抛物线与平行四边形专题
抛物线综合题——线段最大值,三角形面积最大值,直角三角形,等腰三角形,平行四边形专题

抛物线综合题突破线段,三角形面积最大值,直角三角形,等腰三角形,平行四边形专题1.如图,抛物线y=x2+bx+c与直线y=x-1交于A、B两点•点A的横坐标为-3,点B在y 轴上,点P是y轴左侧抛物线上的一动点,横坐标为m,过点P作PC±x轴于C,交直线AB 于D.(1)求抛物线的解析式;(2)当m为何值时,S四边形OBDC=2S^BPD;(3)是否存在点P,使4PAD是直角三角形?若存在,求出点P的坐标;若不存在,说明理由.2.如图,已知抛物线y=-x2+bx+c与直线AB相交于A (-3, 0), B (0, 3)两点. (1)求这条抛物线的解析式; (2)设C是抛物线对称轴上的一动点,求使N CBA=90°的点C的坐标; (3)探究在抛物线上是否存在点P,使得^APB的面积等于3?若存在,求出点P的坐标;若不存在,请说明理由3.如图,已知抛物线y=x2+bx+c与直线y=-x+3交于A、B两点,点A 在y轴上,点B在x 轴上,抛物线与x轴的另一交点为C,点P在点B右边的抛物线上,PM±x轴交直线AB 于M。
(1)求抛物线解析式.(2)当PM=2BC时,求M的坐标.(3)点P运动过程中,4APM能否为等腰三角形?若能,求点P的坐标,若不能说明理由.4. △ABC在平面直角坐标系中的位置如图①所示,A点的坐标(-6,0), B点的坐标(4, 0) 点D为BC中点,点E为线段AB上一动点,连接DE经过点A,B,C三点的抛物线的解析式y=ax2+bx+8(1)求抛物线的解析式(2)如图①,将Z BDE以DE为轴翻折,点B的对称点为点G,当点G 恰好落在抛物线的对称轴上时,求G点的坐标; (3)如图②,当点E在线段AB上运动时,抛物线y=ax2+bx+8的对称轴上是否存在点F,使得以C、D、E、F为顶点的四边形为平行四边形?若存在,请直接写出点F的坐标;若不存在,请说明理由.5.如图①,抛物线y=ax2+bx+c与x轴相交于O、A两点直线y=-x+3与y轴交于B点,与该抛物线交于A, D两点,已知点D横坐标为-1.(1)求这条抛物线的解析式(2)如图①,在线段OA上有一动点H (不与O、A重合),过H作x轴的垂线分别交AB 于P 点,交抛物线于Q点,若x轴把4POQ分成两部分的面积之比为1:2,请求出H点的坐标;(3)如图②,在抛物线上是否存在点C,使4ABC为直角三角形?若存在,求出点C的坐标;若不存在,请说明理由图①图②备用图6.如图,抛物线y=-x2+bx+c与直线y=x+2交于C、D两点,其中点C在y轴上,点D的坐标为(3, 5).点P是y轴右侧的抛物线上一动点,过点P作PE±x轴于点E,交CD于点F.(1)求抛物线的解析式;(2)若点P的横坐标为m (m>0),当m为何值时,以O、C、P、F为顶点的四边形是平行四边形?请说明理由.(3)当点P运动到抛物线的顶点时,请在直线PE上找到一点Q,使OQ+CQ最小.并求出点Q 的坐标.7.如图,在平面直角坐标系中,抛物线y=ax2+bx-3与x轴交于A (-1, 0)、B (3, 0)两点,直线y=x-2与x轴交于点D,与y轴交于点C.点P是x轴下方的抛物线上一动点,过点P 作PF±x轴于点F,交直线CD于点E,设点P的横坐标为m.(1)求抛物线的解析式;(2)若PE=3EF,求m的值;(3)连接PC,是否存在点P,使4PCE为等腰直角三角形?若存在,请直接写出相应的点P的横坐标m的值8.如图,抛物线y=x2+bx-3与x轴交于A、B两点(点A在点B左侧),直线l与抛物线交于A、C亮点,其中C的横坐标为2.(1)求A、C两点的坐标及直线AC的函数解析式;(2) P是线段AC上的一个动点,过点P作y轴的平行线交抛物线于点E,求4ACE面积的最大值;(3)点G是抛物线上的动点,在x轴上是否存在点F,使以A、C、F、G四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的点F的坐标;若不存在,请说明理由.9.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3, 0),与y轴交于C(0,-3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连接PO、PC,并把4POC沿CO翻折,得到四边形POP’ C,那么是否存在点P,使四边形POP' C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.10.如图,抛物线y=ax2+bx与直线l交于点A (1, 5)、B (6, 0),点C是l上方的抛物线上的一动点,过C作CD±x轴于点D,交直线l于点E.连结AC、BC.(1)求抛物线的解析式;(2)设点C的横坐标为n,△ABC的面积为S,求出S的最大值;(3)在抛物线上是否存在点P,使得4PAB是直角三角形,且始终满足AB边为直角边?若存在,求出所有符合条件的P 的坐标;若不存在,简要说明理由11.在平面直角坐标系xoy中,y=ax2-2ax-3a(@<0)与x轴交于A,B两点(A在B的左侧),经过A的直线l:y=kx+b与y轴交于点C,与抛物线的另一个交点为D,且CD=4AC(1)直接写出点A的坐标,并求直线l的函数表达式(其中k,b用含a的式子表示);5(2)点E是直线l上方的抛物线上的一点,若4ACE的面积的最大值为4,求a的值(3)设P是抛物线对称轴上的一点,点Q在抛物线上,以点A,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.112.已知抛物线y= - x2 - 2x+a(aW0)与y轴交于点A,顶点为M,直线y= -x - a分别与x 轴,y轴交于点B,C,并且与MA交于点N点(1)若直线BC和抛物线有两个不同交点,求a的取值范围,并用a表示交点M,A的坐标;(2)将4NAC沿着y轴翻转,若点N的对称点P恰好落在抛物线上,AP与抛物线的对称轴相交于点D,连接CD,求a的值及4PCD的面积;(3)在抛物线y=-x2-2x+a (a>0)上是否存在点P,使得以P,A,C,N为顶点的四边形是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.。
难点攻关 抛物线与平行四边形【含答案】

难点攻关 抛物线与平行四边形
近年中考试题中常常出现抛物线与平行四边形组合的压轴题,
1. 在平面直角坐标系xoy 中,点C ,B 的坐标分别为(-4,0),(0,2).四边形ABCO 是平行四边形,抛物线过A ,B ,C 三点,与x 轴交于另一点D .一动点P 以每秒1个单位长度的速度从B 点出发沿BA 向点A 运动,运动到点A 停止,同时一动点Q
从点D 出发,以每秒3个单位长度的速度沿DC 向点C 运动,与点P 同
时停止.
(1)求抛物线的解析式;
(2)若抛物线的对称轴与AB 交于点E ,与x 轴交于点F ,当点P 运动时间t
为何值时,四边形POQE 是等腰梯形?
(3)当t 为何值时,以P ,B ,O 为顶点的三角形与以点Q ,B ,O 为顶点的三角形相似? 解:(1)∵四边形ABCO 是平行四边形,∴OC=AB=4.
∴A(4,2),B(0,2),C(-4,0).
∵抛物线y=ax 2+bx+c 过点B(0,2),∴c=2.
由题意,有⎩⎨⎧16a−4b+2=0
16a+4b+2=2 解得: ⎪⎨⎪⎧a=-1
16
b=14
∴⎩⎪⎨⎪⎧a−b+c =025a+5b+c =0c =−52 解得 : ⎩⎨⎧a=12b=-2c=-52。
九年级数学抛物线中平行四边形存在性问题习题

抛物线中平行四边形存在性问题习题1.如图2-1,在平面直角坐标系中,已知抛物线y =-x 2+2x +3与x 轴交于A 、B 两点,点M 在这条抛物线上,点P 在y 轴上,如果以点P 、M 、A 、B 为顶点的四边形是平行四边形,求点M 的坐标.2.(2019·内蒙古中考真题)已知,如图,抛物线2(0)y ax bx c a =++≠的顶点为(1,9)M ,经过抛物线上的两点(3,7)A --和(3,)B m 的直线交抛物线的对称轴于点C .(1)求抛物线的解析式和直线AB 的解析式.(2)若点P 在抛物线上,点Q 在x 轴上,当以点,,,A M P Q 为顶点的四边形是平行四边形时,直接写出满足条件的点P 的坐标.3.(2019·广西中考真题)如图,已知抛物线2y ax bx c =++的顶点为()4,3A ,与y 轴相交于点()0,5B -,对称轴为直线l ,点M 是线段AB 的中点.(1)求抛物线的表达式;(2)写出点M 的坐标并求直线AB 的表达式;(3)设动点P ,Q 分别在抛物线和对称轴l 上,当以A ,P ,Q ,M 为顶点的四边形是平行四边形时,求P ,Q 两点的坐标.4.(2019·甘肃中考真题)如图,已知二次函数y =x 2+bx+c 的图象与x 轴交于点A (1,0)、B (3,0),与y 轴交于点C .(1)求二次函数的解析式;(2)若点P 为抛物线上的一点,点F 为对称轴上的一点,且以点A 、B 、P 、F 为顶点的四边形为平行四边形,求点P 的坐标;5.(2019·四川中考真题)如图,抛物线25(0)y ax bx a =+-≠经过x 轴上的点A (1,0)和点B 及y 轴上的点C ,经过B 、C 两点的直线为y x n =+. ①求抛物线的解析式.于点M,过抛物线上一动点N(不与点B、C重合)作直线③过点A作AM BCAM的平行线交直线BC于点Q.若点A、M、N、Q为顶点的四边形是平行四边形,求点N的横坐标.。
两定两动畅游在抛物线上的平行四边形课件

数学建模中两定两动平行四边形的应用有助于解决实际问题。
详细描述
在数学建模中,两定两动平行四边形可以用于解决一些实际问题,如建筑设计、机械运动等。通过设定两个定点 和两个动点,可以构建出满足特定条件的平行四边形,进一步建立数学模型,为解决实际问题提供理论支持。
总结与展望
本章总结
01
02
介绍了抛物线的基本概 念和平行四边形的性质。
平行四边形的相对边平行于抛 物线的对称轴,且相对顶点沿 抛物线轨迹运动。
随着相对顶点的移动,平行四 边形的大小和形状会发生变化, 但仍然保持平行四边形的特性。
两定两动平行四边形在抛物线上的运动轨迹
固定在抛物线对称轴上的两个顶 点,其运动轨迹是垂直于对称轴
的两条直线。
另外两个顶点沿抛物线轨迹运动, 其运动轨迹是抛物线的一部分。
两定两动平行四边形在抛 物线上的应用
两定两动平行四边形在几何作图中的应用
总结词
几何作图中的两定两动平行四边形是解决复杂几何问题的重 要工具。
详细描述
在几何作图中,两定两动平行四边形可以用于解决一些复杂 的几何问题,如作图、证明等。通过合理设定两个定点和两 个动点,可以构造出满足特定条件的平行四边形,进而解决 一系列的几何问题。
两定两动平行四边形的性质
01
02
03
性质1
两定两动平行四边形具有 平行四边形的所有性质, 如对边相等、对角相等、 对角线互相平分等。
性质2
由于其中一个顶点是动点, 因此两定两动平行四边形 具有一个顶点在抛物线上 的性质。
性质3
两定两动平行四边形的面 积等于两个定点之间的距 离乘以顶点到定点的距离。
通过两定两动的设定, 详细阐述了如何在抛物 线上构造平行四边形。
探究平行四边形的存在性问题——以2016_年安顺市中考的一道抛物线题为例

探究平行四边形的存在性问题以2016年安顺市中考的一道抛物线题为例刘利果(河北省邢台市沙河市第三中学ꎬ河北邢台054100)摘㊀要:抛物线中的动点问题ꎬ尤其是与存在性有关的动点问题ꎬ是中考的一个难点.文章以2016年贵州省安顺市的一道中考题为例ꎬ借助网络画板ꎬ从试验探究㊁思路分析㊁一题多解的角度来进行深度探究.关键词:抛物线ꎻ动点ꎻ平行四边形ꎻ存在性ꎻ探究中图分类号:G632㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1008-0333(2023)35-0092-03收稿日期:2023-09-15作者简介:刘利果(1981.10-)ꎬ女ꎬ河北省邢台人ꎬ本科ꎬ中小学高级教师ꎬ从事初中数学教学研究.㊀㊀抛物线中平行四边形的存在性问题ꎬ是中考的一个难点ꎬ也是热点ꎬ常常以压轴题的形式出现.如何突破这一类试题呢?笔者以2016年安顺市一道中考题为例进行探究.1试题呈现抛物线经过A(-1ꎬ0)ꎬB(5ꎬ0)ꎬC0ꎬ-52æèçöø÷三点.(1)求抛物线的解析式.(2)在抛物线的对称轴上有一点Pꎬ使PA+PC的值最小ꎬ求点P的坐标.(3)若M为x轴上一动点ꎬ在抛物线上是否存在一点Nꎬ使AꎬCꎬMꎬN四点构成的四边形为平行四边形?若存在ꎬ求点N的坐标ꎻ若不存在ꎬ请说明理由[1].2思路分析第(1)(2)问略.第(3)问:①如图1所示ꎬAC为对角线时ꎬ取AC中点Oᶄꎬ连接M4Oᶄꎬ交抛物线于点N4ꎻ如图2所示ꎬ若AC为边ꎬ平移AC得到另外三种情况.过四边形顶点作横平坚直线(平行于坐标轴)构造全等三角形解决问题.图1㊀AC为对角线②设M(xꎬ0)ꎬ分别以ACꎬAMꎬAN为对角线ꎬ分三种情况根据平行四边形两组相对顶点横坐标之和相等ꎬ纵坐标之和也相等ꎬ表示出点N的坐标ꎬ代入抛物线解析式求解即可.③如图3所示ꎬ从路径(轨迹)角度分析.假设以AꎬCꎬMꎬN为顶点的平行四边形存在.在x轴上任取一动点Mꎬ把M看作定点ꎬ然后分别以AMꎬACꎬCM为对角线作出三个平行四边形ꎬ设第四个顶点分别为N1ꎬN2ꎬN3.若拖动动点M可以发现ꎬ动点N1ꎬN2ꎬN3运动的路径均为与x轴平行的直线.易得N1ꎬN3到x轴的距离等于OC=52ꎬ到x轴的距离为2952的直线有两条.易知ꎬ点N1的路径为直线y=52ꎬ点N2ꎬN3的路径为直线y=-52.所以求点N的坐标就可以转化为由抛物线的解析式与点N的路径解析式组成的方程组的解的问题.图2㊀AC为边3一题多解解㊀(1)y=12x2-2x-52.(2)点P的坐标是2ꎬ-32æèçöø÷.过程略.(3)解法1㊀存在点Nꎬ使AꎬCꎬMꎬN四点为顶点构成的四边形为平行四边形.①当AC为边时ꎬ如图2所示ꎬ若点N在x轴下方.图3㊀让M运动又对称轴为直线x=2ꎬC0ꎬ-52æèçöø÷ꎬ所以点N14ꎬ-52æèçöø÷.当点N在x轴上方时ꎬ过点N2作N2Dʅx轴于点D.ȵAC=M2N2ꎬøCAO=øN2M2DꎬøCOA=øN2DM2ꎬʑәAOC≅әM2DN2ꎬʑN2D=OC=52ꎬ即N2点的纵坐标为52.ʑ12x2-2x-52=52ꎬ解得x=2+14或x=2-14ꎬʑN22+14ꎬ52æèçöø÷ꎬN32-14ꎬ52æèçöø÷.②如图1所示ꎬ当AC为对角线时ꎬ由四边形AM4CN4为平行四边形ꎬ知CN4ʊAM4ꎬ所以点N4的纵坐标为-52ꎬʑN44ꎬ-52æèçöø÷.综上所述ꎬ符合条件的点N的坐标为4ꎬ-52æèçöø÷或2+14ꎬ52æèçöø÷或2-14ꎬ52æèçöø÷.解法2㊀设M(xꎬ0)ꎬNxNꎬyN().①若AC为对角线ꎬ则有-1+0=x+xNꎬ0-52=0+yNꎬìîíïïï即xN=-1-xꎬyN=-52.ìîíïïï将N-1-xꎬ-52æèçöø÷代入抛物线表达式ꎬ得12(-1-x)2-2(-1-x)-52=-52ꎬ解得x=-1或-5ꎬ即xN=0或xN=4ꎬ所以N0ꎬ-52æèçöø÷(与C重合ꎬ舍去)或N4ꎬ-52æèçöø÷.②若AN为对角线ꎬ则有-1+xN=x+0ꎬ0+yN=0-52ꎬìîíïïï即xN=x+1ꎬyN=-52.ìîíïïïꎬ将Nx+1ꎬ-52æèçöø÷代入抛物线表达式ꎬ即12(x+1)2-2(x+1)-52=-52ꎬ解得x=-1或3ꎬ即xN=0或xN=4ꎬ所以N0ꎬ-52æèçöø÷(与C重合ꎬ舍去)或N4ꎬ-52æèçöø÷.③若AM为对角线ꎬ则有-1+x=xN+0ꎬ0+0=yN-52ꎬìîíïïï即xN=x-1ꎬyN=52.ìîíïïï将Nx-1ꎬ52æèçöø÷代入抛物线表达式ꎬ即12(x-1)2-2(x-1)-52=52ꎬ解得x1=3+1439或x2=3-14ꎬ即xN=2+14或xN=2-14ꎬ所以N2+14ꎬ52æèçöø÷或N2-14ꎬ52æèçöø÷.综上所述ꎬ符合条件的点N的坐标为4ꎬ-52æèçöø÷或2+14ꎬ52æèçöø÷或2-14ꎬ52æèçöø÷.解法3㊀如图4所示ꎬ在x轴上任取一点Mꎬ连接CMꎬ分别过点AꎬCꎬM作CMꎬAMꎬAC的平行线ꎬ得平行四边形ACMN1ꎬ四边形CMAN2ꎬ四边形ACN3Mꎬ分别过N1ꎬN2ꎬN3作x轴的垂线ꎬ垂足分别为FꎬGꎬE.过点M作MHʅN2N3于点H.易证明N1F=N2G=N3E=OC=52.图4㊀探究点N的路径所以N1运动的路径为直线y=52ꎬN2ꎬN3运动的路径为直线y=-52.因为N1ꎬN2ꎬN3在抛物线y=12x2-2x-52上ꎬ所以N的坐标满足y=52ꎬy=12x2-2x-52ìîíïïïï或y=-52ꎬy=12x2-2x-52ꎬìîíïïïï解得x1=2+14ꎬy1=52ꎬìîíïïïx2=2-14ꎬy2=52ꎬìîíïïïx3=0ꎬy3=-52ìîíïïï(舍去)ꎬx4=4ꎬy3=-52.ìîíïïï综上所述ꎬ符合条件的点N的坐标为4ꎬ-52æèçöø÷ꎬ2+14ꎬ52æèçöø÷或2-14ꎬ52æèçöø÷.解法4㊀如图3所示ꎬ因为A(-1ꎬ0)ꎬC0ꎬ-52æèçöø÷ꎬ所以AꎬC两点间的水平距离为1ꎬ坚直距离为52.设点M的坐标为(mꎬ0)ꎬ将点M按CңA方向平移ꎬ得到点N1m-1ꎬ52æèçöø÷ꎬ将点C按MңA方向平移ꎬ得到点N2-m-1ꎬ-52æèçöø÷ꎬ将点M按AңC方向平移ꎬ得到点N3m+1ꎬ-52æèçöø÷.将点N1m-1ꎬ52æèçöø÷ꎬN2-m-1ꎬ-52æèçöø÷ꎬN3m+1ꎬ-52æèçöø÷分别代代入抛物线的解析式y=12x2-2x-52得①12(m-1)2-2(m-1)-52=52ꎬ解得m=3-14或m=14+3ꎬʑN12+14ꎬ52æèçöø÷或N12-14ꎬ52æèçöø÷.②12(-m-1)2-2(-m-1)-52=-52ꎬ解得m=-1或m=-5ꎬʑN20ꎬ-52æèçöø÷(与C重合ꎬ舍去)或N24ꎬ-52æèçöø÷.③12(m+1)2-2(m+1)-52=-52ꎬ解得m=-1或m=3ꎬʑN30ꎬ-52æèçöø÷(与C重合ꎬ舍去)或N34ꎬ-52æèçöø÷.综上所述ꎬ符合条件的点N的坐标为4ꎬ-52æèçöø÷ꎬ2+14ꎬ52æèçöø÷或2-14ꎬ52æèçöø÷.对于平行四边形的存在性问题中已知两个定点ꎬ先虚拟一个动点ꎬ围成一个三角形ꎬ过三角形的每一个顶点画对边的平行线ꎬ三条直线两两相交ꎬ就可以确定平行四边形的第四个顶点.按照虚拟的第三个点ꎬ第四个顶点存在三种情况.但是第四个点到底有几个ꎬ要具体问题具体分析.参考文献:[1]董红凤.有效解决函数中动点型综合题教学探究[J].数学学习ꎬ2016(01):25-30.[责任编辑:李㊀璟]49。
难点攻关 抛物线与平行四边形

难点攻关 抛物线与平行四边形
近年中考试题中常常出现抛物线与平行四边形组合的压轴题,
1. 在平面直角坐标系xoy 中,点C ,B 的坐标分别为(-4,0),(0,2).四边形ABCO 是平行四边形,抛物线过A ,B ,C 三点,与x 轴交于另一点D .一动点P 以每秒1个单位长度的速度从B 点出发沿BA 向点A 运动,运动到点A 停止,同时一动点Q 从点D 出发,以每秒3个单位长
度的速度沿DC 向点C 运动,与点P 同时停止.
(1)求抛物线的解析式;
(2)若抛物线的对称轴与AB 交于点E ,与x 轴交于点F ,当点P 运动时间t
为何值时,四边形POQE 是等腰梯形?
(3)当t 为何值时,以P ,B ,O 为顶点的三角形与以点Q ,B ,O 为顶点的三角形相似?
解:(1)∵四边形ABCO 是平行四边形,∴OC=AB=4.
∴A(4,2),B(0,2),C(-4,0).
∵抛物线y=ax 2+bx+c 过点B(0,2),∴c=2.
由题意,有⎩⎨⎧16a−4b+2=016a+4b+2=2 解得: ⎩⎪⎨⎪⎧a=-116b=14
∴⎩⎪⎨⎪⎧a−b+c =025a+5b+c =0c =−52
解得 :
⎨⎧a=12b=-2c=-52。
中考数学“特殊四边形的存在性问题”题型解析
中考数学“特殊四边形的存在性问题”题型解析由抛物线上的点构成特殊四边形的问题,需要根据特殊四边形的性质与判定去确定点的坐标,然后求解 . 具体而言,解该类题时,我们要根据题目中的条件,科学地进行分类,然后画出图形,再根据这个四边形的性质或判定求出这点的坐标,若这一点是根据特殊四边形的特性得到的坐标,我们还应将这一点代入到抛物线的解析式中去验证是否是抛物线上的点 .本节主要来讨论下特殊四边形:平行四边形、菱形、矩形的存在性问题 .类型一:平行四边形问题【例题1】如图,抛物线y = 1/2 x^2 + bx + c 经过点A(-1,0)和点B(3,0),同时交y 轴于点C .(1)求抛物线的解析式;(2)若点Q 在y 轴上,点P 在抛物线上,且以A , B , Q , P 为顶点的四边形是平行四边形,求满足条件的点P 的坐标 .【分析】(1)根据抛物线经过A , B 两点即可求得b , c 的值,可解题;(2)以A , B , Q , P 为顶点的四边形是平行四边形,则点P 横坐标为4 或- 4,将x = 4 或- 4 代入抛物线解析式即可求得y 的值,即可解题 .【解析】(1)把A(-1,0),B(3,0)代入y = 1/2 x^2 + bx + c 中,∴抛物线的解析式是y = 1/2 x^2 - x - 3/2 .(2)①当AB 为边时,只要PQ∥AB 且PQ = AB = 4 即可 .又知点Q 在y 轴上,∴点P 的横坐标为4 或- 4 ,这时符合条件的点P 有两个,分别记为P1 , P2,把x = 4 代入y = 1/2 x^2 - x - 3/2 ,得y = 5/2 ,把x = - 4 代入y = 1/2 x^2 - x - 3/2 ,得y = 21/2 ,此时P1(4 , 5/2),P2(- 4 , 21/2);②当AB 为对角线时,只要线段PQ 与线段AB 互相平分即可 .又知点Q 在y 轴上,且线段AB 中点的横坐标为1,∴点P 的横坐标为2,这时符合条件的P 只有一个记为P3 ,而且当x = 2 时,y = - 3/2 ,此时P3(2,- 3/2),综上,满足条件的P 为P1(4 , 5/2),P2(- 4 , 21/2),P3(2,-3/2).类型二:菱形问题【例题2】如图,在平面直角坐标系中,点O 为坐标原点,直线y = -x + b 与坐标轴交于C,D 两点,直线AB 与坐标轴交于A , B 两点,线段OA , OC 的长是方程x^2 - 3x + 2 = 0 的两个根(OA > OC).(1)求点A , C 的坐标;(2)直线AB 与直线CD 交于点E,若点E 是线段AB 的中点,反比例函数y = k/x (k ≠0 )的图象的一个分支经过点E,求k 的值;(3)在(2)的条件下,点M 在直线CD 上,坐标平面内是否存在点N,使以点B , E , M , N 为顶点的四边形是菱形?若存在,请直接写出满足条件的点N 的坐标;若不存在,请说明理由 .【分析】(1)利用分解因式法解一元二次方程x^2 - 3x + 2 = 0 即可得出OA , OC 的值,再根据点所在的位置即可得出A , C 的坐标;(2)根据点C 的坐标利用待定系数法即可求出直线CD 的解析式,根据点A , B 的横坐标结合点E 为线段AB 的中点即可得出点E 的横坐标,将其代入直线CD 的解析式中即可求出点E 的坐标,再利用待定系数法即可求出k 的值;(3)假设存在,设点M 的坐标为(m , - m + 1), 分别以BE 为边、BE 为对角线来考虑 .根据菱形的性质找出关于m 的方程,解方程即可得出点M 的坐标,再结合点B , E 的坐标即可得出点N 的坐标 .【解析】(1)x^2 - 3x + 2 = (x - 1)(x - 2)= 0 ,∴x1 = 1 , x2 = 2 ,∵OA > OC ,∴OA = 2 , OC = 1 ,∴A(-2,0),C(1,0);(2)将C(1,0)代入y = - x + b 中,得0 = - 1 + b , 解得b = 1 ,∴直线CD 的解析式为y = - x + 1 .∵点E 为线段AB 的中点,A(-2,0),B 的横坐标为0 ,∴点E 的横坐标为- 1 .∵点E 为直线CD 上一点,∴E(-1,2).将点E(-1,2)代入y = k/x (k ≠0 )中,得2 = k / -1 , 解得k = -2 ;(3)假设存在,设点M 的坐标为(m , - m + 1),以点B , E , M , N 为顶点的四边形是菱形分两种情况(如上图所示)类型三:矩形问题【例题3】【解题策略】这三道例题分别呈现了运动变化过程中的平行四边形、菱形、矩形的存在性问题,三道例题的思路都是要依据特殊四边形的性质构图并建立方程求点的坐标 .特别地,由于菱形任意三个顶点组成的三角形都是等腰三角形,因此可将菱形问题转化为等腰三角形的存在性问题;而矩形问题则可转化为直角三角形的问题,要注意体会相关知识之间的联系 .。
抛物线中平行四边形问题品质课件PPT
402m
m
00a0.25m2
m
a
2 1
②点B与点Q相对 420m
m 6
0a00.25m2 m a 3
③点B与点P相对
4m02 00.25m2 m0a
m
a
2 3
∴P1(2,1), P2(6,-3), P3(-2,-3)
变式训练2
如图,平面直角坐标系中,y=0.5x2+x-4与y轴相交于点B(0,-4),点P是抛物线上的
• 例1 如图,平面直角坐标系中,已知点A(-1,0),B(1,-2),C(3,1),点D
是平面内一动点,若以点A,B,C,D为顶点的四边形是平行四边
形,则点D的坐标是__(-_3_,-_3)_,(_1_,3_),_(5,-1)
设点D(x,y)
①点A与点B相对 11 3 x 02 1 y
②点A与点C相对13 1 x 01 2 y
抛物线中 平行四边形存在性问题
一、画图引领 温故知新
• 1、已知平面上不共线三点A、B、C,求一 点D,使得A、B、C、D四个点组成平行四
边形
连接AB,AC,BC,分别过点A,B,C作对边的平行线,三条平行线的交点即为所有点D
D1
A
D2
B
C
D3
• 2、已知平面上两个点A,B,求两点P,Q,使 得A,B,P,Q四个点组成平行四边形(题目中 P,Q的位置有具体的限制)
x 3
y
3
D2 C
A
x 1
y
3
D1
B
D3
说明:若题中四边形ABCD是平行四边形,
则点D的坐标只有一个结果__(1,3)
③点A与点D相对 1 x 13 x 5
2020年中考数学压轴题专题之抛物线上的特殊平行四边形问题探究
抛物线上的特殊平行四边形问题探究专题导入导图:给出两点确定平行四边形关系如下图:导例如图1,在平面直角坐标系中,已知抛物线经过A(-4,0)、B(0,-4)、C(2,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△MAB的面积为S,求S关于m的函数关系式,并求出S的最大值;(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能使以点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.图1 图2思路点拨1.求抛物线的解析式,设交点式比较简便.2.把△MAB分割为共底MD的两个三角形,高的和为定值O A.3.当PQ与OB平行且相等时,以点P、Q、B、O为顶点的四边形是平行四边形,按照P、Q 的上下位置关系,分两种情况列方程.答案:(1) 因为抛物线与x轴交于A(-4,0)、C(2,0)两点,设y=a(x+4)(x-2).代入点B(0,-4),求得12a =.所以抛物线的解析式为211(4)(2)422y x x x x =+-=+-. (2)如图2,直线AB 的解析式为y =-x -4.过点M 作x 轴的垂线交AB 于D ,那么2211(4)(4)222MD m m m m m =---+-=--.所以2142MDA MDB S S S MD OA m m ∆∆=+=⋅=--2(2)4m =-++.因此当2m =-时,S 取得最大值,最大值为4.(3) 如果以点P 、Q 、B 、O 为顶点的四边形是平行四边形,那么PQ //OB ,PQ =OB =4. 设点Q 的坐标为(,)x x -,点P 的坐标为21(,4)2x x x +-. ①当点P 在点Q 上方时,21(4)()42x x x +---=.解得225x =-±.此时点Q 的坐标为(225,225)-+-(如图3),或(225,225)--+(如图4). ②当点Q 在点P 上方时,21()(4)42x x x --+-=.解得4x =-或0x =(与点O 重合,舍去).此时点Q 的坐标为(-4,4) (如图5).图3 图4 图5典例类型一:已知“两点”判断平行四边形存在性问题例1、如图,在平面直角坐标系中,抛物线y =x 2+mx +n 经过点A (3,0)、B (0,﹣3),点P 是直线AB 上的动点,过点P 作x 轴的垂线交抛物线于点M ,设点P 的横坐标为t . (1)分别求出直线AB 和这条抛物线的解析式.(2)若点P 在第四象限,连接AM 、BM ,当线段PM 最长时,求△ABM 的面积.(3)是否存在这样的点P ,使得以点P 、M 、B 、O 为顶点的四边形为平行四边形?若存在,请直接写出点P 的横坐标;若不存在,请说明理由.【分析】:(1)分别利用待定系数法求两函数的解析式:把A(3,0)B(0,﹣3)分别代入y=x2+mx+n 与y=kx+b,得到关于m、n的两个方程组,解方程组即可;(2)设点P的坐标是(t,t﹣3),则M(t,t2﹣2t﹣3),用P点的纵坐标减去M的纵坐标得到PM 的长,即PM=(t﹣3)﹣(t2﹣2t﹣3)=﹣t2+3t,然后根据二次函数的最值得到当t=﹣=32时,PM最长为=94,再利用三角形的面积公式利用S△ABM=S△BPM+S△APM计算即可;(3)由PM∥OB,根据平行四边形的判定得到当PM=OB时,点P、M、B、O为顶点的四边形为平行四边形,然后讨论:当P在第四象限:PM=OB=3,PM最长时只有,所以不可能;当P在第一象限:PM=OB=3,(t2﹣2t﹣3)﹣(t﹣3)=3;当P在第三象限:PM=OB=3,t2﹣3t=3,分别解一元二次方程即可得到满足条件的t的值.类型二:菱形的存在性问题例2 如图2所示,直线y=x+c与x轴交于点A(-4,0),与y轴交于点C,抛物线y=-x2+bx+c 经过点A,C.(1)求抛物线的解析式;(2)点E在抛物线的对称轴上,求CE+OE的最小值;(3)如图2所示,点M是线段OA上的一个动点,过点M作垂直于x轴的直线与直线AC和抛物线分别交于点P,N.若点P恰好是线段MN的中点,点F是直线AC上一个动点,在坐标平面内是否存在点D,使以点D,F,P,M为顶点的四边形是菱形?若存在,请直接写出点D的坐标;若不存在,请说明理由.注:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,)【分析】(1)把已知点坐标代入解析式;(2)取点C关于抛物线的对称轴直线l的对称点C′,由两点之间线段最短,最小值可得;(3)①由已知,注意相似三角形的分类讨论.②设出M坐标,求点P坐标.注意菱形是由等腰三角形以底边所在直线为对称轴对称得到的.本题即为研究△CPN为等腰三角形的情况.类型三:正方形的存在性问题例3如图1,在平面直角坐标系中,直线y=x+4与抛物线y=﹣x2+bx+c(b,c是常数)交于A、B两点,点A在x轴上,点B在y轴上.设抛物线与x轴的另一个交点为点C.(1)求该抛物线的解析式;(2)P 是抛物线上一动点(不与点A 、B 重合),①如图2,若点P 在直线AB 上方,连接OP 交AB 于点D ,求的最大值;②如图3,若点P 在x 轴的上方,连接PC ,以PC 为边作正方形CPEF ,随着点P 的运动,正方形的大小、位置也随之改变.当顶点E 或F 恰好落在y 轴上,直接写出对应的点P 的坐标.【分析】(1)利用直线解析式求出点A 、B 的坐标,再利用待定系数法求二次函数解析式解答; (2)作PF ∥BO 交AB 于点F ,证△PFD ∽△OBD ,得比例线段,则PF 取最大值时,求得的最大值;(3)(i )点F 在y 轴上时,P 在第一象限或第二象限,如图2,3,过点P 作PH ⊥x 轴于H ,根据正方形的性质可证明△CPH ≌△FCO ,根据全等三角形对应边相等可得PH =CO =2,然后利用二次函数解析式求解即可;(ii )点E 在y 轴上时,过点PK ⊥x 轴于K ,作PS ⊥y 轴于S ,同理可证得△EPS ≌△CPK ,可得PS =PK ,则P 点的横纵坐标互为相反数,可求出P 点坐标;点E 在y 轴上时,过点PM ⊥x 轴于M ,作PN ⊥y 轴于N ,同理可证得△PEN ≌△PCM ,可得PN =PM ,则P 点的横纵坐标相等,可求出P 点坐标.由此即可解决问题. 专题突破1、如图,抛物线2y x bx c =-++与直线122y x =+交于,C D 两点,其中点C 在y 轴上,点D 的坐标为7(3,)2。
与抛物线有关的平行四边形存在性问题(两动两定)
2
8
2
8
ii)当DE ∥QP, EP ∥ DQ时,则点P的坐标为(4m 2,3m 7).
把P点坐标代入抛物线的解析式中,得- 1(4m 2)2 (4m 2) 3 3m 7
4
解得m1
-
7 4
, m2
-1(舍去). 因此,点Q的坐标为(- 7,-
9 ). 4
(2)DE为平行四边形的对角线 ,则点P的坐标为( - 6 - 4m,1 3m).
xA, yA
xB, yB
xD, yD
xC , yC
xA xC xB xD , yA yC yB yD
2
2
2
ห้องสมุดไป่ตู้
2
即xA xC xB xD , yA yC yB yD.
有xD xA xC xB , yD yA yC yB.
二、用我们熟悉的知识解决不太熟悉的问题,……
(1)DE为平行四边形的一边,
i)当DE ∥QP, EQ ∥ DP时,则点P的坐标为(4m 2,3m 1).
把P点坐标代入抛物线的解析式中,得- 1(4m 2)2 (4m 2) 3 3m 1 4
解得m1
3 8
89
, m2
3 8
89
因此,点 Q的坐标为( - 3 89 ,15 3 89 )或( - 3 - 89 ,15 - 3 89 ).
2
8
2
8
4
4
三、再看看下面的问题,……
四、想想今天所学,你有何收获?
1.今天是研究什么问题? 2.在研究这个问题的过程中,你熟悉了哪些知识? 3.这类问题通常是可以怎么解决的呢?
与抛物线有关的平行四边形存在性问题
两动两定 两定—— 两个坐标确定的点. 两动—— 一个是在抛物线上的动点,另一个在一条直线(X轴 / Y轴 / 对称轴 / 一次函数的图象 )上的动点.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
已知点A、B和直线l,
在l上求点P,使△PAB 为等腰三角形分别以点A、B为圆心,以线段AB长
为半径作圆,再作AB中垂线,两圆和
中垂线与l的交点即为所有P点
分别表示出点
标,再表示出线段
AP
①
②
③
列方程解出坐标
已知点A、B和直线l,
在l上求点P,使△PAB 为直角三角形分别过点A、B作AB的垂线,再以线
段AB为直径作圆,两垂线和圆与l的
交点即为所有P点
分别表示出点
标,再表示出线段
AP
①
②
③
列方程解出坐标
三个点已知平面上不共线的三
个点A、B、C,求一点P,
使得A、B、C、P四个点组成平行四边形连接AB、AC、BC,分别过点A、B、C作对边的平
行线,三条线的交点即为所有点P
①分别求出直线
P
出交点即为
②可由点的平移来求坐标
两个点已知平面上两个点A、B,
求两点P、Q,使得A、B、
P、Q四个点组成平行四边
形(题目中P、Q的位置
有具体限制)
分两种情况讨论:
①若AB为平行四边形的边,将AB上下左右平移,
确定P、Q的位置;
②若AB为平行四边形的对角线,取AB中点,旋转
经过中点的直线确定P、Q的位置
①通过点的平移,构造全等三
角形来求坐标;
②由中点坐标公式可推出:坐
标系中平行四边形
点
x
y。