梁的应力和强度计算

合集下载

梁横截面上的剪应力及其强度计算

梁横截面上的剪应力及其强度计算

梁横截面上的剪应力及其强度计算梁横截面上的剪应力及其强度计算在一般情况下,剪应力是影响梁的次要因素。

在弯曲应力满足的前提下,剪应力一般都满足要求。

一、矩形截面梁的剪应力*QSz利用静力平衡条件可得到剪应力的大小为:??;IZb公式中:Q――为横截面上的剪力;*――为横截面上所求剪应力处的水平线以下(或以上)部分面积A*对中性Sz轴的静矩;IZ――为横截面对中性轴的惯性矩;b――矩形截面宽度。

计算时Q、Sz*均为绝对值代入公式。

当横截面给定时,Q、IZ、b均为确定值,只有静矩Sz*随剪应力计算点在横截面上的位置而变化。

h1hhh2bh24y2 2Sz?A?y?b(?y)?[y?(?y)]?(?y)?(1?2)222248h***bh33Q4y2QSz(1?2) 把上式及Iz?代入??中得到:??122bhhIZb可见,剪应力的大小沿着横截面的高度按二次抛物线规律分布的。

在截面上、下边缘处(y=±0.5h),剪应力为零;在中性轴处(y=0)处,剪应力最大,其值为:???3Q3QQ???1.52bh2AA由此可见,矩形截面梁横截面上的最大剪应力值为平均剪应力值的1.5倍,发生在中性轴上。

二、工字形截面梁的剪应力*QSz在腹板上距离中性轴任一点K处剪应力为:??;IZb1公式中:b1――腹板的宽度(材料表中工字钢腹板厚度使用字母d标注的);* Sz――为横截面上阴影部分面积A*对中性轴的静矩;*QSzmax; ?IZb1工字形截面梁的最大剪应力发生在截面的中性轴处,其值为:?max*公式中:Szmax――为半个截面(包括翼缘部分)对中性轴的静矩。

三、梁的剪应力强度计算梁的剪应力强度条件为:?max*QmaxSzQmaxmax???[?] *IZbb(IZ/SZ)感谢您的阅读,祝您生活愉快。

梁的弯曲应力与强度计算

梁的弯曲应力与强度计算

max
FS
S
* z
I zb
Sz*3 2(R2 t)33 2(R2 t)3 2R2t
Iz4(R2 t)44(R2 t)4R3t
b2t
max
2
FS
2Rt
2
FS A
8.3 梁的剪应力及其强度条件
8.3.2 梁的剪应力强度条件
一般情况,在剪力为最大值的截面的中性轴上,出现最大剪
应力
max
F S* Smax max Izb
zdA
A
Mz
ydA
A
FN
dA0
A
(c)
My
zdA0
A
(d)
Mz AydAMe
(e)
将式 E y
代入式(c),得
AdAAEydA0
E
=常量,
E
y dA 0
A
Sz 0
z 轴(中性轴)通 过截面形心。
梁的轴线在中性层内,其长度不变。
8.1 梁弯曲时横截面上的正应力
E y
(b)
将式(b)代入式(d),得
E y
(b)
1 M EI z
由上面两式,得纯弯曲时正应力的计算公式:
M y Iz
将弯矩 M 和坐标 y 按规定的正负代入,所得到的正应力若为 正,即为拉应力,若为负则为压应力。
一点的应力是拉应力或压应力,也可由弯曲变形直接判定。 以中性层为界,梁在凸出的一侧受拉,凹入的一侧受压。
只要梁有一纵向对称面,且载荷作用于这个平面内,上面的 公式就可适用。
8.1 梁弯曲时横截面上的正应力
8.1.2 横力弯曲时横截面上的正应力 在工程实际中,一般都是横力弯曲,此时,梁的横截面上不

梁的应力和强度计算

梁的应力和强度计算

梁的应力和强度计算1.梁的基本假设梁的基本假设包括:梁材料是均匀各向同性的,梁截面是平面截面,梁的纵向伸缩变形可以忽略,梁的横向收缩变形可以忽略,梁截面平面保持平直。

2.梁的受力分析在进行梁的应力和强度计算之前,需要对梁的受力进行分析。

常见的梁的受力包括弯曲、剪切和轴向拉压等。

2.1弯曲弯曲是梁的一种主要受力状态,发生在梁受到弯矩作用时。

对于弯曲受力的梁,可以运用梁弯曲理论进行应力和强度计算。

常见的梁弯曲理论包括欧拉-伯努利梁理论和延性梁理论。

2.2剪切剪切是梁的另一种重要受力状态,发生在梁上部分截面受到剪力作用时。

剪切力引起梁截面上的剪应力,可以通过剪切变形理论进行计算。

2.3轴向拉压轴向拉压发生在梁上部分截面受到轴向拉力或压力作用时。

轴向拉力或压力引起梁截面上的轴向应力,可以通过轴向变形理论进行计算。

3.梁的应力分析根据梁的基本假设和受力分析,可以进行梁的应力分析。

梁的应力分析包括黄金区和非黄金区的判断、应力分布的计算和强度设计的确定。

3.1黄金区和非黄金区判断黄金区是指梁截面上应力最大的区域,通常位于材料的纤维处。

在黄金区内,应力达到梁材料的屈服强度。

非黄金区则是指其他区域,应力小于屈服强度。

3.2应力分布计算根据梁的受力和应力分析,可以计算出梁截面上的应力分布。

应力分布的计算可以通过梁的几何形状、外力和边界条件以及材料的性质来确定。

常见的应力分布包括弯曲应力、剪切应力和轴向应力等。

4.梁的强度设计梁的强度设计是根据计算得到的应力分布进行的。

根据材料的强度,可以确定梁的尺寸和形状,以满足梁的极限状态和使用状态的要求。

总结起来,梁的应力和强度计算是梁力学中的基本问题,包括梁的受力分析、应力分布计算和强度设计等内容。

通过合理的计算和设计,可以确保梁的安全和可靠性,提高结构的性能。

梁的应力及强度计算

梁的应力及强度计算

梁的应力及强度计算梁是一种常见的结构元件,用于承受或分配荷载。

在设计和分析梁的过程中,计算梁的应力及强度是非常重要的。

本文将详细介绍梁的应力及强度计算方法。

首先,梁的应力定义为单位面积上的力,用公式表示为:σ=M*y/I其中,σ表示梁的应力,M表示梁的弯矩,y表示距离中性轴的垂直距离,I表示梁的截面惯性矩。

梁的应力通常包括弯曲应力、剪切应力和轴向应力。

弯曲应力是由于弯曲力引起的应力,计算公式为:σ_b=M*y/I其中,σ_b表示弯曲应力。

剪切应力是由于纵向剪力引起的应力,计算公式为:τ=V*Q/(b*t)其中,τ表示剪切应力,V表示纵向剪力,Q为形状系数,b为梁的宽度,t为梁的厚度。

轴向应力是由于轴向力引起的应力,计算公式为:σ_a=N/A其中,σ_a表示轴向应力,N表示轴向力,A表示梁的截面积。

梁的强度是指在给定的荷载下梁能够承受的最大应力。

在计算梁的强度时,通常需要将不同种类的应力进行合并。

弯曲强度是指梁在弯曲荷载下的抗弯矩能力。

根据材料的弯曲性能和形状,可以采用破坏理论或变形理论计算梁的弯曲强度。

剪切强度是指梁在剪切荷载下的抗剪切能力。

根据材料的剪切性能和梁的几何形状,可以计算出梁的剪切强度。

轴向强度是指梁在轴向荷载下的抗轴向力能力。

轴向强度的计算通常基于材料的抗拉性能。

在进行梁的应力及强度计算时,还需要考虑其他因素,如材料的弹性模量、断裂韧性和安全系数等。

总之,梁的应力及强度计算是结构设计和分析中必不可少的一部分。

通过合理的计算方法,可以确保梁在荷载下的正常工作和安全使用。

梁的应力和强度计算

梁的应力和强度计算

z dA dM z y dA
dM y
( Stresses in Beams) 将应力表达式代入(1)式,得
FN

A
E
y

dA 0
E

A
ydA 0
待解决问题:
中性轴的位置
中性层的曲率半径ρ
S z ydA 0 A
y M y zE dA 0 A
中性轴通过横截面形心
伽利略(G.Galiieo, 1564-1642)的研究中认为: 弯曲应力是均匀分布的 (《两门新科学的对话》1638 年出版 ) , 因而得不到正确的公式,大科学家有时 也弄错。
( Stresses in Beams)
C C
Z 中性轴
Z
y

C M M
y 拉
C
Z
Z 两部分。
?
( Stresses in Beams)
横截面的 对称轴
横截面
y σ Eε E ρ
M
中性层
中性轴
1、中性轴的位置(Location of the neutral axis) 2、中性层的曲率半径 (Curvature radius of the neutral surface)
?
中性轴
( Stresses in Beams)
强度条件(strength condition):
梁内的最大工作应力不超过材料的许用应力
1、数学表达式(mathematical formula)
max
M max [ ] W
2、强度条件的应用(application of strength condition)
M max (1) 强度校核 [ ] W M max (2)设计截面 W [ ] (3)确定许可核载 M max W [ ]

梁的应力和强度计算

梁的应力和强度计算

剪切应力的计算步骤和实例
实例 1. 一根简支梁,跨度为$L$,在跨中受到集中力$F$的作用。求该梁的剪切应力。
2. 一根连续梁,跨度为$L$,在中间支座受到集中力$F$的作用。求该梁的剪切应力。
05
梁的强度计算
强度计算的原理和方法
极限应力法
根据梁的极限应力进行计算,确保梁在承受最大 载荷时不会发生断裂或屈服。
实例
假设有一根简支梁,跨度为L,承受均布载荷q,截面面积为A。根据正应力的计算公式,可以得出正应力的大小 为σ=q*L/2A。如果已知梁的材料和截面尺寸,可以通过查找或试验得到材料的屈服强度或极限强度,并与计算 出的正应力进行比较,以判断梁的强度是否满足要求。
04
梁的剪切应力计算
剪切应力的定义和计算公式
建立梁的力学模型
根据梁的几何形状、材料属性和载荷条件, 建立相应的力学模型。
强度校核
将计算得到的最大应力与材料的许用应力进 行比较,判断是否满足强度要求。
强度计算的注意事项和限制条件
材料属性
了解所用材料的机械性能,如弹性模 量、泊松比、屈服强度等。
支承条件
考虑梁的实际支承条件,如固定、简 支或滑动支承,对计算结果的影响。
剪切应力
在梁的剪切区域,由于相邻截面发生相对错动而产生的应力。
计算公式
剪切应力的大小与作用在剪切面上的外力成正比,与剪切面的面积成反比。公式为:$tau = frac{F}{A}$, 其中$tau$为剪切应力,$F$为作用在剪切面上的外力,$A$为剪切面的面积。
剪切应力的分布和影响
分布
剪切应力在梁的剪切面上是均匀分布的,但在剪切区域之外,由于弯曲应力的存在,剪 切应力会发生变化。
梁的应力和强度计算

《梁的应力强度计算》课件

《梁的应力强度计算》课件

《梁的应力强度计算》课件一、梁的概述1.梁的定义梁是一种受弯和剪力作用的横向受力构件,广泛应用于建筑、桥梁、机械等领域。

2.梁的材料梁的材料主要有钢梁和钢筋混凝土梁两种。

3.梁的分类根据截面形状,梁可以分为工字梁、T型梁、I型梁等;根据受力状态,梁可以分为简支梁、悬臂梁、连续梁等。

二、梁的应力计算1.基本概念(1)应力:单位面积上的内力,用σ表示,单位为Pa(帕斯卡)。

(2)应变:物体在受力作用下产生的形变与原长的比值,用ε表示。

(3)泊松比:材料在受力作用下横向应变与纵向应变的比值,用ν表示。

2.梁的应力分布(1)简支梁:在梁的截面上,剪应力分布均匀,正应力分布按三角形分布。

(2)悬臂梁:在梁的悬臂端截面,剪应力为零,正应力按二次曲线分布。

(3)连续梁:在梁的连续跨中截面,剪应力分布均匀,正应力分布按三角形分布。

3.梁的应力计算公式(1)简支梁:剪应力τ=V/I正应力σ=My/I其中,V为梁的剪力,M为梁的弯矩,I为梁的截面惯性矩,y为截面上距离中性轴的距离。

(2)悬臂梁:剪应力τ=0正应力σ=Ml/(2I)其中,l为悬臂梁的长度。

(3)连续梁:剪应力τ=V/I正应力σ=My/I其中,V为梁的剪力,M为梁的弯矩,I为梁的截面惯性矩,y为截面上距离中性轴的距离。

4.梁的强度校核(1)剪切强度校核:τ≤τ_max(2)弯曲强度校核:σ≤σ_max其中,τ_max为材料的剪切强度,σ_max为材料的弯曲强度。

三、梁的变形计算1.基本概念(1)挠度:梁在受力作用下产生的垂直于加载力的线位移。

(2)曲率:梁在受力作用下的弯曲程度,用κ表示。

2.梁的变形计算公式(1)简支梁:挠度f=VL^3/(3EI)其中,V为梁的剪力,L为梁的长度,E为材料的弹性模量,I为梁的截面惯性矩。

(2)悬臂梁:挠度f=VL^3/(3EI)其中,V为梁的剪力,L为悬臂梁的长度,E为材料的弹性模量,I 为梁的截面惯性矩。

(3)连续梁:挠度f=VL^3/(3EI)其中,V为梁的剪力,L为梁的长度,E为材料的弹性模量,I为梁的截面惯性矩。

梁的弯曲应力和强度计算

梁的弯曲应力和强度计算

88
7.5 106 7.6 106
88 86.8MPa
弯曲正应力计算
三、计算题
27.一矩形截面简支梁,梁上荷载如图所示.已知P=6kN、 l=4m、b=0.1m、h=0.2m,试画出梁的剪力图和弯矩图并求 梁中的最大正应力. 解:(1) 作剪力图、弯矩图
(2)求最大正应力
Mmax 6kN m
横向线:仍为直线,仍与纵向线正交,相对转动了一个角度 纵向线:曲线,下部伸长,上部缩短
(2)假设 平面假设:横截面在变形前为平面,变形后仍为平面,且仍
垂直于变形后梁的轴线,只是绕横截面上某个轴 旋转了一个角度。 单向受力假设:梁由无数根纵向纤维组成,之间无横向挤压,
只受轴向拉伸与压缩。
中性层
3、正应力计算公式 〖1〗几何变形关系
内容回顾
弯曲正应力 1. 基本假设:
(1)平面假设:变形前为平面的横截面,变形后仍为平面,但转动了一角度。 (2)单向受力假设:杆件的纵截面(与杆轴平行的截面)上无正应力。
2.中性轴Z:
中性层与横截面的交线,平面弯曲时中性轴过形心且与对称轴垂直。
3.正应力计算公式:
中性层
4.正应力分布规律:沿截面高度呈线性分布。
4、正负号确定 1)M、y 符号代入公式
2)直接观察变形
5、适用范围及推广
〖1〗适用范围: 平面弯曲(平面假设、单向受力假设基础上)、 线弹性材料
〖2〗推广: ① 至少有一个对称轴的截面; ② 细长梁 (l/h>5);
6、最大正应力
工程上关心的是极值应力:
只与截面形状、尺寸有关
抗弯截面模量
对剪切(横力)弯曲: 矩形:
解:(1)作弯矩图,
求最大弯矩
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(二)正应力公式
变形几何关系

y

s E
物理关系
s E
M EI Z 1
y

静力学关系
My s IZ

为曲率半径
1

为梁弯曲变形后的曲率
8
(三)正应力公式适用条件
My s IZ
• M — 横截面上的弯矩 • y — 所计算点到中性轴的距离 • Iz — 截面对中性轴的惯性矩
不仅适用于纯弯曲,也适用于剪力弯曲; 适用于所有截面。 (四)应力正负号确定 M为正时,中性轴上部截面受压下部截面受拉; M为负时,中性轴上部截面受拉下部截面受压. 在拉区s为正,压区s为负
x 1
14 60kNm
1 A 1m 1
Q=60kN/m B 2m 180 30 1 2
M max qL2 / 8 60 32 / 8 67.5kNm
求应力
bh3 1201803 Iz 1012 5.832105 m 4 12 12
qL 8
2
120 y +
z
Wz I z / 0.09 6.48104 m3
s1 s 2
M1 y Iz
60 60 105 61.7MP a 5.832
15
M M1 Mmax
x
1 A 1m 1
Q=60kN/m B 2m 180 30 1 2
s 1max
M 1 601000 104 Wz 6.48 92.6MP a
2、强度条件应用:依此强度准则可进行三种强度计算:
M max s 校核强度: s max 、校核强度: Wz M max 设计截面尺寸: Wz [s ]
确定许可载荷:M max
Wz [s ]
13
1 A 1m 1
Q=60kN/m B 2m 180 30 1 2
9
§7-2 .1 最大正应力 最大正应力
M max ymax Iz
危险截面: 最大弯矩所在截面 Mmax 危险点:距中性轴最远边缘点 ymax
s max

Iz Wz ymax
抗弯截面模量。

s max
M Wz
一般截面,最大正应力发 生在弯矩绝对值最大的截 面的上下边缘上; 10
RA 2.5kN ; RB 10.5kN
M C 2.5kNm(下拉、上压 )
M B 4kNm(上拉、下压)
17 画危面应力分布图,找危险点
y2
A2 A4
M
-4kNm x 2.5kNm A1 A3
sA L
2
M C y2 2.5 88 28.2MPa 8 Iz 76310
Wz —抗弯截面模量
Iz Wz ymax 抗弯截面模量。
Iz 矩形 Wz ymax
b
d
bh3 2 bh 12 h 6 2
I z d 4 / 64 d 3 圆形 Wz ymax d /2 32 I z D3 圆环 Wz (1 a 4 ) ymax 32
第七章
梁的应力和强度计算
§7–1 梁的正应力 §7–2 梁的正应力强度条件及应用 §7–3 梁横截面上的切应力 §7–4 梁的切应力强度条件
1
§7-1.1 梁的应力情况 由图可知,在梁的AC、 DB两段内,各横截面上 既有剪力又有弯矩,这 种弯曲称为剪切弯曲(或 横力弯曲)。

在梁的CD段内,各 横截面上只有弯矩而无 剪力,这种弯曲称为纯 弯曲。
③横向线与纵向线变形后
仍正交。
4 ④横截面高度不变。
2. 根据上述的表面变形现象,由表及里地推断梁内部的 变形,作出如下的两点假设:
平面假设:横截面变形后仍为平面,只是绕中性轴发生转
动,距中性轴等高处,变形相等。
纵向纤维间无挤压、只受轴向拉伸和压缩。 (横截面上只有正应力)
纵向对称面
中性层
中性轴
M max 67.5 1000 104 Wz 6.48 104.2MPa
s max
qL2 8
+ M
120 求曲率半径
EI z 200109 5.832105 1 M1 60103 194.4m
16
M1 Mmax
x
4
P1=9kN A C 12
由以上定义可得:
1、剪切弯曲
剪力Q 切应力t 正应力s
内力
弯矩M 2、纯弯曲 内力:弯矩M 正应力σ
3
§7-1.2 现象和假设 纵向对称面 (一)梁的纯弯曲实验 1.纯弯曲实验 ①横向线(a b、c d)变形 a b M a b c d c d M 后仍为直线,但有转动; ②纵向线变为曲线,且上 缩下伸;
d D
ad
D
11
§7-2.2 正应力强度条件及计算 1、正应力强度条件:
s max
M max [s ] WZ
[s]— 材料的容许应力
矩形和工字形截面梁正应力 smax=M/Wz Wz = Iz /(h/2) 特点: smax+= smax T形截面梁的正应力 smax+ =M/W1 W1 = Iz /y1 smax- =M/W2 W2 = Iz /y2 特点: smax+ smax12
例7.2.1 受均布载荷作用的简支
梁如图所示,试求: (1)1—1截面上1、2两点的 正应力; (2)此截面上的最大正应力;
(3)全梁的最大正应力;
(4)已知E=200GPa,求1—1 截面的曲率半径。
qL2 8
+ M
120 y
z
M1 Mmax
x
解:画M图求截面弯矩
qLx qx2 M1 ( ) 2 2
-4kNm x
例7-2.2 T 字形截面的铸铁梁受力 如图,铸铁的[sL]=30MPa,
1m
[sy]=60 MPa,其截面形心位于G
点,y1=52mm, y2=88mm, Iz=763cm4 ,试校核此梁的强度。 并说明T字梁怎样放置更合理? 解:画弯矩图并求危面内力
2.5kNm A1 G y1
A3
5
3 . 两 个 概 念 中性层:梁内一层纤维既不伸长也不缩短,因
而纤维不受拉应力和压应力,此层纤维称中性
层。
中性轴:中性层与横截面的交线。
纵向对称面
中性层
中性轴
6
§7-1.3 纯弯曲梁正应力
• 一、公式推导: 变形的几何关系 导出 应力与应变间物理关系 静力平衡条件
7
正应力计算公式
由以上分析得
相关文档
最新文档