信号与系统学习教材PPT课件
合集下载
信号与系统ppt课件

2.对于(at+b)形式的冲激信号,要先利用冲激信 号的展缩特性将其化为(t+b/a) /|a|形式后,
方可利用冲激信号的抽样特性与筛选特性。
完整版ppt课件
25
二、奇异信号
3. 斜坡信号
定义:
r(t)
t 0
t 0 t 0
或 r(t)tu(t)
r (t )
1
0
1
t
完整版ppt课件
26
二、奇异信号
x(t)(t t0)x(t0)(t t0)
完整版ppt课件
x(t ) (1)
t t0 x(t) (t t0 )
( x(t0 ) ) t
t0
19
二、奇异信号
2. 冲激信号
(6) 冲激信号的性质
② 抽样特性
x(t)(tt0)dtx(t0)
证明:
x(t)(t t0)dt
利用筛
选特性
x(t0)(t t0)dt x(t0) (t t0)dt x(t0)
(7)e4t (22t) (8)e2tu(t)(t1)
完整版ppt课件
23
解:
(1 ) sit)n ((tπ 4)d t siπ 4 n )(2/2
(2 ) 2 3 e 5 t (t 1 )d t e 5 1 1 /e 5
(3) 4 6e2t (t8)dt0
(4 ) e t(2 2 t)d t e t1 2( t 1 )d t 2 1 e
(2) x ( t) u ( t 1 ) 2 r ( t) 2 r ( t 1 )
完整版ppt课件
28
二、奇异信号
4. 冲激偶信号 定义: '(t) d(t)
dt
方可利用冲激信号的抽样特性与筛选特性。
完整版ppt课件
25
二、奇异信号
3. 斜坡信号
定义:
r(t)
t 0
t 0 t 0
或 r(t)tu(t)
r (t )
1
0
1
t
完整版ppt课件
26
二、奇异信号
x(t)(t t0)x(t0)(t t0)
完整版ppt课件
x(t ) (1)
t t0 x(t) (t t0 )
( x(t0 ) ) t
t0
19
二、奇异信号
2. 冲激信号
(6) 冲激信号的性质
② 抽样特性
x(t)(tt0)dtx(t0)
证明:
x(t)(t t0)dt
利用筛
选特性
x(t0)(t t0)dt x(t0) (t t0)dt x(t0)
(7)e4t (22t) (8)e2tu(t)(t1)
完整版ppt课件
23
解:
(1 ) sit)n ((tπ 4)d t siπ 4 n )(2/2
(2 ) 2 3 e 5 t (t 1 )d t e 5 1 1 /e 5
(3) 4 6e2t (t8)dt0
(4 ) e t(2 2 t)d t e t1 2( t 1 )d t 2 1 e
(2) x ( t) u ( t 1 ) 2 r ( t) 2 r ( t 1 )
完整版ppt课件
28
二、奇异信号
4. 冲激偶信号 定义: '(t) d(t)
dt
信号与系统第三章PPT课件

③ 在任何单个周期内,只有有限个第一类间断点, 且在间断点上的函数值为有限值。
.
它们都是傅里叶级数收敛的充分条件。相当广泛的 信号都能满足Dirichlet条件,因而用傅里叶级数表 示周期信号具有相当的普遍适用性。
几个不满足Dirichlet条件的信号
.
三.Gibbs现象 满足 Dirichlet 条件的信号,其傅里叶级数是如
• “非周期信号都可以用正弦信号的加权积分来 表示”——傅里叶的第二个主要论点
.
傅立叶分析方法的历史
古巴比伦人 “三角函数和” 描述周期性过程、预测天体运
动
1748年 欧拉 振动弦的形状是振荡模的线性组合
1753年 D·伯努利 弦的实际运动可用标准振荡模的线性组合来表示
1759年 拉格朗日 不能用三角级数来表示具有间断点的函数
x[k]h[nk]
x[k]h[n k]
k
.
对时域的任何一个信号 x ( t ) 或者 x ( n ) ,若能将其
表示为下列形式: x(t) a 1 es1 t a 2 es2 t a 3 es3 t
由于 es1t H(s1)es1t
es2t H(s2)es2t
es3t H(s3)es3t
利用齐次性与可加性,有
k
例: y(t)x(t3) ❖ 系统输入为 x(t) ej2t
系统 H(s) ? y(t) ?
H(s) h(t)estdt
❖ 系统输入为 x(t)cos(4t)cos(7t)
系统 y(t) ?
.
*问题:究竟有多大范围的信号可以用复指数信号的 线性组合来表示?
.
3.3 连续时间周期信号的傅里叶级数表示
第k次谐波 e jk 0t 的周期为
.
它们都是傅里叶级数收敛的充分条件。相当广泛的 信号都能满足Dirichlet条件,因而用傅里叶级数表 示周期信号具有相当的普遍适用性。
几个不满足Dirichlet条件的信号
.
三.Gibbs现象 满足 Dirichlet 条件的信号,其傅里叶级数是如
• “非周期信号都可以用正弦信号的加权积分来 表示”——傅里叶的第二个主要论点
.
傅立叶分析方法的历史
古巴比伦人 “三角函数和” 描述周期性过程、预测天体运
动
1748年 欧拉 振动弦的形状是振荡模的线性组合
1753年 D·伯努利 弦的实际运动可用标准振荡模的线性组合来表示
1759年 拉格朗日 不能用三角级数来表示具有间断点的函数
x[k]h[nk]
x[k]h[n k]
k
.
对时域的任何一个信号 x ( t ) 或者 x ( n ) ,若能将其
表示为下列形式: x(t) a 1 es1 t a 2 es2 t a 3 es3 t
由于 es1t H(s1)es1t
es2t H(s2)es2t
es3t H(s3)es3t
利用齐次性与可加性,有
k
例: y(t)x(t3) ❖ 系统输入为 x(t) ej2t
系统 H(s) ? y(t) ?
H(s) h(t)estdt
❖ 系统输入为 x(t)cos(4t)cos(7t)
系统 y(t) ?
.
*问题:究竟有多大范围的信号可以用复指数信号的 线性组合来表示?
.
3.3 连续时间周期信号的傅里叶级数表示
第k次谐波 e jk 0t 的周期为
信号与系统第2章ppt课件

,这种频谱搬移技术在通信系统中
得到广泛的应用。调幅,调频都是
在该基础上进行的。
精选ppt
由此可见,将时间信号f(t)
乘以Cos(ω0t) 或Sin(ω0t)
,等效于将f(t)的频谱一分
为二,即幅度减小一半,沿
频率轴向左和向右各平移ω0.
第二章 傅立叶变换
例2 求如下矩形调幅信号的频谱函数
f(t) G (t)c o s 0 t
例7 如图a所示系统,已知乘法器的输入为
f (t) sin(2t) s(t)co3st)(
t
系统的频率响应为:
求输出y(t).
精选ppt
第二章 傅立叶变换
f (t) sin(2t) s(t)co3st)(
t
乘法器的输出信号为: x(t)f(t)s(t)
依频域卷积定理可知:X(j)21F(j)*S(j) 这里 f(t)F(j) s(t)S(j)
当 0 时 当 0 时
A () li m 0 A e () lim A e ( 0) lim 2 0 2 0
所以
A () li m 0A e()()
B()li m0Be()j
精选ppt
第二章 傅立叶变换
(6)符号函数 符号函数sgn(t)如图所示
由于sgn(t)不符合绝对可积条件, 故使用间接方法计算。
利用傅里叶反变换公式计算
第二章 傅立叶变换
例4 试求图示周期信号的频谱函数,图(b)中冲激函数的强度均为1.
(b)
[提示:(a)F()F[1]1F[cos(t)]
22
)
(b
Cn
1 T
T
2 T
fT(t)ejntdt
2
fT(t)(t)(tT2)
得到广泛的应用。调幅,调频都是
在该基础上进行的。
精选ppt
由此可见,将时间信号f(t)
乘以Cos(ω0t) 或Sin(ω0t)
,等效于将f(t)的频谱一分
为二,即幅度减小一半,沿
频率轴向左和向右各平移ω0.
第二章 傅立叶变换
例2 求如下矩形调幅信号的频谱函数
f(t) G (t)c o s 0 t
例7 如图a所示系统,已知乘法器的输入为
f (t) sin(2t) s(t)co3st)(
t
系统的频率响应为:
求输出y(t).
精选ppt
第二章 傅立叶变换
f (t) sin(2t) s(t)co3st)(
t
乘法器的输出信号为: x(t)f(t)s(t)
依频域卷积定理可知:X(j)21F(j)*S(j) 这里 f(t)F(j) s(t)S(j)
当 0 时 当 0 时
A () li m 0 A e () lim A e ( 0) lim 2 0 2 0
所以
A () li m 0A e()()
B()li m0Be()j
精选ppt
第二章 傅立叶变换
(6)符号函数 符号函数sgn(t)如图所示
由于sgn(t)不符合绝对可积条件, 故使用间接方法计算。
利用傅里叶反变换公式计算
第二章 傅立叶变换
例4 试求图示周期信号的频谱函数,图(b)中冲激函数的强度均为1.
(b)
[提示:(a)F()F[1]1F[cos(t)]
22
)
(b
Cn
1 T
T
2 T
fT(t)ejntdt
2
fT(t)(t)(tT2)
信号与系统(郑君里)ppt

t
f(t)
t/2
f(t/2)
0
1
0
1
T
2
T
2
时间尺度压缩:t t 2 ,波形扩展
求新坐标
t
f(t/2)
0
1
2T
2
f(t)f(2t)
f t
2 1
O
Tt
宗量相同,函数值相同
t
f(t)
2t
f(2t)
0
1
0
1
T
2
T
2
求新坐标
t
f(2t)
0
1
T/2
2
t2t,时间尺度增加,波形压缩。
比较
f t
2 1
O
Tt
•三个波形相似,都是t 的一次 函数。 •但由于自变量t 的系数不同, 则达到同样函数值2的时间不同。 •时间变量乘以一个系数等于改 变观察时间的标度。
a 1 压缩,保持信号的时间缩短 f (t) f (at)0 a 1 扩展,保持信号的时间增长
4.一般情况
f t f at b f at b a 设a 0
f (t) K sin(t )
f
t
T
K
2π
O
2π
衰减正弦信号:
K et sint
f (t) 0
振幅:K 周期:T
2π
1
f
频率:f
角频率: 2 π f t 初相:
t0 0
t0
欧拉(Euler)公式
sin t 1 ejt ejt 2j
cos t 1 ejt ejt 2
t
间为,t0时函数有断点,跳变点
宗量>0 函数值为1 宗量<0 函数值为0
信号与系统第二章ppt课件

解 先画出f1(t-τ)|t=0, 即f1(-τ)和f2(τ)波形如题解图2.6(a)所 示。再令t从-∞ 开始增长,随f1(t-τ)波形右移,分区间计算卷 积积分:
30
第2章 连续信号与系统的时域分析 31
最后整理得
第2章 连续信号与系统的时域分析
波形如题解图2.6(b)所示。
32
第2章 连续信号与系统的时域分析
3
(2) 因为
第2章 连续信号与系统的时域分析
所以
4
第2章 连续信号与系统的时域分析
2.2 写出下列复频率s所表示的指数信号est的表达式,并画 出其波形。
(1) 2; (2) -2; (3) -j5; (4) -1+j2。
5
第2章 连续信号与系统的时域分析
解 (1) f1(t)=e2t,波形如题解图2.2(a)所示。 (2) f2(t)=e-2t, 波形如题解图2.2(b)所示。显然, f1(t)和f2(t)都 是实指数信号。 (3) f3(t)=e-j5t=cos5t-j sin5t。f3(t)是虚指数信号,其实部、 虚部分别是等幅余弦、正弦信号。实部信号波形如题解图2.2(c) 所示。 (4) f4(t)=e(-1+j2)t=e-t·ej2t=e-t(cos2t+j sin2t)。f4(t)是复指数信 号,其实部和虚部分别是幅度按指数规律衰减的余弦和正弦信 号。实部信号波形如题解图2.2(d)所示。
(4) 由于tε(t)|t=-∞=0,有 所以
38
第2章 连续信号与系统的时域分析
2.8 已知f1(t)和f2(t)如题图2.4所示。设f(t)=f1(t)*f2(t),试求 f(-1)、f(0)和f(1)的值。
题图 2.4
30
第2章 连续信号与系统的时域分析 31
最后整理得
第2章 连续信号与系统的时域分析
波形如题解图2.6(b)所示。
32
第2章 连续信号与系统的时域分析
3
(2) 因为
第2章 连续信号与系统的时域分析
所以
4
第2章 连续信号与系统的时域分析
2.2 写出下列复频率s所表示的指数信号est的表达式,并画 出其波形。
(1) 2; (2) -2; (3) -j5; (4) -1+j2。
5
第2章 连续信号与系统的时域分析
解 (1) f1(t)=e2t,波形如题解图2.2(a)所示。 (2) f2(t)=e-2t, 波形如题解图2.2(b)所示。显然, f1(t)和f2(t)都 是实指数信号。 (3) f3(t)=e-j5t=cos5t-j sin5t。f3(t)是虚指数信号,其实部、 虚部分别是等幅余弦、正弦信号。实部信号波形如题解图2.2(c) 所示。 (4) f4(t)=e(-1+j2)t=e-t·ej2t=e-t(cos2t+j sin2t)。f4(t)是复指数信 号,其实部和虚部分别是幅度按指数规律衰减的余弦和正弦信 号。实部信号波形如题解图2.2(d)所示。
(4) 由于tε(t)|t=-∞=0,有 所以
38
第2章 连续信号与系统的时域分析
2.8 已知f1(t)和f2(t)如题图2.4所示。设f(t)=f1(t)*f2(t),试求 f(-1)、f(0)和f(1)的值。
题图 2.4
信号与系统§1-2 常用信号介绍ppt课件

0
2
25
二、离散时间信号:
1、单位样值序列: (n)
函数式:(n)
1 0
n0 n0
波形图:
(n)
1
0
n
位移:
1 (n n0 ) 0
n n0 n n0
(n n0)
1
0 n0
n
26
• 抽样性:
设有序列x(n) ,则有
x(n)
1 2 0
12 3 4 5
0
t0
t
x(t)(t t0 ) x(t0 )(t t0 )
(x(t0 )) (x(0))
0
t0
t
x(t)(t)dt x(0) (t)dt x(0)
x(t)(t t0)dt x(t0 ) (t t0 )dt x(t0 )
t
Au(t t0 ) A
0
t0
t
函数式:x(t)
A t0
[R(t)
R(t
t0
)]
Au(t
t0
)
A t0
tu(t)
A t0
(t
t0
)u(t
t0
)
Au(t
t0
)
6
? 试用单位斜变信号表示以下三角波形:
x(t)
A
0
2 t
A R(t)
A
0
A R(t )
A
1
0R
不管电阻值的大小,始终为1。
信号与系统PPT全套课件

T T
T
f (t ) dt
f (t ) dt
2
2
(1.1-1)
1 P lim T 2T
T
T
( 1.1-2 )
上两式中,被积函数都是f ( t )的绝对值平方,所以信号能量 E 和信号功率P 都是非负实数。 若信号f ( t )的能量0 < E < , 此时P = 0,则称此信号 为能量有限信号,简称能量信号(energy signal)。 若信号f ( t )的功率0 < P < , 此时E = ,则称此信 号为功率有限信号,简称功率信号(power signal)。 信号f ( t )可以是一个既非功率信号,又非能量信号, 如单位斜坡信号就是一个例子。但一个信号不可能同时既是 功率信号,又是能量信号。
1.3 系统的数学模型及其分类
1.3.1 系统的概念 什么是系统( system )?广义地说,系统是由若干相互作用 和相互依赖的事物组合而成的具有特定功能的整体。例如, 通信系统、自动控制系统、计算机网络系统、电力系统、水 利灌溉系统等。通常将施加于系统的作用称为系统的输入激 励;而将要求系统完成的功能称为系统的输出响应。 1.3.2 系统的数学模型 分析一个实际系统,首先要对实际系统建立数学模型,在数 学模型的基础上,再根据系统的初始状态和输入激励,运用 数学方法求其解答,最后又回到实际系统,对结果作出物理 解释,并赋予物理意义。所谓系统的模型是指系统物理特性 的抽象,以数学表达式或具有理想特性的符号图形来表征系 统特性。
2.连续信号和离散信号 按照函数时间取值的连续性划分,确定信号可分为连续时 间信号和离散时间信号,简称连续信号和离散信号。 连续信号( continuous signal)是指在所讨论的时间内,对 任意时刻值除若干个不连续点外都有定义的信号,通常用f ( t ) 表示。 离散信号(discrete signal)是指只在某些不连续规定的时刻 有定义,而在其它时刻没有定义的信号。通常用 f(tk) 或 f(kT) [简写 f(k )] 表示,如图1.1-2所示。图中信号 f (tk) 只在t k = -2, -1, 0, 1, 2, 3,…等离散时刻才给出函数值。
信号与系统第二版PPT

系统的稳定性分析
定义
如果一个系统在所有可能的输入下都保持稳定,则称该系 统为稳定系统。
判断方法
通过分析系统的极点和零点分布,判断系统的稳定性。如 果所有极点都位于复平面的左半部分,则系统是稳定的。
稳定性分析的重要性
稳定性是系统设计和应用的重要考虑因素,不稳定的系统 无法在实际应用中实现。
系统的频率响应分析
优点
时域分析方法直观、物理意义明 确,可以方便地处理系统的瞬态 响应和稳态响应。
缺点
对于高阶系统或复杂系统,求解 微分方程或差分方程可能变得非 常复杂。
系统的频域分析方法
定义
频域分析方法是将系统的频率特性作为研究对象,通过傅里叶变换、拉普拉斯变换等数学工具将 时间域的信号或系统转换为频域进行分析。
时不变系统
系统的特性不随时间 变化。
时变系统
系统的特性随时间变 化。
信号与系统的重要性及应用领域
重要性
信号与系统是信息传输和处理的基础, 是通信、控制、图像处理、音频处理 等领域的重要理论基础。
应用领域
信号与系统理论广泛应用于通信、雷 达、声呐、遥感、生物医学工程、自 动控制等领域。
02 信号的特性与表示方法
定义
频率响应是描述系统对不同频率输入信号的响应特性。
分析方法
通过傅里叶变换或拉普拉斯变换等方法,将时域信号转换为频域信 号,然后分析系统的频率响应特性。
频率响应的重要性
频率响应是信号处理、控制系统等领域的重要概念,通过分析频率响 应可以了解系统的性能和特性,如传递函数、带宽、相位失真等。
06 信号处理技术与应用
物联网与边缘计算在系统设计中的应用
利用物联网和边缘计算的技术,实现系统的远程监控和管理,提高系 统的可靠性和响应速度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图 1 3 离 散 时 间 信 号
.
3.周期信号与非周期信号
若信号按照一定的时间间隔T周而复始 且无始无终,则称此类信号为周期信号。 周期信号的表达式可以写为 x(t)=x(t+nT) n=0,±1,±2,…(任意整数)(1-1) 满足关系式(1-1)的最小T值则称为信号 的基本周期。简称为“周期”。
冲激函数在无穷区间的积分反映了该
函数曲线与时间轴所围的面积,常称其为
冲激函数的强度。单位冲激函数的强度为1,
而冲激函数 kδ(t) 的强度为 k 。延迟 t0 时刻的
单位冲激函数为 δ(t-t0) 。冲激函数用箭头表 示,强度值标记在箭头旁边,如图1.11所示。
图1.11 冲激函数
② 脉冲函数取极限定义法 宽度为τ,高度为1τ的矩形脉冲逼近冲 激信号的过程如图1.12所示 。
若信号在时间上不具有周而复始的特 性,或者说信号的周期趋于无限大,则此 类信号称为非周期信号。图1.4所示为周期 信号的例子,
图1.4周期信号
图1.5所示为非周期信号的例子。
图1.5非周期信号
1.2.2 典型连续信号 1.单位斜变信号
图 1 6 单 位 斜 变 信 号 .
2.单位阶跃信号
图1.7单位阶跃信号
第1章 信号与系统的基本概念
1.1 引 言
信 号
1.3 系 统 1.4 信号的MATLAB表示和可视化
1.1 引 言
信号与系统的概念其实对于每个人并 不陌生,在生活和工作中有很多例子都属 于信号与系统的范畴。
当一束白光射入三棱镜时,就可以看到 美丽的七色光谱。此时,三棱镜就是一个处 理光信号的系统,白光就是输入的光信号, 被三棱镜分解出来红、橙、黄、绿、青、蓝、 紫七种不同的光就是系统的输出信号。 一个由电阻、电感和电容组成的电路 就是一个电系统。电压源的电压或电流源的 电流就是一个给定的输入信号,该电路的每 个元件上的电压和电流就是对这个输入信号 作出响应的输出信号。
间。在信号分析中,最基本的自变量是时
间和频率。在本书中,“信号”与“函数”
这两个术语是互相通用的。
根据表现形式的不同,信号可以是电 的、磁的、声的、光的、热的和机械的等。 在各种信号中,电信号是最便于传输、控 制与处理的信号,而且许多非电信号(如 温度、压力、声音、转速等)都可以由相 应的传感器(转换器)变换为电信号。因 此,研究电信号具有普遍的、重要的意义。 在本书中,除非特别说明,我们都把信号 视为随时间t变化的电压或电流信号。
图1.1通信系统的组成
上述各种信号与系统都具有两个基本 的共同点:一是包含物理对象性质的信息 都是用信号来表现的,二是系统总是对给 定的信号进行处理并作出响应而产生出另 外的信号。信号与系统是紧密关联的整体, 其中信号是主体,系统则是传输或处理信 号的手段。
信号与系统分析就是要把各种不同领 域的信号与系统问题抽象为理想化的模型, 用最简洁的数学语言去描述、分析、计算 它们,以便使我们认识和掌握其内在的规 律。信号的数学描述可以用时间的函数x(t) 与y(t)来表示,而系统的作用就是把输入信 号 x(t) 变换成需要的输出信号 y(t) ,那么系 统的数学描述就是 y(t) 与 x(t) 的代数方程或 微(差)分方程。
单位阶跃函数是对某些物理对象从一 个状态瞬间突变到另一个状态的描述。如 图 1.7(a )所示,在 t=0时刻对某一电路接 入 1V的直流电压源,并且无限持续下去。 这个电路获得电压信号的过程就可以用单 位阶跃函数来描述。如果接入电源的时间 推迟到t=t0 时刻(t0>0),如图1.8(a)所 示,其波形如图1.8(b)所示。
图1.8 延迟t0的单位阶跃信号
用阶跃函数的组合可以表示分段信
号。例如波形如图1.9所示的脉冲宽度为
τ 的单位矩形脉冲信号可以用阶跃信号
的组合表示为:
gτ(t)=u(t+τ/2)-u(t-τ/2)。
图1.9单位矩形脉冲信号
3.符号函数
1 t 0 sgn(t ) 1 t 0
通信系统的一般模型如图1.1所示。其 中转换器是指把声音转换为电信号或者把 电信号转换为声音的装置,如话筒和喇叭。 信道是指电信号传输的通道,在有线电话 中它是一对导线,在无线电话中它是电磁 波传播的空间和通信卫星等。在电话通信 系统中,声音信号变换为电信号后经发射 机以电磁波的形式通过信道传输给接收端, 接收端的转换器再把传过来的电信号转换 为声音信号。
符号函数也可以用阶跃函数来表示,即 sgn(t)=2u(t)-1。
4.单位冲激信号
单位冲激信号又可称为冲激函数、狄拉 克函数等,记为δ(t)。单位冲激信号反映一 种持续时间极短、函数值极大的信号类型。
(1)定义
这种特殊的函数,其定义也是特殊的。 下面提供两种定义方法。 ① 狄拉克定义法
函数δ(t)为t=0处无限窄而又无限高、 但面积为1的一个冲激。
对于某一时刻,信号值无法确定,只能知
道它取某一值的概率。 本书只讨论确定性信号。
2.连续时间信号与离散时间信号
若t是定义在时间轴上的连续自变量, 那么,我们称x(t)为连续时间信号,又称模 拟信号。图1.2所示是连续时间信号。
图1.2连续时间信号
如果一个信号只在某些时间点上才有 意义,则这种信号称为离散时间信号。离 散时间信号一般用序列 x[ n]来表示,其 中n取整数。图1.3所示为离散时间信号。
1.2 信 号
信号是信息的物理表现形式,或说是传 递信息的函数,而信息则是信号的具体内容。 例如,交通红绿灯是信号,它传递的信息是: 红灯停,绿灯行。物理系统输出的信号反映 了该系统全部或部分行为特征,因此又可以 说信号是物理系统的表现形式。
从数学的观点来说,信号都是自变量
的函数。其自变量可以是时间、频率、空
1.2.1 信号的分类 1.确定性信号与随机信号
如果信号可以用确定的数学表达式来 表示,或用确定的信号波形来描述,则称 此类信号为确定性信号。对于确定性信号, 只要给定某一时间,就可以确定一个相应 的函数值。例如我们熟知的正弦信号 sin (t)、指数信号eat等都是确定性信号。
随机信号不是一个确定的时间函数,