数学建模模拟退火算法

合集下载

中国数学建模-编程交流-模拟退火算法

中国数学建模-编程交流-模拟退火算法

中国数学建模-编程交流-模拟退火算法模拟退火算法模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。

根据Metropolis准则,粒子在温度T 时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann 常数。

用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对当前解重复“产生新解→计算目标函数差→接受或舍弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。

退火过程由冷却进度表(CoolingSchedule)控制,包括控制参数的初值t及其衰减因子Δt、每个t值时的迭代次数L和停止条件S。

3.5.1 模拟退火算法的模型模拟退火算法可以分解为解空间、目标函数和初始解三部分。

模拟退火的基本思想:(1) 初始化:初始温度T(充分大),初始解状态S(是算法迭代的起点),每个T值的迭代次数L(2) 对k=1,……,L做第(3)至第6步:(3) 产生新解S′(4) 计算增量Δt′=C(S′)-C(S),其中C(S)为评价函数(5) 若Δt′<0则接受S′作为新的当前解,否则以概率exp(-Δt′/T)接受S′作为新的当前解.(6) 如果满足终止条件则输出当前解作为最优解,结束程序。

终止条件通常取为连续若干个新解都没有被接受时终止算法。

(7) T逐渐减少,且T->0,然后转第2步。

算法对应动态演示图:模拟退火算法新解的产生和接受可分为如下四个步骤:第一步是由一个产生函数从当前解产生一个位于解空间的新解;为便于后续的计算和接受,减少算法耗时,通常选择由当前新解经过简单地变换即可产生新解的方法,如对构成新解的全部或部分元素进行置换、互换等,注意到产生新解的变换方法决定了当前新解的邻域结构,因而对冷却进度表的选取有一定的影响。

模拟退火算法简单易懂的例子

模拟退火算法简单易懂的例子

模拟退火算法简单易懂的例子
模拟退火算法是一种基于概率的算法,来源于固体退火原理。

下面以一个简单的例子来说明模拟退火算法:
想象一个有十个元素的数组,代表一个能量状态,每个元素都有一个能量值。

开始时,所有元素都处于最高能量状态。

我们的目标是找到最低能量的状态,即最优解。

模拟退火算法的工作原理如下:
1. 从最高温度开始,逐渐降低温度。

在每个温度下,算法会尝试各种元素的组合方式,并计算其能量。

2. 在温度较高时,算法会尝试各种组合,并接受能量增加的“移动”,因为这些增加的能量对应于更高的温度,所以被接受的概率更大。

3. 随着温度的降低,算法开始更多地考虑能量的减少。

如果一个状态比前一个状态的能量更低,那么它一定会被接受。

但如果一个状态的能量比前一个状态的能量高,那么它会被以一定概率接受。

这个概率随着温度的降低而减小。

4. 重复上述过程,直到达到终止温度。

这时,算法已经找到了最低能量的状态。

模拟退火算法可以找到全局最优解,而不是局部最优解。

这是因为算法在搜索过程中会接受一些次优解(即能量增加的“移动”),以便跳出局部最优解,探索更广阔的解空间。

以上内容仅供参考,如果需要更多信息,建议查阅相关文献或咨询专业人士。

模拟退火算法

模拟退火算法

模拟退⽕算法模拟退⽕(SA)物理过程由以下三个部分组成1.加温过程问题的初始解2.等温过程对应算法的Metropolis抽样的过程3.冷却过程控制参数的下降默认的模拟退⽕是⼀个求最⼩值的过程,其中Metropolis准则是SA算法收敛于全局最优解的关键所在,Metropolis准则以⼀定的概率接受恶化解,这样就使算法跳离局部最优的陷进1.模拟退⽕算法求解⼀元函数最值问题使⽤simulannealbnd - Simulated annealing algorithm⼯具箱求y=sin(10*pi*x)./x;在[1,2]的最值下图是⽤画图法求出最值的x=1:0.01:2;y=sin(10*pi*x)./x;figurehold onplot(x,y,'linewidth',1.5);ylim([-1.5,1.5]);xlabel('x');ylabel('y');title('y=sin(10*\pi*x)/x');[maxVal,maxIndex]=max(y);plot(x(maxIndex),maxVal,'r*');text(x(maxIndex),maxVal,{['x:' num2str(x(maxIndex))],['y:' num2str(maxVal)]});[minVal,minIndex]=min(y);plot(x(minIndex),minVal,'ro');text(x(minIndex),minVal,{['x:' num2str(x(minIndex))],['y:' num2str(minVal)]});hold off;⽤模拟退⽕⼯具箱来找最值求最⼩值function fitness=fitnessfun(x)fitness=sin(10*pi*x)./x;end求最⼤值function fitness=fitnessfun(x)fitness=-sin(10*pi*x)./x;endOptimization running.Objective function value: -0.9527670052175917Maximum number of iterations exceeded: increase options.MaxIterations.⽤⼯具箱求得的最⼤值为0.95276700521759172.⼆元函数优化[x,y]=meshgrid(-5:0.1:5,-5:0.1:5);z=x.^2+y.^2-10*cos(2*pi*x)-10*cos(2*pi*y)+20;figuremesh(x,y,z);hold onxlabel('x');ylabel('y');zlabel('z');title('z=x^2+y^2-10*cos(2*\pi*x)-10*cos(2*\pi*y)+20');maxVal=max(z(:));[maxIndexX,maxIndexY]=find(z==maxVal);%返回z==maxVal时,x和y的索引for i=1:length(maxIndexX)plot3(x(maxIndexX(i),maxIndexY(i)),y(maxIndexX(i),maxIndexY(i)),maxVal,'r*');text(x(maxIndexX(i),maxIndexY(i)),y(maxIndexX(i),maxIndexY(i)),maxVal,{['x:' num2str(x(maxIndexX(i)))] ['y:' num2str(y(maxIndexY(i)))] ['z:' num2str(maxVal)] }); endhold off;function fitness=fitnessfun(x)fitness=-(x(1).^2+x(2).^2-10*cos(2*pi*x(1))-10*cos(2*pi*x(2))+20);endOptimization running.Objective function value: -80.50038894455415Maximum number of iterations exceeded: increase options.MaxIterations.找到的最⼤值:80.500388944554153.解TSP问题(⽤的数据和前⼏天⽤遗传算法写TSP问题的数据⼀致,但是结果⽐遗传算法算出来效果差很多,不知道是不是我写错了,怀疑⼈⽣_(:з」∠)_中。

数学建模模拟退火算法

数学建模模拟退火算法

数学建模模拟退火算法
数学建模是一种将实际问题转化为数学问题,通过建立数学模型来分析和解决问题的方法。

而模拟退火算法则是一种基于概率的全局优化算法,常被用于求解复杂问题的最优解。

在数学建模中,模拟退火算法可以应用于各种领域,如图像处理、目标识别、路线规划等。

模拟退火算法的基本思想是从一个随机解开始,通过随机扰动和接受策略来探索可能解空间,并逐渐降温,使得随机扰动的程度逐渐减小,最终达到全局最优解。

在应用模拟退火算法时,需要确定初始温度、温度下降速度以及接受策略等参数。

在数学建模中,模拟退火算法可以应用于很多问题。

例如,在图像处理中,可以通过模拟退火算法对图像进行优化,如图像的平滑处理、边缘检测等。

在目标识别领域,模拟退火算法可以用于对目标进行跟踪和识别。

在路线规划问题中,模拟退火算法可以用于求解最优路径。

在应用模拟退火算法时,需要考虑算法的效率和精度。

为了提高效率,可以采用多种优化技巧,如快速随机数生成、启发式信息引导等。

为了提高精度,可以适当增加迭代次数和初始温度,以便探索更广泛的解空间。

总之,模拟退火算法是一种非常有用的全局优化算法,可以应用于很多数学建模问题中。

在实际应用中,需要根据具体问题的特点和需求来选择算法参数和优化技巧,以达到最佳效果。

- 1 -。

数学建模 模拟退火

数学建模 模拟退火

例已知敌方100个目标的经度、纬度如下:我方有一个基地,经度和纬度为(70,40)。

假设我方飞机的速度为1000公里/小时。

我方派一架飞机从基地出发,侦察完敌方所有目标,再返回原来的基地。

在敌方每一目标点的侦察时间不计,求该架飞机所花费的时间(假设我方飞机巡航时间可以充分长)。

这是一个旅行商问题。

我们依次给基地编号为1,敌方目标依次编号为2,3,…,101,最后我方基地再重复编号为102(这样便于程序中计算)。

距离矩阵102102)(⨯=ij d D ,其中ij d 表示表示j i ,两点的距离,102,,2,1, =j i ,这里D 为实对称矩阵。

则问题是求一个从点1出发,走遍所有中间点,到达点102的一个最短路径。

上面问题中给定的是地理坐标(经度和纬度),我们必须求两点间的实际距离。

设B A ,两点的地理坐标分别为),(11y x ,),(22y x ,过B A ,两点的大圆的劣弧长即为两点的实际距离。

以地心为坐标原点O ,以赤道平面为XOY 平面,以0度经线圈所在的平面为XOZ 平面建立三维直角坐标系。

则B A ,两点的直角坐标分别为:)s i n ,c o s s i n ,c o s c o s(11111y R y x R y x R A )s i n ,c o s s i n ,c o s c o s(22222y R y x R y x R B 其中6370=R 为地球半径。

B A ,两点的实际距离⎫⎛=R d arccos , 化简得]s i n s i n c o s c o s )(a r c c o s [co s 212121y y y y x x R d +-=。

求解的模拟退火算法描述如下:(1)解空间解空间S 可表为{102,101,,2,1 }的所有固定起点和终点的循环排列集合,即}102,}101,,3,2{),,(,1|),,{(102101211021===ππππππ的循环排列为 S其中每一个循环排列表示侦察100个目标的一个回路,j i =π表示在第i 次侦察j 点,初始解可选为)102,,2,1( ,本文中我们使用Monte Carlo 方法求得一个较好的初始解。

模拟退火算法原理

模拟退火算法原理

模拟退火算法原理模拟退火算法是一种基于统计力学原理的全局优化算法,它模拟了固体物质退火过程中的原子热运动,通过不断降低系统能量来寻找全局最优解。

该算法最初由Kirkpatrick等人于1983年提出,被广泛应用于组合优化、神经网络训练、图像处理等领域。

模拟退火算法的原理基于一个基本的思想,在搜索过程中允许一定概率接受劣解,以避免陷入局部最优解。

其核心思想是通过随机扰动和接受概率来逐渐减小系统能量,从而逼近全局最优解。

算法流程如下:1. 初始化温度T和初始解x;2. 在当前温度下,对当前解进行随机扰动,得到新解x';3. 计算新解的能量差ΔE=E(x')-E(x);4. 若ΔE<0,则接受新解x'作为当前解;5. 若ΔE>0,则以一定概率P=exp(-ΔE/T)接受新解x';6. 降低温度T,重复步骤2-5,直至满足停止条件。

在模拟退火算法中,温度T起着至关重要的作用。

初始时,温度较高,接受劣解的概率较大,有利于跳出局部最优解;随着迭代次数的增加,温度逐渐降低,接受劣解的概率减小,最终收敛到全局最优解。

模拟退火算法的关键参数包括初始温度、降温速度、停止条件等。

这些参数的选择对算法的性能和收敛速度有着重要影响,需要根据具体问题进行调整。

总的来说,模拟退火算法通过模拟物质退火过程,以一定概率接受劣解的方式,避免了陷入局部最优解,能够有效地寻找全局最优解。

它在解决组合优化、参数优化等问题上表现出了很好的性能,成为了一种重要的全局优化算法。

通过对模拟退火算法原理的深入理解,我们可以更好地应用该算法解决实际问题,同时也可以为算法的改进和优化提供理论基础。

希望本文的介绍能够对大家有所帮助。

模拟退火算法

模拟退火算法

模拟退火算法模拟退火是一种通用概率算法,目的是在固定时间内在一个大的搜寻空间内寻求给定函数的全局最优解。

它通常被用于离散的搜索空间中,例如,旅行商问题。

特别地,对于确定的问题,模拟退火算法一般是优于穷举法。

这是由于我们一般只需得到一个可接受的最优解,而不是精确的最优解。

退火一词来源于冶金学。

退火(见图1)是将材料加热后再经特定速率冷却,目的是增大晶粒的体积,并且减少晶格中的缺陷。

材料中的原子原来会停留在使内能有局部最小值的位置,加热使能量变大,原子会离开原来位置,而随机在其他位置中移动。

退火冷却时速度较慢,使得原子有较多可能可以找到内能比原先更低的位置。

因此,我们将热力学的理论应用到统计学上,将搜寻空间内每一点想象成空气内的分子;分子的能量,就是它本身的动能;而搜寻空间内的每一点,也像空气分子一样带有“能量”,以表示该点对命题的合适程度。

而模拟退火算法先以搜寻空间内一个任意点作起始:每一步先选择一个“邻居”,然后再计算从现有位置到达“邻居”的概率。

模拟退火原理最早是 S. Kirkpatrick, C. D. Gelatt 和 M. P. Vecchi 在1983年所创造的。

而 V . Černý 在1985年也独立发明了此算法。

1. 问题描述数学上的最优化问题一般描述为如下形式:()()minimize()g 0,1,2,,subject to 0,1,2,,i i f x x i m h x i p≤=⎧⎪⎨==⎪⎩ 其中,():R n f x R →称作问题的目标函数,()g 0i x ≤称作问题的不等式约束条件,()0i h x =称作问题的等式约束条件。

寻求上述问题的最优解的过程就类似于从热动力系统的任意一个初始状态向内能最小的状态转移的过程,即退火过程。

2. 模拟退火算法基本思想模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有图1 物理退火原理图序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。

数学建模优秀方法-模拟退火算法简介

数学建模优秀方法-模拟退火算法简介

模拟退火算法算法简介模拟退火算法得益于材料的统计力学的研究成果。

统计力学表明材料中粒子的不同结构对应于粒子的不同能量水平。

在高温条件下,粒子的能量较高,可以自由运动和重新排列。

在低温条件下,粒子能量较低。

如果从高温开始,非常缓慢地降温(这个过程被称为退火),粒子就可以在每个温度下达到热平衡。

当系统完全被冷却时,最终形成处于低能状态的晶体。

如果用粒子的能量定义材料的状态,Metropolis 算法用一个简单的数学模型描述了退火过程。

假设材料在状态i 之下的能量为)(i E ,那么材料在温度T 时从状态i 进入状态j 就遵循如下规律:(1)如果)()(i E j E ≤,接受该状态被转换。

(2)如果)()(i E j E >,则状态转换以如下概率被接受:其中K 是物理学中的波尔兹曼常数,T 是材料温度。

在某一个特定温度下,进行了充分的转换之后,材料将达到热平衡。

这时材料处于状态i 的概率满足波尔兹曼分布:∑∈--==Sj KTj E KT i E T eei x P )()()(其中x 表示材料当前状态的随机变量,S 表示状态空间集合。

显然||1lim )()(S eeSj KTj E KT i E T =∑∈--∞→ 其中||S 表示集合S 中状态的数量。

这表明所有状态在高温下具有相同的概率。

而当温度下降时,∑∑∑∉--∈----→∈----→+=minminminminminminmin)()()(0)()(0limlimS j KTE j E S j KTE j E KTE i E T Sj KTE j E KT E i E T eeeee⎪⎩⎪⎨⎧∈==∑∈----→其它若 0 ||1limmin min )()(0minminminS i S eeS j KTE j E KT E i E T 其中)(min min j E E Sj ∈=且})(|{min min E i E i S ==。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

智能优化计算
浙江大学
3.1 模拟退火算法及模型
3.1.1 物理退火过程
物理退火过程
加温过程——增强粒子的热运动,消除系统原先可 能存在的非均匀态;
等温过程——对于与环境换热而温度不变的封闭系 统,系统状态的自发变化总是朝自由能减少的方向 进行,当自由能达到最小时,系统达到平衡态;
冷却过程——使粒子热运动减弱并渐趋有序,系统 能量逐渐下降,从而得到低能的晶体结构。
智能优化计算
浙江大学
3.4 模拟退火算法的改进
3.4.3 一种改进的模拟退火算法
改进的退火过程
(1)给定初温t0,随机产生初始状态s,令初始最优解s*=s, 当前状态为s(0)=s,i=p=0;
(2)令t=ti,以t,s*和s(i)调用改进的抽样过程,返回其所得 最优解s*’和当前状态s’(k),令当前状态s(i)=s’(k); (3)判断C(s*)<C(s*’)? 若是,则令p=p+1;否则,令 s*=s*’,p=0;
3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6 状态产生函数 状态接受函数 初温 温度更新函数 内循环终止准则 外循环终止准则
智能优化计算
浙江大学
3.4 模拟退火算法的改进
3.4.1 模拟退火算法的优缺点 3.4.2 改进内容 3.4.3 一种改进的模拟退火算法
3.5 模拟退火算法实现与应用
3.3.4 温度更新函数
时齐算法的温度下降函数
(1) tk 1 tk , k 0, 0 1 ,α越接近1温度下降越 慢,且其大小可以不断变化;
( 2) ,其中t0为起始温度,K为算法温度 下降的总次数。
tk K k t0 K
智能优化计算
浙江大学
3.3 模拟退火算法关键参数和操作的设计
浙江大学
3.1 模拟退火算法及模型
3.1.2 组合优化与物理退火的相似性
相似性比较
组合优化问题 解 最优解 金属物体 粒子状态 能量最低的状态
设定初温
Metropolis抽样过程 控制参数的下降 目标函数
熔解过程
等温过程 冷却 能量
智能优化计算
浙江大学
3.1 模拟退火算法及模型
3.1.3 模拟退火算法的基本思想和步骤
智能优化计算
浙江大学
3.1 模拟退火算法及模型
3.1.1 物理退火过程
Metropolis准则(1953)——以概率接受新状态
固体在恒定温度下达到热平衡的过程可以用Monte Carlo方法(计算机随机模拟方法)加以模拟,虽 然该方法简单,但必须大量采样才能得到比较精确 的结果,计算量很大。
智能优化计算
三函数两准则
初始温度
输出算法搜索结果。
智能优化计算
浙江大学
3.2 模拟退火算法的马氏链描述
3.2.1 马尔科夫链
定义
令 {s1 , s2 , }为所有状态构成的解空间, X (k )为k时刻状态变量的取值。 随机序列{ X (k )} 称为马尔可夫链,若n Z ,满足 Pr{ X (n) j X (0) i0 , X (1) i1 , , X (n 1) i} Pr{ X (n) j X (n 1) i}
(6)选择合适的初始状态;
(7)设计合适的算法终止准则。
智能优化计算
浙江大学
3.4 模拟退火算法的改进
3ห้องสมุดไป่ตู้4.2 改进内容
改进的方式
(1)增加升温或重升温过程,避免陷入局部极小;
(2)增加记忆功能(记忆“Best so far”状态); (3)增加补充搜索过程(以最优结果为初始解); (4)对每一当前状态,采用多次搜索策略,以概率 接受区域内的最优状态;
>0
<1
在同一个温度,分子停留在能量小的状态的概率比 停留在能量大的状态的概率要大。
智能优化计算
浙江大学
能量最低状态 非能量最低状态
3.1 模拟退火算法及模型
3.1.1 物理退火过程
数学表述
若|D|为状态空间D中状态的个数,D0是具有最低能 量的状态集合:
当温度很高时,每个状态概率基本相同,接近平均 值1/|D|; 状态空间存在超过两个不同能量时,具有最低能量 状态的概率超出平均值1/|D| ; 当温度趋于0时,分子停留在最低能量状态的概率 趋于1。
智能优化计算
浙江大学
3.2 模拟退火算法的马氏链描述
3.2.1 马尔科夫链
定义
一步转移概率:
pi , j (n 1) Pr{ X (n) j X (n 1) i}
n步转移概率:
pi(,nj) Pr{ X (n) j X (0) i}
若解空间有限,称马尔可夫链为有限状态;
浙江大学
3.1 模拟退火算法及模型
3.1.1 物理退火过程
Metropolis准则(1953)——以概率接受新状态
若在温度T,当前状态i → 新状态j 若Ej<Ei,则接受 j 为当前状态; 否则,若概率 p=exp[-(Ej-Ei)/kBT] 大于[0,1)区间的 随机数,则仍接受状态 j 为当前状态;若不成立则 保留状态 i 为当前状态。
智能优化计算
浙江大学
3.3 模拟退火算法关键参数和操作的设计
3.3.3 初温
方法
(1)均匀抽样一组状态,以各状态目标值得方差 为初温;
(2)随机产生一组状态,确定两两状态间的最大 目标值差,根据差值,利用一定的函数确定初温; (3)利用经验公式。
智能优化计算
浙江大学
3.3 模拟退火算法关键参数和操作的设计
由于要求较高的初始温度、较慢的降温速率、较低 的终止温度,以及各温度下足够多次的抽样,因此 优化过程较长。
智能优化计算
浙江大学
3.4 模拟退火算法的改进
3.4.2 改进内容
改进的可行方案
(1)设计合适的状态产生函数;
(2)设计高效的退火历程; (3)避免状态的迂回搜索; (4)采用并行搜索结构; (5)避免陷入局部极小,改进对温度的控制方式;
3.5.1 30城市TSP问题(d*=423.741 by D B Fogel) 3.5.2 模拟退火算法在管壳式换热器优化设计中的应用
智能优化计算
浙江大学
3.1 模拟退火算法及模型
3.1.1 物理退火过程
算法的提出
模拟退火算法最早的思想由Metropolis等(1953) 提出,1983年Kirkpatrick等将其应用于组合优化。
输出算法搜索结果。
智能优化计算
浙江大学
3.1 模拟退火算法及模型
3.1.3 模拟退火算法的基本思想和步骤
影响优化结果的主要因素
给定初温t=t0,随机产生初始状态s=s0,令k=0;
Repeat Repeat 产生新状态sj=Genete(s); if min{1,exp[-(C(sj)-C(s))/tk]}>=randrom[0,1] s=sj; Until 抽样稳定准则满足; 退温tk+1=update(tk)并令k=k+1; Until 算法终止准则满足;
(4)退温ti+1=update(ti),令i=i+1;
(5)结合其它搜索机制的算法;
(6)上述各方法的综合。
智能优化计算
浙江大学
3.4 模拟退火算法的改进
3.4.3 一种改进的模拟退火算法
改进的思路
(1)记录“Best so far”状态,并即时更新;
(2)设置双阈值,使得在尽量保持最优性的前提下 减少计算量,即在各温度下当前状态连续 m1 步保持 不变则认为Metropolis抽样稳定,若连续 m2 次退温 过程中所得最优解不变则认为算法收敛。
智能优化计算
浙江大学
3.1 模拟退火算法及模型
3.1.1 物理退火过程
数学表述
在温度T,分子停留在状态r满足Boltzmann概率分 布
E (r ) 1 P{E E (r )} exp Z (T ) k T B E 表示分子能量的一个随机变量,E (r )表示状态r的能量, k B 0为Boltzmann常数。Z (T )为概率分布的标准化因子: E (s) Z (T ) exp k T sD B
基本步骤
给定初温t=t0,随机产生初始状态s=s0,令k=0;
Repeat Repeat 产生新状态sj=Genete(s); if min{1,exp[-(C(sj)-C(s))/tk]}>=randrom[0,1] s=sj; Until 抽样稳定准则满足; 退温tk+1=update(tk)并令k=k+1; Until 算法终止准则满足;
若 n Z , pi , j (n) pi , j (n 1) ,称马尔可夫链为时齐的。
智能优化计算
浙江大学
3.2 模拟退火算法的马氏链描述
3.2.2 模拟退火算法与马尔科夫链
模拟退火算法对应了一个马尔可夫链
模拟退火算法:新状态接受概率仅依赖于新状态和 当前状态,并由温度加以控制。
方法
具体形式对算法影响不大 一般采用min[1,exp(-∆C/t)]
智能优化计算
浙江大学
3.3 模拟退火算法关键参数和操作的设计
3.3.3 初温
收敛性分析
通过理论分析可以得到初温的解析式,但解决实际 问题时难以得到精确的参数;
初温应充分大;
实验表明
初温越大,获得高质量解的机率越大,但花费较多 的计算时间;
p
1 0
-(Ej-Ei)/kT
智能优化计算
浙江大学
相关文档
最新文档