梁的剪应力及其强度条件梁的弯曲应力与强度计算剪应力计算公式

合集下载

弯曲强度的计算公式

弯曲强度的计算公式

弯曲强度的计算公式
弯曲强度是材料在受到弯曲加载时能够抵抗断裂的能力。

它是衡量材料在弯曲应力下的稳定性和可靠性的重要指标。

计算弯曲强度的公式取决于所使用的材料和几何形状。

对于简单的弯曲情况,如梁的弯曲,可以使用欧拉-伯努利理论来计算弯曲强度。

该理论假设梁在弯曲时保持线弹性,并且材料的应力分布是线性的。

根据这个理论,可以使用以下公式计算梁的最大弯曲应力:
σ = (M * c) / I
其中,σ是最大弯曲应力,M是弯矩,c是梁的截面最大距离(也称为截面臂),I是梁的截面惯性矩。

对于复杂的几何形状和非均匀材料的弯曲情况,需要使用更为复杂的公式。

例如,对于不均匀材料的弯曲,可以使用蒙特卡洛方法或有限元分析来计算弯曲强度。

此外,不同类型的材料具有不同的弯曲强度计算公式。

例如,对于金属材料,可以使用杨氏模量和屈服强度来计算弯曲强度。

对于混凝土材料,可以使用弯曲抗剪强度和弯曲抗拉强度来计算弯曲强度。

总之,计算弯曲强度需要考虑材料的机械性能、几何形状和加载条件。

准确计算弯曲强度对于工程设计和结构分析至关重要,以确保结构的稳定性和安全性。

弯曲梁的剪应力计算及强度计算

弯曲梁的剪应力计算及强度计算
S Z ( 2 m 0 1 m m 2 3 m 0 m 5 ) 8 .m 4 1 0 4 m 0 3 m
近似均匀分布
例 一简支梁及其所受荷载如图所示。若分别采用 截面面积相同的矩形截面,圆形截面和工字形截面, 试求以三种截面的最大拉应力。设矩形截面高为 140mm,宽为100mm,面积为14000mm2。
解: 1.最大弯曲剪应力。
最大弯曲剪应力发生 在中性轴上。中性轴 一侧的部分截面对中 性轴的静矩为:
Sz ycA
S z,m a (2 xm 0 1 m m 2 4 0 m m 5 )2 m 2m 0 9 m .0 2 14 m 5 03 m 2
最大弯曲剪应力:
(2).腹板、翼缘交接处的弯曲剪应力
1、 弯曲正应力强度条件
弯曲正应力强度条件为:
maxW Mz max
要求梁内的最大弯曲正应力σmax不超过材料在 单向受力时的许用应力[σ]
利用上述强度条件,可以对梁进行三方面的计算: 正应力强度校核、截面选择和确定容许荷载。
2、 弯曲剪应力强度条件
最大弯曲剪应力作用点处于纯剪切状态, 相应的强度条件为:
梁的弯矩如图示,在横截面D与B上,分别 作用有最大正弯矩与最大负弯矩,因此,该二 截面均为危险截面。
截面D与B的弯曲正应力分布分别如图示。 截面D的a点与截面B的d点处均受压;而截面 D的b点与截面B的c点处均受拉。
由于|MD|>|MB|,|ya|>|yd|,| 因此 |σa|>|σd|
即梁内的最在弯曲压应力σc,max发生在截面D 的a点处。至于最大弯曲拉应力σt,max, 究竟发生 在b点处,还是c点处,则须经计算后才能确定。
6-4.2梁的剪应 力及强度计算
湖北省工业建筑学校建筑工程建筑力学多媒体课件

梁的截面尺寸计算公式

梁的截面尺寸计算公式

梁的截面尺寸计算通常涉及到多种参数,如荷载、材料特性、梁的长度等。

下面是一些常见的梁截面尺寸计算公式:
1.弯曲应力计算:
弯曲应力是梁截面上由于弯曲而引起的应力。

弯曲应力的计算公式为:σ= M * c / S
其中,
σ是弯曲应力(单位:Pa),
M 是梁上的弯矩(单位:Nm),
c 是梁截面上离中性轴最远点的距离(也称为最大截面偏心距,单位:m),
S 是梁截面的抵抗矩(单位:m^3)。

2.剪切应力计算:
剪切应力是梁截面上由于剪力而引起的应力。

剪切应力的计算公式为:τ= V * Q / (I * b)
其中,
τ是剪切应力(单位:Pa),
V 是梁上的剪力(单位:N),
Q 是梁截面的截面模量(单位:m^3),
I 是梁截面的惯性矩(单位:m^4),
b 是梁截面的宽度(单位:m)。

3.拉伸应力计算:
拉伸应力是梁截面上由于拉伸力而引起的应力。

拉伸应力的计算公式为:
σ= F / A
其中,
σ是拉伸应力(单位:Pa),
F 是梁上的拉伸力(单位:N),
A 是梁截面的面积(单位:m^2)。

此外,还需要考虑梁的材料特性,如弹性模量(E)和抗拉强度(σ_yield)。

这些参数用于验证梁的强度和稳定性。

对于具体的工程设计,还需要根据梁的加载情况、支承条件、设计要求等进行进一步的计算和分析。

通常会参考结构设计规范和使用专业的结构分析软件进行详细的截面尺寸计算。

梁的应力计算公式全部解释

梁的应力计算公式全部解释

梁的应力计算公式全部解释应力是材料受力时产生的内部力,它是描述材料内部抵抗外部力的能力的物理量。

在工程领域中,计算材料的应力是非常重要的,可以帮助工程师设计和选择合适的材料,以确保结构的安全性和稳定性。

梁的应力计算公式是计算梁在受力时产生的应力的公式,它可以帮助工程师了解梁在不同条件下的应力情况,从而进行合理的设计和分析。

梁的应力计算公式是由弹性力学理论推导而来的,它可以根据梁的几何形状、受力情况和材料性质来计算梁的应力。

在工程实践中,梁的应力计算公式通常包括弯曲应力、剪切应力和轴向应力三种类型的应力。

下面将分别对这三种类型的应力计算公式进行详细解释。

1. 弯曲应力计算公式。

梁在受到外部力的作用时,会产生弯曲应力。

弯曲应力是由于梁在受力时产生的弯曲变形所引起的,它可以通过以下公式进行计算:σ = M c / I。

其中,σ表示梁的弯曲应力,单位为N/m^2;M表示梁的弯矩,单位为N·m;c表示梁截面内的距离,单位为m;I表示梁的惯性矩,单位为m^4。

弯曲应力计算公式可以帮助工程师了解梁在受力时产生的弯曲应力大小,从而进行合理的设计和分析。

在工程实践中,通常会根据梁的几何形状和受力情况选择合适的弯曲应力计算公式进行计算。

2. 剪切应力计算公式。

梁在受到外部力的作用时,会产生剪切应力。

剪切应力是由于梁在受力时产生的剪切变形所引起的,它可以通过以下公式进行计算:τ = V Q / (I b)。

其中,τ表示梁的剪切应力,单位为N/m^2;V表示梁的剪力,单位为N;Q 表示梁的截面偏心距,单位为m;I表示梁的惯性矩,单位为m^4;b表示梁的截面宽度,单位为m。

剪切应力计算公式可以帮助工程师了解梁在受力时产生的剪切应力大小,从而进行合理的设计和分析。

在工程实践中,通常会根据梁的几何形状和受力情况选择合适的剪切应力计算公式进行计算。

3. 轴向应力计算公式。

梁在受到外部力的作用时,会产生轴向应力。

轴向应力是由于梁在受力时产生的轴向变形所引起的,它可以通过以下公式进行计算:σ = N / A。

梁的切应力及其强度条件

梁的切应力及其强度条件

I z
t 1
FS
S
* z
I z
t1
FS
I z
h 2
2
FS 2Iz
h
t1max
tmax
t
max
FS 2Izd
b
h
d
h 2
2
y2
tmax O
t1
FS 2I z
h
y tmin 切应力流
最大剪应力一般发生在中性轴上
z
三、薄壁环形截面梁
tmax
r0
tmax
O
t
y
最大切应力tmax 仍
发生在中性轴z上。
FA 66kN D截面的剪力
FB 44kN FS 66kN
t max
FSS z,max dIz
140 10 103 47
220
2)求最大切应力
a
C
10 y 10
S
* z,max
10310
103 2
2
1061102 mm3
t max
FSS z,max dIz
66103 1061102 10 2 1152104
tmax
h
y
O
t' t A* s
y dA
d
Ot
y b
t
FS
S
* z
Izd
tmin
S
* z
b
h 2
2
d
h 2
y
h/
2
2
y
b
h
d
h
2
y2
2
2 2
2、翼缘上的切应力
FN*2
h

梁的弯曲应力和强度计算

梁的弯曲应力和强度计算

88
7.5 106 7.6 106
88 86.8MPa
弯曲正应力计算
三、计算题
27.一矩形截面简支梁,梁上荷载如图所示.已知P=6kN、 l=4m、b=0.1m、h=0.2m,试画出梁的剪力图和弯矩图并求 梁中的最大正应力. 解:(1) 作剪力图、弯矩图
(2)求最大正应力
Mmax 6kN m
横向线:仍为直线,仍与纵向线正交,相对转动了一个角度 纵向线:曲线,下部伸长,上部缩短
(2)假设 平面假设:横截面在变形前为平面,变形后仍为平面,且仍
垂直于变形后梁的轴线,只是绕横截面上某个轴 旋转了一个角度。 单向受力假设:梁由无数根纵向纤维组成,之间无横向挤压,
只受轴向拉伸与压缩。
中性层
3、正应力计算公式 〖1〗几何变形关系
内容回顾
弯曲正应力 1. 基本假设:
(1)平面假设:变形前为平面的横截面,变形后仍为平面,但转动了一角度。 (2)单向受力假设:杆件的纵截面(与杆轴平行的截面)上无正应力。
2.中性轴Z:
中性层与横截面的交线,平面弯曲时中性轴过形心且与对称轴垂直。
3.正应力计算公式:
中性层
4.正应力分布规律:沿截面高度呈线性分布。
4、正负号确定 1)M、y 符号代入公式
2)直接观察变形
5、适用范围及推广
〖1〗适用范围: 平面弯曲(平面假设、单向受力假设基础上)、 线弹性材料
〖2〗推广: ① 至少有一个对称轴的截面; ② 细长梁 (l/h>5);
6、最大正应力
工程上关心的是极值应力:
只与截面形状、尺寸有关
抗弯截面模量
对剪切(横力)弯曲: 矩形:
解:(1)作弯矩图,
求最大弯矩

工程力学25 梁的剪应力及强度计算

工程力学25 梁的剪应力及强度计算

4Q
3R 2
工 程力 学
ENGINEERING MECHANICS
4、圆环形截面梁
最大剪应力仍发生在中性轴
max
2Q A
工 程力 学
ENGINEERING MECHANICS
二、弯曲梁的剪应力强度计算
1、 剪应力强度条件
max
Q剪应力强度条件:
工 程力 学
ENGINEERING MECHANICS
2 、弯曲梁的强度计算
梁的强度涉及到正应力和切应力两个强度问题,一般按正应力强度设计, 再用切应力强度校核。
梁需满足
max (设计) max (校核)
工 程力 学
ENGINEERING MECHANICS
谢 谢 观 赏!
(3)剪应力分布规律
QS
* Z
bI Z
Q、b、IZ为常数
6Q bh3
h2 4
y2
二次抛物线
max
3Q 2bh
3Q 2A
Q
max
工 程力 学
ENGINEERING MECHANICS
2、工字型截面梁
(1)分工:
翼缘主要承担弯矩,腹板主要承
担剪力 (2)公式:
QSZ*
bI Z
(3)规律: 剪应力沿腹板高度仍按抛物线变化。
(4)最大剪应力:
( y 0), max
QS
* Z
max
bI Z
若b <<B时,则即按平均剪应力计算。 Q
bh
工 程力 学
ENGINEERING MECHANICS
3、圆形截面梁
截面边缘上各点剪应力与圆周相切,矩形截面上各点剪应力与Q平行的 假设已不适用。

钢结构中剪应力计算公式

钢结构中剪应力计算公式

钢结构中剪应力计算公式
钢结构中剪应力的计算公式可以通过以下方式来推导和应用。

在材料力学中,剪应力是指作用在材料内部的横向力,它可以通过以下公式来计算:
剪应力 = 剪力 / 截面积。

其中,剪力是作用在结构上的力,而截面积则是受到这个力作用的材料的横截面积。

在钢结构中,剪应力的计算公式可以根据具体的结构形式和受力情况来确定。

一般来说,对于简单的梁或柱结构,可以使用以下公式来计算剪应力:
剪应力 = V / (A h)。

其中,V是作用在结构上的剪力,A是受力截面的横截面积,h 是受力截面的高度。

这个公式适用于一般的直线剪力分布情况。

另外,在复杂的结构或者受力情况下,可能需要考虑剪力分布的不均匀性,这时候可以通过积分来计算剪应力。

根据横截面上的剪力分布情况,可以将截面分成若干小段,对每一小段的剪力进行
计算,并将其累加起来,最终得到整个截面上的剪应力分布情况。

总之,钢结构中剪应力的计算公式是根据具体的受力情况和结
构形式来确定的,可以根据剪力的分布情况来选择合适的计算方法,以确保计算结果的准确性和可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8 梁的弯曲应力与强度计算
8.1 梁弯曲时横截面上的正应力 8.2 弯曲正应力的强度条件 8.3 梁的剪应力及其强度条件 8.4 提高弯曲强度的措施
8.1 梁弯曲时横截面上的正应力
横截面上有弯矩又有剪力。 例如:AC和DB段。 称为横力弯曲(剪切弯曲)。 横截面上有弯矩没有剪力。 例如:CD段。 称为纯弯曲。
力 max 发生在弯矩最大的截面上,且离中性轴最远处。即
引用记号 则
max
M max ymax Iz
Wz
Iz ymax
max
M max Wz
Wz 称为弯曲截面模量。它与截面的几何形状有关,单位为m3。
8.2 弯曲正应力的强度条件
对于宽为 b ,高为 h 的矩形截面
Wz
Iz ymax
bh3 /12 h/2
A
A
M
E
Iz
式中1/ρ为梁弯曲后轴线的曲率。
EIz 称为梁的弯曲刚度。
8.1 梁弯曲时横截面上的正应力
E y
(b)
由上面两式,得纯弯曲时正应力的计算公式:
将弯矩 M 和坐标 y 按规定的正负代入,所得到的正应力若为 正,即为拉应力,若为负则为压应力。
一点的应力是拉应力或压应力,也可由弯曲变形直接判定。 以中性层为界,梁在凸出的一侧受拉,凹入的一侧受压。
8.1 梁弯曲时横截面上的正应力
E y
(b)
将式(b)代入式(d),得
M y
z dA 0
A
(d)
M z
y dA M
A
(e)
z dA E y z dA 0
A
A
A y z dA I yz 0
(自然满足)
y 轴为对称轴,必然有Iyz=0。
将式(b)代入式(e),得
M y dA E y2 dA
(3000
N m)(1.52 10 25.6 10-8 m4
2
m)
178.1MPa
c,max
M maxy2 Iz
(3000 N m) (4.8 1.52) 102 m 25.6 10-8 m4
384.4MPa
8.2 弯曲正应力的强度条件
横力弯曲时,弯矩随截面位置变化。一般情况下,最大正应
(a)
d
物理关系:
因为纵向纤维之间无正应力,每一纤维都是单向拉伸或压缩。
当应力小于比例极限时,由胡克定律知
E
将 (a) 代入上式,得 E y
(b)
式(b)表明横截面上任意一点的正应力σ 与该点到中性轴的距离 y
成正比。
在中性轴上:y=0, σ=0。
8.1 梁弯曲时横截面上的正应力
静力学关系
8.1 梁弯曲时横截面上的正应力
8.1.1 纯弯曲时横截面上的正应力 实验观察变形
纵向线(aa、bb):变为弧线,凹侧 缩短,凸侧伸长。 横向线(mm、nn): 仍保持为直线, 发生了相对转动,仍与弧线垂直。
平面假设:梁的横截面在弯曲变形后仍然保持平面,且与变 形后的轴线垂直,只是绕截面的某一轴线转过了一个角度。
F
FA
FB
FA FB 3 N
(2)作弯矩图
M max
Fa
2F 3
Nm
(3)确定许可荷载
max
M max Wz
2F 3Wz
F
3 2
Wz
3 (237106 )(160106 )N 2
56.9kN
8.2 弯曲正应力的强度条件
例:一矩形截面木梁,已知 F =10 kN,a =1.2 m。木材的许用应力 =10MPa。设梁横截面的高宽比为h/b=2,试选梁的截面尺寸。
bh2 6
对于直径为 D 的圆形截面
Wz
Iz ymax
D4 / 64
D/2
D3
32

对于内外径分别为 d 、D 的空心圆截面
Wz
Iz ymax
D4 (1 4 ) / 64
D/2
D3
32
(1 4 )
8.2 弯曲正应力的强度条件
如果梁的最大工作应力,不超过材料的许用弯曲应力,梁就 是安全的。因此,梁弯曲时的正应力强度条件为
只要梁有一纵向对称面,且载荷作用于这个平面内,上面的 公式就可适用。
8.1 梁弯曲时横截面上的正应力
8.1.2 横力弯曲时横截面上的正应力 在工程实际中,一般都是横力弯曲,此时,梁的横截面上不
但有正应力还有剪应力。因此,梁在纯弯曲时所作的平面假设和 各纵向纤维之间无挤压的假设都不成立。
虽然横力弯曲与纯弯曲存在这些差异,但是应用纯弯曲时正 应力计算公式来计算横力弯曲时的正应力,所得结果误差不大, 足以满足工程中的精度要求。且梁的跨高比 l/h 越大,其误差越小。
单向受力假设:各纵向纤维之间相互不挤压。
8.1 梁弯曲时横截面上的正应力
设想梁由平行于轴线的众 多纵向纤维组成,由底部纤维 的伸长连续地逐渐变为顶部纤 维的缩短,中间必定有一层纤 维的长度不变。
中性层:中间既不伸长也 不缩短的一层纤维。 中性轴:中性层与梁的横截面的交线,垂直于梁的纵向对称 面。(横截面绕中性轴转动) 中性轴垂直于纵向对称面。
My
Iz
8.1 梁弯曲时横截面上的正应力
例: 已知 l=1m,q=6kN/m,10号槽 钢。求最大拉应力和压应力。
解:(1)作弯矩图
M max
1 2
ql 2
3000N m
(2)由型钢表查得,10号槽钢
Iz 25.6cm4 b 4.8cm y1 1.52cm
(3)求最大应力
t,max
M maxy1 Iz
8.1 梁弯曲时横截面上的正应力
变形几何关系: 设横截面的对称轴为y 轴,向下为 正,中性轴为 z 轴(位置未定)。
bb yd
bb dx OO OO d
yd d y (a)
d
式(a)表明线应变ε与它到中性层的距
离 y 成正比。
8.1 梁弯曲时横截面上的正应力
yd d y
max
M max Wz
对于抗拉和抗压强度相等的材料 (如炭钢),只要绝对值最大 的正应力不超过许用弯曲应力即可。
对于抗拉和抗压不等的材料 (如铸铁),则最大的拉应力和最 大的压应力分别不超过各自的许用弯曲应力。
8.2 弯曲正应力的强度条件
例:20a工字钢梁。若
,试求许可荷载 F 。
解:(1)计算支反力
FN
dA
A
M y
z dA
A
Mz
y dA
A
FN
dA 0
A
(c)
M y
z dA 0
A
(d)
M z A y dA Me
(e)
将式 E y
代入式(c),得
A
dA
A
Ey
dA
0
=常量,
E y dA 0
A
Sz 0
z 轴(中性轴)通 过截面形心。
梁的轴线在中性层内,其长度不变。
相关文档
最新文档