) ( y yˆ)2 ( yˆ y)2 其中: 2 ( y yˆ )( yˆ y) =0
最新应用回归分析-第6章课后习题参考答案

第6章多重共线性的情形及其处理思考与练习参考答案6.1 试举一个产生多重共线性的经济实例。
答:例如有人建立某地区粮食产量回归模型,以粮食产量为因变量Y,化肥用量为X1,水浇地面积为X2,农业投入资金为X3。
由于农业投入资金X3与化肥用量X1,水浇地面积X2有很强的相关性,所以回归方程效果会很差。
再例如根据某行业企业数据资料拟合此行业的生产函数时,资本投入、劳动力投入、资金投入与能源供应都与企业的生产规模有关,往往出现高度相关情况,大企业二者都大,小企业都小。
6.2多重共线性对回归参数的估计有何影响?答:1、完全共线性下参数估计量不存在;2、近似共线性下OLS估计量非有效;3、参数估计量经济含义不合理;4、变量的显著性检验失去意义;5、模型的预测功能失效。
6.3 具有严重多重共线性的回归方程能不能用来做经济预测?答:虽然参数估计值方差的变大容易使区间预测的“区间”变大,使预测失去意义。
但如果利用模型去做经济预测,只要保证自变量的相关类型在未来期中一直保持不变,即使回归模型中包含严重多重共线性的变量,也可以得到较好预测结果;否则会对经济预测产生严重的影响。
6.4多重共线性的产生于样本容量的个数n、自变量的个数p有无关系?答:有关系,增加样本容量不能消除模型中的多重共线性,但能适当消除多重共线性造成的后果。
当自变量的个数p较大时,一般多重共线性容易发生,所以自变量应选择少而精。
6.5 自己找一个经济问题来建立多元线性回归模型,怎样选择变量和构造设计矩阵X才可能避免多重共线性的出现?答:请参考第三次上机实验题——机场吞吐量的多元线性回归模型,注意利用二手数据很难避免多重共线性的出现,所以一般利用逐步回归和主成分回归消除多重共线性。
如果进行自己进行试验设计如正交试验设计,并收集数据,选择向量使设计矩阵X 的列向量(即X 1,X 2, X p )不相关。
6.6对第5章习题9财政收入的数据分析多重共线性,并根据多重共线性剔除变量。
第6章 相关与回归分析习题解答

第六章 相关与回归分析思考与练习一、判断题1.产品的单位成本随着产量增加而下降,这种现象属于函数关系。
答:错。
应是相关关系。
单位成本与产量间不存在确定的数值对应关系。
2.相关系数为0表明两个变量之间不存在任何关系。
答:.错。
相关系数为零,只表明两个变量之间不存在线性关系,并不意味着两者间不存在其他类型的关系。
3.单纯依靠相关与回归分析,无法判断事物之间存在的因果关系。
答:对,因果关系的判断还有赖于实质性科学的理论分析。
4.圆的直径越大,其周长也越大,两者之间的关系属于正相关关系。
答:错。
两者是精确的函数关系。
5.总体回归函数中的回归系数是常数,样本回归函数中的回归系数的估计量是随机变量。
答:对。
6.当抽取的样本不同时,对同一总体回归模型估计的结果也有所不同。
答:对。
因为,估计量属于随机变量,抽取的样本不同,具体的观察值也不同,尽管使用的公式相同,估计的结果仍然不一样。
二、选择题1.变量之间的关系按相关程度分可分为:b 、c 、da.正相关;b. 不相关;c. 完全相关;d.不完全相关; 2.复相关系数的取值区间为:aa. 10≤≤R ;b.11≤≤-R ;c.1≤≤∞-R ;d.∞≤≤-R 1 3.修正自由度的决定系数a 、b 、da.22R R ≤; b.有时小于0 ; c. 102≤≤R ;d.比2R 更适合作为衡量回归方程拟合程度的指标 4.回归预测误差的大小与下列因素有关:a 、b 、c 、da 样本容量;b 自变量预测值与自变量样本平均数的离差c 自变量预测误差;d 随机误差项的方差三、问答题1.请举一实例说明什么是单相关和偏相关?以及它们之间的差别。
答:例如夏季冷饮店冰激凌与汽水的消费量,简单地就两者之间的相关关系进行考察,就是一种单相关,考察的结果很可能存在正相关关系,即冰激凌消费越多,汽水消费也越多。
然而,如果我们仔细观察,可以发现一般来说,消费者会在两者中选择一种消费,也就是两者之间事实上应该是负相关。
第六章 多元回归分析

2
可决系数
ESS RSS R 1 TSS TSS
2
该统计量越接近于1,模型的拟合优度越高。
调整的可决系数(adjusted coefficient of determination) 在样本容量一定的情况下,增加解释变量必定使 得自由度减少,所以调整的思路是:将残差平方和 与总离差平方和分别除以各自的自由度,以剔除 变量个数对拟合优度的影响:
[ RSS ( RSS1 RSS2 )] / k F ~ Fk ,n1 n2 2 k ( RSS1 RSS2 ) /(n1 n2 2k )
例6-1:在一个F3,60分布中5%的临界值和拒绝域
面积=0.95
面积=0.05
0 2.76 拒绝区域
例6-2:考虑如下解释主要俱乐部棒球运动员薪水的模型:
6.2 参数的最小二乘估计
拟合值和残差的重要性质
(1)残差的样本均值为0; (2)每个自变量和OLS残差之间的样本协方差为0;拟合
值与残差之间的样本协方差也为0;
(3)点( X 2 , X 3 ,
, X k , Y ) 总位于OLS回归线上;
ˆ ˆ X ˆX Y 1 2 2 3 3
(i=2,3…k)
注意:一元线性回归中,t检验与F检验一致
一方面,t检验与F检验都是对相同的原假设H0: 2=0 进行检验;
另一方面,两个统计量之间有如下关系:
F
e
2 ˆ y i 2 i
n2 ˆ 2
e
ˆ 2 x2 2 i
2 i2) xi2
ˆX k k
随机误差项的均值为0,方差的估计量为:
ee ˆ nk
2
6.3 最小二乘估计量的性质
第六章相关与回归分析

• 总体相关系数ρ——根据总体数据计算的,
• 样本相关系数 r ——根据样本数据计算的。
6 - 12
统
计
相关关系的计算பைடு நூலகம்式
学
rSxy
(xx)y (y)
SxSy
(xx)2 (yy)2
或化简为
r
nx yxy
nx2x2 ny2y2
6 - 13
统
计
相关系数取值及其意义
相关图——也称为散点图。一对数据对应坐标图 上一个点,将成对的观察数据表现为坐标图 的散点而形成的图。
编制相关表、图的意义——有助于分析者判断 相关的有无、方向、形态、密切程度。
6 - 10
统
计
相关关系的图示
学
完全正线性相关
正线性相关
完全负线性相关
负线性相关
非线性相关
不相关
2. 一元线性(总体)回归方程的形式如下:
3.
E( y ) = α + b x
▪ 方程的图示是一条直线,因此也称为直线回归方程
▪ α 是回归直线在 y 轴上的截距,是当 x=0 时 y 的期 望值,是回归直线是起始值;
▪ b 是直线的斜率,表示当 x 每变动一个单位时,y
的平均变动值。
6 - 22
统
6 - 11
统
计 学
(二)相关系数和判定系数
1. 都是对变量之间关系密切程度的度量; 2. 判定系数=相关系数的平方; 3. 不同类型的相关,相关系数的计算方法也不同.
对两个变量之间线性相关程度的度量称为简单相 关系数(也称直线相关系数),常简称相关系数.
此外还有复相关系数、非线性相关系数、偏相关系 数
6.1第六章回归分析

变量之间的联系
确定型的关系:指某一个或某几个现象的变动必然会 引起另一个现象确定的变动,他们之间的关系可以使 用数学函数式确切地表达出来,即y=f(x)。当知道x的 数值时,就可以计算出确切的y值来。如圆的周长与 半径的关系:周长=2πr。 非确定关系:例如,在发育阶段,随年龄的增长,人 的身高会增加。但不能根据年龄找到确定的身高,即 不能得出11岁儿童身高一定就是1米40公分。年龄与 身高的关系不能用一般的函数关系来表达。研究变量 之间既存在又不确定的相互关系及其密切程度的分析 称为相关分析。
(3)方差齐性检验
方差齐性是指残差的分布是常数,与预测变量或 因变量无关。即残差应随机的分布在一条穿过0点 的水平直线的两侧。在实际应用中,一般是绘制 因变量预测值与学生残差(或标准化残差)的散 点图。在线性回归Plots对话框中的源变量表中,选 择SRESID或ZRESID(学生氏残差或标准化残差) 做Y轴;选择ZPRED(标准化预测值)做X轴就 可以在执行后的输出信息中显示检验方差齐性的 散点图。
要认真检查数据的合理性。
2、选择自变量和因变量
3、选择回归分析方法
Enter选项,强行进入 法,即所选择的自变量 全部进人回归模型,该
选项是默认方式。
Remove选项,消去法, 建立的回归方程时,根
据设定的条件剔除部分
自变量。
选择回归分析方法
Forward选项,向前选择 法,根据在option对话框中 所设定的判据,从无自变 量开始。在拟合过程中, 对被选择的自变量进行方 差分析,每次加入一个F值 最大的变量,直至所有符 合判据的变量都进入模型 为止。第一个引入归模型 的变量应该与因变量间相 关系数绝对值最大。
得到它们的均方。
概率论 高等院校概率论课件JXHD6-1

第六章回归分析回归分析是研究变量间相关关系的一个统计分支,它主要解决以下面几个问题:(1)确定几个特定的变量之间是否存在相关关系,如果存在,找出它们之间合适的数学表达式;(2)根据一个或几个变量的值,预测或控制另一个变量的取值,并且要知道这种预测或控制可达到什么样的精确度;(3)进行因素分析,在共同影响一个变量的许多变量(因素)之间找出哪些因素重要,哪些因素次要,这些因素之间有什么关系等。
回归分析一元线性回归多元线性回归逐步回归非线性回归与回归诊断一元线性回归建立模型参数估计显著性检验预测预报一.建立模型引例1.一个作匀速直线运动的质点,在时刻t 的位置是S ,则S a bt =+,其中 a 为质点在t =0时刻的初始位置,b 为平均速度。
观测到的数据是ε+=s y ,其中ε是随机误差(测量误差)。
于是我们有ε+=s y ε++=bt a (6-1) 其中t 是非随机的,ε是随机的,通常认为E ε=0,显然y 也是随机的。
为了估计a 、b ,现在 n 个不同时刻作观察,得n 组观察值)(i i y t ,n i ,21 ,,=。
即 y i =i i bt a ε++ (i n =12,,, )用向量矩阵形式表示如下:εβ+=X Y 其中,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n y y y Y 21,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n εεεε 21,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n t t t X 21111,⎪⎭⎫ ⎝⎛=b a β。
问题:如何利用Y X 、的观测值来估计参数a 、b ,进一步预测未来时刻t 质点的位置。
引例2.在硝酸钠(3NaNO )的溶解度试验中,测得在不同温度C X 0下溶解于100份水中的硝酸钠份数y 数据见下表:x i 0 4 10 15 21 29 36 51 68y i 66.7 71.0 76.3 80.6 85.7 92.9 99.4 113.6 125试找出X 与Y 之间的关系。
图6-1bx a +εy =+(6-2)20406080100120140020406080 Y X =+βε 问题:如何利用观测值来估计参数a 、b ,从而确定y 与x 的近似线性关系。
第六章非线性回归分析预测法

年份 零售额 x 流通费率 y 1991 10.2 7 1992 11.7 6.2 1993 13 5.8 1994 15 5.3 1995 16.5 5 1996 19 4.8 1997 22 4.6 1998 25 4.3 1999 28.5 4.2 2000 32 4.1
变量变换后的回归模型为
' ˆ y 2.64459 41.9742x
而
故
1 x x 1 ˆ 2.64459 41.9742 y x
'
§6.2 非线性回归模型应用
用原变量表示的回归模型为
1 ˆ 2.64459 41.9742 y x 预测:2001年该商品零售额为36.33进
2001年流通费用率预测为
1 ˆ 2.64459 41.9742 y 3.79946 36 .33
§6.2 非线性回归模型应用
三、不能化为线性回归的非线性回归的处理 一般用分段求和法
§5.2
多元线性回归预测法
二、检验模型 本例: m =3, n =10,取检验水平为0.05
F0.05 (m 1, n m) F0.05 (2,7) 4.74
Coefficients 标准误差 t Stat P-valueLower 95% Intercept 2.64459 0.12936 20.4443 3.4E-08 2.34629 X Variable 41.9742 1 2.05571 20.4183 3.5E-08 37.2337
§6.2 非线性回归模型应用
而 P 0.000276 满足 F F (m 1, n m) 或 P 故线性关系显著
F 32.874
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
经济与管理应用软件
②在“工具”菜单中选择“数据分析”选项,打开 “数据分析”对话框如下图所示。
经济与管理应用软件
③在“分析工具”列表中选择“回归”选项,单击 “确定”按钮,打开“回归”对话框如下图所示。
经济与管理应用软件
④在Y值输入区域中输入C1:C16。 ⑤在X值输入区域中输入B1:B16。
50 0
0
y = 5x + 60 R2 = 0.9027
5
10
15
20
25
30
经济与管理应用软件
回归分析中的工作表函数
? 截距函数INTERCEPT 功能:利用已知的 x 值与 y 值计算回归直线在y 轴 的截距。 语法结构: INTERCEPT(known_y's,known_x's)
? 斜率函数SLOPE 功能:返回根据 known_y‘和s known_x's 中的数据 点拟合的线性回归直线的斜率。 语法结构:SLOPE(known_y's,known_x's)
⑤在单元格B21中输入公式: “=STEYX(C2:C15,B2:B15)”,单击回车键。
⑥在单元格B22中输入公式: “=RSQ(C2:C15,B2:B15)”,单击回车键。
经济与管理应用软件
6.3 回归分析工具
? 回归分析工具是通过对一组观察值使用“最小 平方法”进行直线拟合,以分析一个或几个自 变量对单个因变量的影响方向与影响程度的方 法。它是Excel中数据分析工具的一个内容。回 归分析的对话框如图5所示 。
⑥选择“标志”,置信度选择95%。 ⑦在“输出选项”中选择“输出区域”,在其右边的位置输入
“D1”,单击 “确定”按钮。输出结果如下图所示。
经济与管理应用软件
回归分析工具的输出解释
Excel的回归分析工具计算简便 ,但内容丰富, 计算结果共分为三个模块: ? 回归统计表 ? 方差分析表 ? 回归参数
经济与管理应用软件
操作过程:
①打开“饭店.xls”工作簿,选择“饭店” 工作表,如下图所示。
经济与管理应用软件
②从“插入”菜单中选择“图表”选项,打开“图表向导”对话 框如下图所示。在“图表类型”列表中选择XY散点图,单击 “下一步”按钮。
经济与管理应用软件
③在数据区域中输入 B2:C11,选择“系列产生在 —— 列”,如下图所示,单击“下一步”按钮。
经济与管理应用软件
经济与管理应用软件
例 某房地产经纪人从政府部门列举的地 区中随机抽取了 15户居民作为样本, 记录了他们的家庭住房面积及其相应 的价格,他想确认一下住房面积(平 方米)与价格(千元)的关系,并想 据此拟合住房价格的回归方程。
经济与管理应用软件
操作过程:
①打开“住房 .xls”工作簿,选择“住房”工作表如下图所 示。
②在单元格A19、A20、A21和A22中分别输入“截距 b0”、“斜率b1”、“估计标准误差”和“测定系 数” 。
③在单元格B19中输入公式: “=INTERCEPT(C2:C15,B2:B15)”,单击回车键。
④在单元格B20中输入公式: “=SLOPE(C2:C15,B2:B15)”,单击回车键。
经济与管理应用软件
例 某企业希望确定其产品制造过程中的每
月成本支出与产量之间的关系,以制定 生产计划。试根据该企业选择历年的产 量(吨)和成本支出(千元)的样本,计算 上面四个函数值。
经济与管理应用软件
操作过程:
①打开“成本产量.xls”工作簿,选择“成本产量”工作表, 如下图所示。
经济与管理应用软件
经济与管理应用软件
1. 回归统计表
回归统计表包括以下几部分内容: ? Multiple R(复相关系数R):R2的平方根,又称为相
关系数,它用来衡量变量x和y之间相关程度的大小。 上节例中:R为0.848466,表示二者之间的关系是 高度正相关。 ? R Square(复测定系数R2 ):用来说明用自变量解释因 变量变差的程度,以测量同因变量y的拟合效果。 上节例中:复测定系数为 0.719894,表明用自变量可 解释因变量变差的71.99%。
经济与管理应用软件
第六章 Excel在回归分析中的应用
6.1 概述
? 现实世界中大多数现象表现为相关关系,人们 通过大量观察,将现象之间的相关关系抽象概 括为函数关系,并用函数形式或模型来描述与 推断现象间的具体变动关系,用一个或一组变 量的变化来估计与推算另一个变量的变化。这 种分析方法称为回归分析。
经济与管理应用软件
经济与管理应用软件
⑦打开“类型”页面,选择“线性”选项, Excel将显示一条拟合数 据点的直线。
⑧打开“选项”页面如图 3所示,在对话框下部选择“显示公式”和 “显示R平方根”选项,单击“确定”按钮,便得到趋势回归图如 图4所示。
经济与管理应用软件
250 200 150 100
经济与管理应用软件
回归分析的主要内容
?回归参数估计 ?方程拟合效果评价 ?回归参数的推断
经济与管理应用软件
6.2 图表分析与回归函数分析
例 近年来国家教育部决定将各高校的后勤社 会化。某从事饮食业的企业家认为这是一 个很好的投资机会,他得到十组高校人数 与周边饭店的季销售额的数据资料,并想 根据高校的数据RSQ 功能:返回根据 known_y‘和s known_x's 中数 据点 计算得出的 Pearson 乘积矩相关系数的平方。 语法结构:RSQ(known_y's,known_x's)
? 估计标准误差函数STEYX 功能:返回通过线性回归法计算 y 预测值时所产生 的标准误差。标准误差用来度量根据单个 x 变量计算出的 y 预测值的误差量。 语法结构:STEYX(known_y's,known_x's)
经济与管理应用软件
④打开“图例”页面,取消图例,省略标题,如下图所 示。
经济与管理应用软件
⑤单击“完成”按钮,便得到XY散点图如下图所示。
250 200 150 100
50 0 0
5
10
15
20
25
30
经济与管理应用软件
⑥如图1所示,用鼠标激活散点图,把鼠标放在任一数据点上,单击鼠标 右键,打开菜单,在菜单栏里选择“填加趋势线”选项,打开趋势线 对话框如图2所示。